Eric Dishman: Take health care off the mainframe

36,972 views ใƒป 2010-03-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:15
If you think about the phone --
0
15260
2000
ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื”ื˜ืœืคื•ืŸ -
00:17
and Intel has tested
1
17260
2000
ื•ืื™ื ื˜ืœ ื‘ื—ื ื”
00:19
a lot of the things I'm going to show you,
2
19260
2000
ื”ืจื‘ื” ืžื”ื“ื‘ืจื™ื ืฉืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื,
00:21
over the last 10 years,
3
21260
2000
ื‘ืžืจื•ืฆืช 10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
00:23
in about 600 elderly households --
4
23260
2000
ื‘ื‘ืชื™ื”ื ืฉืœ ื›-600 ืงืฉื™ืฉื™ื -
00:25
300 in Ireland, and 300 in Portland --
5
25260
3000
300 ื‘ืื™ืจืœื ื“, 300 ื‘ืคื•ืจื˜ืœื ื“ -
00:28
trying to understand: How do we measure
6
28260
2000
ื‘ื ื™ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืื™ืš ืื ื—ื ื• ืžื•ื“ื“ื™ื
00:30
and monitor behavior
7
30260
2000
ื•ืžืคืงื—ื™ื ืขืœ ื”ืชื ื”ื’ื•ืช
00:32
in a medically meaningful way?
8
32260
2000
ื‘ืื•ืคืŸ ืจืคื•ืื™ ืžืฉืžืขื•ืชื™?
00:34
And if you think about the phone, right,
9
34260
2000
ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื”ื˜ืœืคื•ืŸ, ื›ืŸ
00:36
it's something that we can use for some incredible ways
10
36260
2000
ื–ื” ืžืฉื”ื• ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืฉืžืฉ ื‘ื• ื‘ื“ืจื›ื™ื ืฉืœื ื™ื™ืืžื ื•
00:38
to help people actually take the right medication at the right time.
11
38260
3000
ื›ื“ื™ ืœืขื–ื•ืจ ืœืื ืฉื™ื ืœื™ื˜ื•ืœ ืืช ื”ืชืจื•ืคื•ืช ืฉืœื”ื ื‘ื–ืžืŸ.
00:41
We're testing these kinds of simple
12
41260
2000
ืื ื—ื ื• ื‘ื•ื—ื ื™ื ืกื•ื’ื™ื ืคืฉื•ื˜ื™ื
00:43
sensor-network technologies in the home
13
43260
2000
ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ืช ื—ื™ื™ืฉื ื™ ืจืฉืช ื‘ื™ืชื™ื™ื
00:45
so that any phone that a senior is already comfortable with
14
45260
2000
ื›ืš ืฉื›ืœ ืžื›ืฉื™ืจ ื˜ืœืคื•ืŸ ืฉืงืฉื™ืฉื™ื ืจื’ื™ืœื™ื ืืœื™ื•
00:47
can help them deal with their medications.
15
47260
2000
ื™ื•ื›ืœ ืœืขื–ื•ืจ ืœื”ื ืœืงื—ืช ืชืจื•ืคื•ืช.
00:49
And a lot of what they do is they pick up the phone,
16
49260
2000
ื•ืžื” ืฉื”ื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื–ื” ื‘ืขื™ืงืจ ืœื”ืจื™ื ืืช ื”ืฉืคื•ืคืจืช,
00:51
and it's our system whispering to them which pill they need to take,
17
51260
3000
ื•ื”ืžืขืจื›ืช ืฉืœื ื• ืœื•ื—ืฉืช ืœื”ื ืื™ืœื• ืชืจื•ืคื•ืช ื”ื ืฆืจื™ื›ื™ื ืœืงื—ืช,
00:54
and they fake like they're having a conversation with a friend.
18
54260
3000
ื‘ืขื•ื“ ื”ื ืžืขืžื™ื“ื™ื ืคื ื™ื ืฉื”ื ืžื ื”ืœื™ื ืฉื™ื—ื” ืขื ื—ื‘ืจ.
00:57
And they're not embarrassed by a meds caddy that's ugly,
19
57260
2000
ื•ื”ื ืœื ืžื•ื‘ื›ื™ื ืžืžื’ืฉ ืชืจื•ืคื•ืช ืžื›ื•ืขืจ,
00:59
that sits on their kitchen table and says,
20
59260
2000
ืฉื™ื•ืฉื‘ ืขืœ ืฉื•ืœื—ืŸ ื”ืžื˜ื‘ื— ืฉืœื”ื ื•ืื•ืžืจ,
01:01
"I'm old. I'm frail."
21
61260
2000
"ืื ื™ ื–ืงืŸ. ืื ื™ ื—ืœืฉ."
01:03
It's surreptitious technology
22
63260
2000
ื–ื•ื”ื™ ื˜ื›ื ื•ืœื•ื’ื™ื” ื ืกืชืจืช
01:05
that's helping them do a simple task
23
65260
2000
ืฉืขื•ื–ืจืช ืœื”ื ืœืขืฉื•ืช ืืช ื”ืžื˜ืœื” ื”ืคืฉื•ื˜ื”
01:07
of taking the right pill at the right time.
24
67260
2000
ืฉืœ ืœืงื—ืช ืืช ื”ืชืจื•ืคื” ื”ื ื›ื•ื ื” ื‘ื–ืžืŸ ื”ื ื›ื•ืŸ.
01:09
Now, we also do some pretty amazing things with these phones.
25
69260
3000
ืขื›ืฉื™ื•, ืื ื—ื ื• ื’ื ืขื•ืฉื™ื ื“ื‘ืจื™ื ื“ื™ ืžื“ื”ื™ืžื™ื ืขื ื”ื˜ืœืคื•ื ื™ื ื”ืืœื”.
01:12
Because that moment when you answer the phone
26
72260
3000
ืžื›ื™ื•ื•ืŸ ืฉื”ืจื’ืข ื‘ื• ืืชื ืขื•ื ื™ื ืœื˜ืœืคื•ืŸ
01:15
is a cognitive test every time that you do it.
27
75260
3000
ื”ื•ื ืžื‘ื—ืŸ ืงื•ื’ื ื™ื˜ื™ื‘ื™ ื›ืœ ืคืขื ืžื—ื“ืฉ.
01:18
Think about it, all right? I'm going to answer the phone three different times.
28
78260
3000
ื—ื™ืฉื‘ื• ืขืœ ื–ื” ืจื’ืข, ื‘ืกื“ืจ? ืื ื™ ืขื•ืžื“ ืœืขื ื•ืช ืœื˜ืœืคื•ืŸ ื‘ืฉืœื•ืฉื” ืื•ืคื ื™ื ืฉื•ื ื™ื.
01:21
"Hello? Hey."
29
81260
2000
"ื”ืœื•? ื”ื™ื™."
01:23
All right? That's the first time.
30
83260
3000
ื‘ืกื“ืจ? ื–ื• ื”ื™ืชื” ื”ืคืขื ื”ืจืืฉื•ื ื”.
01:26
"Hello? Uh, hey."
31
86260
4000
"ื”ืœื•? ืื•, ื”ื™ื™."
01:30
"Hello? Uh, who?
32
90260
4000
"ื”ืœื•, ืื”, ืžื™?
01:34
Oh, hey."
33
94260
3000
ืื•, ื”ื™ื™."
01:37
All right? Very big differences
34
97260
3000
ื‘ืกื“ืจ? ื™ืฉ ื”ื‘ื“ืœื™ื ืžืฉืžืขื•ืชื™ื™ื
01:40
between the way I answered the phone the three times.
35
100260
3000
ื‘ืื•ืคืŸ ื‘ื• ืขื ื™ืชื™ ืœื˜ืœืคื•ืŸ ื‘ื›ืœ ืื—ืช ืžื”ืคืขืžื™ื.
01:43
And as we monitor phone usage
36
103260
2000
ื•ื›ืฉืื ื—ื ื• ืžื ื˜ืจื™ื ืฉื™ืžื•ืฉ ื‘ื˜ืœืคื•ืŸ
01:45
by seniors over a long period of time,
37
105260
3000
ื‘ืงืจื‘ ืงืฉื™ืฉื™ื ืœืื•ืจืš ืชืงื•ืคื” ืืจื•ื›ื”,
01:48
down to the tenths of a microsecond,
38
108260
2000
ื‘ื“ื™ื•ืง ืฉืœ ืขืฉื™ืจื™ื•ืช ืžื™ืงืจื•-ืฉื ื™ื”,
01:50
that recognition moment
39
110260
2000
ืจื’ืข ื”ื–ื™ื”ื•ื™ ื”ื–ื”
01:52
of whether they can figure out that person on the other end
40
112260
2000
ื”ืื ื”ืื“ื ื‘ืฆื“ ื”ืฉื ื™ ืฉืœ ื”ืงื•
01:54
is a friend and we start talking to them immediately,
41
114260
2000
ื”ื•ื ื—ื‘ืจ, ื•ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื“ื‘ืจ ืืœื™ื”ื ืžื™ื“,
01:56
or they do a lot of what's called trouble talk,
42
116260
2000
ืื• ืฉื”ื ืขื•ืฉื™ื ื”ืจื‘ื” ืžืžื” ืฉื ืงืจื ืฉื™ื—ื•ืช ืฆืจื•ืช,
01:58
where they're like, "Wait, who is this? Oh." Right?
43
118260
3000
ื‘ื”ืŸ ื”ื ื›ืื™ืœื•, "ืจื’ืข, ืžื™ ื–ื”? ืื•ื”" ื‘ืกื“ืจ?
02:01
Waiting for that recognition moment
44
121260
2000
ื”ื”ืžืชื ื” ืœืจื’ืข ื”ื”ื›ืจื” ื”ื–ื”
02:03
may be the best early indicator of the onset of dementia
45
123260
2000
ื™ื›ื•ืœ ืœื”ื™ื•ืช ื”ืกืžืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืœื”ืชื—ืœื” ืฉืœ ื“ืžื ืฆื™ื”
02:05
than anything that shows up clinically today.
46
125260
2000
ื™ื•ืชืจ ืžื›ืœ ืžื” ืฉืžื•ืคื™ืข ืงืœื™ื ื™ืช ื›ื™ื•ื.
02:07
We call these behavioral markers.
47
127260
2000
ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ื’ื•ืจืžื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื.
02:09
There's lots of others. Is the person going to the phone
48
129260
2000
ื™ืฉ ื”ืจื‘ื” ืื—ืจื™ื. ื”ืื ื”ืื“ื ื”ื•ืœืš ืœื˜ืœืคื•ืŸ
02:11
as quickly, when it rings, as they used to?
49
131260
3000
ื‘ืื•ืชื” ืžื”ื™ืจื•ืช, ื›ืฉื”ื•ื ืžืฆืœืฆืœ, ื›ืžื• ื‘ืขื‘ืจ?
02:14
Is it a hearing problem or is it a physicality problem?
50
134260
3000
ื”ืื ื–ื• ื‘ืขื™ื™ืช ืฉืžื™ืขื” ืื• ื‘ืขื™ื™ื” ืคื™ื–ื™ืช?
02:17
Has their voice gotten more quiet? We're doing a lot of work with people
51
137260
2000
ื”ืื ื”ืงื•ืœ ืฉืœื”ื ื ืขืฉื” ื™ื•ืชืจ ืฉืงื˜? ืื ื—ื ื• ืขื•ืฉื™ื ื”ืจื‘ื” ืขื‘ื•ื“ื” ืขื ืื ืฉื™ื
02:19
with Alzheimer's and particularly with Parkinson's,
52
139260
3000
ืขื ืืœืฆื”ื™ื™ืžืจ ื•ื‘ืขื™ืงืจ ืคืจืงื™ื ืกื•ืŸ,
02:22
where that quiet voice that sometimes shows up with Parkinson's patients
53
142260
3000
ืฉื ื”ืงื•ืœ ื”ืฉืงื˜ ื”ื–ื” ืฉืœืคืขืžื™ื ืžื•ืคื™ืข ื‘ื—ื•ืœื™ ืคืจืงื™ื ืกื•ืŸ
02:25
may be the best early indicator
54
145260
3000
ื™ื›ื•ืœ ืื•ืœื™ ืœื”ื™ื•ืช ื”ืกืžืŸ ื”ืžื•ืงื“ื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ
02:28
of Parkinson's five to 10 years before it shows up clinically.
55
148260
3000
ืฉืœ ืคืจืงื™ื ืกื•ืŸ ื—ืžืฉ ืขื“ 10 ืฉื ื™ื ืœืคื ื™ ืฉื”ื™ื ืžื•ืคื™ืขื” ืงืœื™ื ื™ืช.
02:31
But those subtle changes in your voice over a long period of time
56
151260
3000
ืื‘ืœ ื”ืฉื™ื ื•ื™ื™ื ื”ื–ืขื™ืจื™ื ื”ืืœื” ื‘ืงื•ืœ ื‘ืžืฉืš ืชืงื•ืคืช ื–ืžืŸ ืืจื•ื›ื”
02:34
are hard for you or your spouse to notice until it becomes so extreme
57
154260
3000
ืงืฉื™ื ืขื‘ื•ืจื›ื ื•ืขื‘ื•ืจ ื‘ื ื™ ื–ื•ื’ื›ื ืœื”ื‘ื—ื ื” ืขื“ ืฉื”ื ื ืขืฉื™ื ืงื™ืฆื•ื ื™ื™ื
02:37
and your voice has become so quiet.
58
157260
2000
ื•ื”ืงื•ืœ ืฉืœื›ื ื ืขืฉื” ื›ืœ ื›ืš ืฉืงื˜.
02:39
So, sensors are looking at that kind of voice.
59
159260
2000
ืื–, ืกื ืกื•ืจื™ื ืžื—ืคืฉื™ื ืกื•ื’ ื›ื–ื” ืฉืœ ืงื•ืœ.
02:41
When you pick up the phone,
60
161260
2000
ื›ืฉืืชื ืžืจื™ืžื™ื ืืช ื”ื˜ืœืคื•ืŸ,
02:43
how much tremor are you having,
61
163260
2000
ื›ืžื” ืจืขื“ ื™ืฉ ืœื›ื,
02:45
and what is that like, and what is that trend like over a period of time?
62
165260
3000
ื•ืื™ืš ื”ื•ื, ื•ืžื” ื”ืžื’ืžื” ืœืื•ืจืš ื–ืžืŸ?
02:48
Are you having more trouble dialing the phone than you used to?
63
168260
2000
ื”ืื ืงืฉื” ืœื›ื ื™ื•ืชืจ ืœื—ื™ื™ื’ ืžื›ืจื’ื™ืœ?
02:50
Is it a dexterity problem? Is it the onset of arthritis?
64
170260
3000
ื”ืื ื–ื• ื‘ืขื™ื™ืช ืžื™ื•ืžื ื•ืช? ื”ืื ื–ื• ื“ืœืงืช ืคืจืงื™ื?
02:53
Are you using the phone? Are you socializing less than you used to?
65
173260
4000
ื”ืื ืืชื ืžืฉืชืžืฉื™ื ื‘ื˜ืœืคื•ืŸ? ื”ืื ื™ืฉ ืœื›ื ืคื—ื•ืช ืงืฉืจื™ื ื—ื‘ืจืชื™ื™ื ืžื‘ืขื‘ืจ?
02:57
And looking at that pattern. And what does that decline in social health
66
177260
3000
ื•ื›ืฉืžื‘ื™ื˜ื™ื ื‘ืชื‘ื ื™ืช. ื•ืžื” ื”ื™ืจื™ื“ื” ื‘ื‘ืจื™ืื•ืช ื”ื—ื‘ืจืชื™ืช
03:00
mean, as a kind of a vital sign of the future?
67
180260
3000
ืื•ืžืจืช, ื›ืกื•ื’ ืฉืœ ืกื™ืžืŸ ื—ื™ื•ื ื™ ืœืขืชื™ื“?
03:03
And then wow, what a radical idea,
68
183260
3000
ื•ืื– ื•ื•ืื•, ืื™ื–ื” ืจืขื™ื•ืŸ ืจื“ื™ืงืœื™,
03:06
we -- except in the United States --
69
186260
2000
ืื ื—ื ื• -- ื—ื•ืฅ ืžื‘ืืจื”"ื‘ --
03:08
might be able to use this newfangled technology
70
188260
3000
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื—ื“ืฉื” ื”ื–ื•
03:11
to actually interact with a nurse or a doctor on the other end of the line.
71
191260
3000
ื›ื“ื™ ืœืชืงืฉืจ ืขื ืื—ื•ืช ืื• ืจื•ืคื ื‘ืฆื“ ื”ืฉื ื™ ืฉืœ ื”ืงื•.
03:14
Wow, what a great day that will be
72
194260
2000
ื•ื•ืื•, ืื™ื–ื” ื™ื•ื ื ืคืœื ื–ื” ื™ื”ื™ื”
03:16
once we're allowed to actually do those kinds of things.
73
196260
3000
ื‘ืจื’ืข ืฉื ื•ื›ืœ ืžืžืฉ ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจื™ื ื”ืืœื”.
03:19
So, these are what I would call behavioral markers.
74
199260
4000
ืื–, ืืœื” ื”ื ืžื” ืฉืื ื™ ืงื•ืจื ืกืžื ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื.
03:23
And it's the whole field that we've been trying to work on
75
203260
3000
ื•ื–ื” ื›ืœ ื”ืชื—ื•ื ืฉื ื™ืกื™ื ื• ืœืขื‘ื•ื“ ืขืœื™ื•
03:26
for the last 10 years at Intel.
76
206260
2000
ื‘ืขืฉืจ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื‘ืื™ื ื˜ืœ.
03:28
How do you put simple disruptive technologies,
77
208260
2000
ืื™ืš ืฉืžื™ื ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžืฉื‘ืฉื•ืช ืคืฉื•ื˜ื•ืช,
03:30
and the first of five phrases that I'm going to talk about in this talk?
78
210260
2000
ื•ื”ืจืืฉื•ืŸ ืžื—ืžื™ืฉื” ืžืฉืคื˜ื™ื ืฉืื ื™ ืขื•ืžื“ ืœื“ื‘ืจ ืขืœื™ื”ื ื‘ื”ืจืฆืื” ื”ื–ื•?
03:32
Behavioral markers matter.
79
212260
2000
ืกืžื ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื ืžืฉื ื™ื.
03:34
How do we change behavior?
80
214260
2000
ืื™ืš ืื ื—ื ื• ืžืฉื ื™ื ื”ืชื ื”ื’ื•ืช?
03:36
How do we measure changes in behavior
81
216260
2000
ืื™ืš ืื ื—ื ื• ืžื•ื“ื“ื™ื ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืชื™
03:38
in a meaningful way that's going to help us with
82
218260
2000
ื‘ื“ืจืš ืžืฉืžืขื•ืชื™ืช ืฉืชืขื–ื•ืจ ืœื ื• ืขื
03:40
prevention of disease, early onset of disease,
83
220260
2000
ืžื ื™ืขื” ืฉืœ ืžื—ืœื•ืช, ื”ืชื—ืœื” ืฉืœ ืžื—ืœื•ืช,
03:42
and tracking the progression of disease over a long period of time?
84
222260
3000
ื•ืžืขืงื‘ ืื—ืจ ื”ื”ืชืงื“ืžื•ืช ืฉืœ ืžื—ืœื•ืช ืœืžืฉืš ืชืงื•ืคืช ื–ืžืŸ ืืจื•ื›ื”?
03:45
Now, why would Intel let me
85
225260
3000
ืขื›ืฉื™ื•, ืœืžื” ืื™ื ื˜ืœ ืžืจืฉื” ืœื™
03:48
spend a lot of time and money, over the last 10 years,
86
228260
3000
ืœื”ืฉืงื™ืข ื”ืจื‘ื” ื–ืžืŸ ื•ื›ืกืฃ, ื‘ 10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
03:51
trying to understand the needs of seniors
87
231260
2000
ื‘ื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืืช ื”ืฆื•ืจืš ืฉืœ ืงืฉื™ืฉื™ื
03:53
and start thinking about these kinds of behavioral markers?
88
233260
2000
ื•ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ืกื•ื’ ื–ื” ืฉืœ ืกืžื ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื?
03:55
This is some of the field work that we've done.
89
235260
3000
ื–ื” ื—ืœืง ืžืขื‘ื•ื“ืช ื”ืฉื˜ื— ืฉืขืฉื™ื ื•.
03:58
We have now lived with 1,000 elderly households
90
238260
3000
ืขื“ ืขื›ืฉื™ื• ื—ื™ื™ื ื• ืขื 1,000 ื‘ืชื™ ืื‘ ืงืฉื™ืฉื™ื
04:01
in 20 countries over the last 10 years.
91
241260
2000
ื‘ 20 ืžื“ื™ื ื•ืช ื‘10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
04:03
We study people in Rochester, New York.
92
243260
2000
ืื ื—ื ื• ื—ื•ืงืจื™ื ืื ืฉื™ื ื‘ืจื•ืฆ'ืกื˜ืจ, ื ื™ื• ื™ื•ืจืง
04:05
We go live with them in the winter
93
245260
2000
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื—ื™ื•ืช ืื™ืชื ื‘ื—ื•ืจืฃ
04:07
because what they do in the winter,
94
247260
2000
ื‘ื’ืœืœ ืฉืžื” ืฉื”ื ืขื•ืฉื™ื ื‘ื—ื•ืจืฃ,
04:09
and their access to healthcare, and how much they socialize,
95
249260
2000
ื•ื”ื’ื™ืฉื” ืฉืœื”ื ืœื˜ื™ืคื•ืœ ืจืคื•ืื™, ื•ื›ืžื” ื—ื™ื™ ื—ื‘ืจื” ื™ืฉ ืœื”ื,
04:11
is very different than in the summer.
96
251260
2000
ืฉื•ื ื” ืžืื•ื“ ืžื”ืงื™ืฅ.
04:13
If they have a hip fracture we go with them
97
253260
2000
ืขื ื™ืฉ ืœื”ื ืฉื‘ืจ ื‘ื™ืจืš ืื ื—ื ื• ื”ื•ืœื›ื™ื ืื™ืชื
04:15
and we study their entire discharge experience.
98
255260
2000
ื•ืื ื—ื ื• ื—ื•ืงืจื™ื ืืช ื›ืœ ืชื”ืœื™ืš ื”ืฉื—ืจื•ืจ ืฉืœื”ื.
04:17
If they have a family member who is a key part of their care network,
99
257260
2000
ืื ื™ืฉ ืœื”ื ืงืจื•ื‘ ืžืฉืคื—ื” ืฉื”ื•ื ื—ืœืง ืขื™ืงืจื™ ื‘ืจืฉืช ื”ื˜ื™ืคื•ืœ ืฉืœื”ื,
04:19
we fly and study them as well.
100
259260
2000
ืื ื—ื ื• ื˜ืกื™ื ื•ื—ื•ืงืจื™ื ื’ื ืื•ืชื.
04:21
So, we study the holistic health experience
101
261260
3000
ืื–, ืื ื—ื ื• ื—ื•ืงืจื™ื ืืช ืชื”ืœื™ืš ื”ื”ื‘ืจืื” ื”ื”ื•ืœื™ืกื˜ื™
04:24
of 1,000 seniors over the last 10 years
102
264260
2000
ืฉืœ 1,000 ืงืฉื™ืฉื™ื ื‘ืžืฉืš 10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
04:26
in 20 different countries.
103
266260
2000
ื‘20 ืืจืฆื•ืช ืฉื•ื ื•ืช.
04:28
Why is Intel willing to fund that?
104
268260
3000
ืœืžื” ืื™ื ื˜ืœ ืžื•ื›ื ื” ืœืžืžืŸ ืืช ื–ื”?
04:31
It's because of the second slogan that I want to talk about.
105
271260
2000
ื–ื” ื‘ื’ืœืœ ื”ืกืœื•ื’ืŸ ื”ืฉื ื™ ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื•.
04:33
Ten years ago, when I started trying to convince Intel
106
273260
2000
ืœืคื ื™ ืขืฉืจ ืฉื ื™ื, ื›ืฉื”ืชื—ืœืชื™ ืœื ืกื•ืช ื•ืœืฉื›ื ืข ืืช ืื™ื ื˜ืœ
04:35
to let me go start looking at disruptive technologies
107
275260
2000
ืœืชืช ืœื™ ืœื‘ื“ื•ืง ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžืคืจื™ืขื•ืช
04:37
that could help with independent living,
108
277260
2000
ืฉื™ื•ื›ืœื• ืœืขื–ื•ืจ ืขื ื—ื™ื™ื ืขืฆืžืื™ื™ื,
04:39
this is what I called it: "Y2K + 10."
109
279260
3000
ื–ื” ืžื” ืฉืงืจืืชื™ ืœื• : "Y2K + 10."
04:42
You know, back in 2000,
110
282260
2000
ืืชื ื™ื•ื“ืขื™ื, ืื– ื‘ืฉื ืช 2000,
04:44
we were all so obsessed with paying attention
111
284260
2000
ื”ื™ื™ื ื• ื’ื ื›ืœ ื›ืš ืžืจื•ื›ื–ื™ื ื‘ืœืฉื™ื ืœื‘
04:46
to the aging of our computers,
112
286260
2000
ืœื”ื–ื“ืงื ื•ืช ืฉืœ ื”ืžื—ืฉื‘ื™ื ืฉืœื ื•,
04:48
and whether or not they were going to survive
113
288260
2000
ื•ืื ื ืฉืจื•ื“ ืื• ืœื
04:50
the tick of the clock from 1999 to 2000,
114
290260
2000
ืืช ืชืงืชื•ืง ื”ืฉืขื•ืŸ ืž 1999 ืœ 2000,
04:52
that we missed a moment that only demographers were paying attention to.
115
292260
5000
ืฉื”ื—ืžืฆื ื• ืืช ื”ืจื’ืข ืฉืจืง ื“ืžื•ื’ืจืคื™ื ืฉืžื• ืœื‘ ืืœื™ื•.
04:57
It was right around New Years.
116
297260
2000
ื–ื” ื”ื™ื” ื‘ืกื‘ื™ื‘ื•ืช ืชื—ื™ืœืช ื”ืฉื ื”.
04:59
And that switchover,
117
299260
2000
ื•ื”ื”ื—ืœืคื” ื”ื”ื™ื,
05:01
when we had the larger number of older people on the planet,
118
301260
3000
ื›ืฉื”ื™ื” ืœื ื• ืืช ื”ืžืกืคืจ ื”ื’ื‘ื•ื” ื™ื•ืชืจ ืฉืœ ืื ืฉื™ื ืžื‘ื•ื’ืจื™ื ืขืœ ื”ื›ื•ื›ื‘,
05:04
for the first time than younger people.
119
304260
2000
ื‘ืคืขื ื”ืจืืฉื•ื ื” ืžืื ืฉื™ื ืฆืขื™ืจื™ื.
05:06
For the first time in human history -- and barring aliens landing
120
306260
2000
ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘ื”ื™ืกื˜ื•ืจื™ื” ื”ืื ื•ืฉื™ืช -- ื•ื—ื•ืฅ ืžื ื—ื™ืชืช ื—ื™ื–ืจื™ื
05:08
or some major other pandemic,
121
308260
2000
ืื• ืื™ื–ื• ื”ืชืคืจืฆื•ืช ืฉืœ ืžื’ืคื”,
05:10
that's the expectation from demographers, going forward.
122
310260
3000
ื–ื• ื”ืฆื™ืคื™ื” ืžื”ื“ืžื•ื’ืจืคื™ื, ืœืขืชื™ื“.
05:13
And 10 years ago it seemed like I had a lot of time
123
313260
2000
ื•ืœืคื ื™ 10 ืฉื ื™ื ื–ื” ื ืจืื” ื›ืื™ืœื• ื™ืฉ ืœื™ ื”ืจื‘ื” ื–ืžืŸ
05:15
to convince Intel to work on this. Right?
124
315260
2000
ืœืฉื›ื ืข ืืช ืื™ื ื˜ืœ ืœืขื‘ื•ื“ ืขืœ ื–ื”. ื ื›ื•ืŸ?
05:17
Y2K + 10 was coming,
125
317260
2000
Y2K + 10 ื”ื™ื” ื‘ื“ืจืš,
05:19
the baby boomers starting to retire.
126
319260
3000
ื”ื‘ื™ื‘ื™ ื‘ื•ืžืจืก ื”ืชื—ื™ืœื• ืœืคืจื•ืฉ.
05:22
Well folks, it's like we know these demographics here.
127
322260
4000
ื•ื‘ื›ืŸ ื—ื‘ืจื”, ืื ื—ื ื• ืžื›ื™ืจื™ื ืืช ื”ื“ืžื•ื’ืจืคื™ื•ืช ื›ืืŸ.
05:26
This is a map of the entire world.
128
326260
2000
ื–ื• ืžืคื” ืฉืœ ื›ืœ ื”ืขื•ืœื.
05:28
It's like the lights are on,
129
328260
2000
ื–ื” ื›ืื™ืœื• ื”ืื•ืจื•ืช ื“ื•ืœืงื™ื,
05:30
but nobody's home on this demographic
130
330260
2000
ืื‘ืœ ืืฃ ืื—ื“ ืœื ื‘ื‘ื™ืช ื‘ืงืฉืจ ืœื“ืžื•ื’ืจืคื™ื”
05:32
Y2K + 10 problem. Right?
131
332260
2000
ื”ื‘ืขื™ืชื™ืช ืฉืœ Y2K + 10. ื ื›ื•ืŸ?
05:34
I mean we sort of get it here, but we don't get it here,
132
334260
4000
ื›ืœื•ืžืจ, ืื ื—ื ื• ืžื‘ื™ื ื™ื ืืช ื–ื” ืคื”, ืื‘ืœ ืื ื—ื ื• ืœื ืชื•ืคืกื™ื ืืช ื–ื” ืคื”,
05:38
and we're not doing anything about it.
133
338260
2000
ื•ืื ื—ื ื• ืœื ืขื•ืฉื™ื ื›ืœื•ื ื‘ืงืฉืจ ืœื–ื”.
05:40
The health reform bill is largely ignoring
134
340260
2000
ื”ืฆืขืช ื—ื•ืง ื”ื‘ืจื™ืื•ืช ืžืชืขืœืžืช ื‘ื›ืœืœื™ื•ืช
05:42
the realities of the age wave that's coming,
135
342260
2000
ืžื”ืžืฆื™ืื•ืช ืฉืœ ื’ืœ ื”ื”ื–ื“ืงื ื•ืช ืฉืžื’ื™ืข,
05:44
and the implications for what we need to do to change
136
344260
2000
ื•ื”ื”ืฉืœื›ื•ืช ืฉืœ ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื›ื“ื™ ืœืฉื ื•ืช
05:46
not only how we pay for care,
137
346260
3000
ืœื ืจืง ืื™ืš ืฉืื ื—ื ื• ืžืฉืœืžื™ื ืขื‘ื•ืจ ื˜ื™ืคื•ืœ,
05:49
but deliver care in some radically different ways.
138
349260
3000
ืืœื ืื™ืš ืœืกืคืง ื˜ื™ืคื•ืœ ื‘ืฆื•ืจื” ืฉื•ื ื” ื‘ืื•ืคืŸ ืจื“ื™ืงืœื™.
05:52
And in fact, it's upon us.
139
352260
2000
ื•ืœืžืขืฉื”, ื–ื” ื›ื‘ืจ ื›ืืŸ.
05:54
I mean you probably saw these headlines. This is Catherine Casey
140
354260
3000
ืื•ืœื™ ืจืื™ืชื ืืช ื”ื›ื•ืชืจื•ืช ื”ืืœื”. ื–ื• ืงืชืจื™ืŸ ืงื™ื™ืกื™
05:57
who is the first boomer to actually get Social Security.
141
357260
3000
ืฉื”ื™ื ื”ื‘ื•ืžืจื™ืช ื”ืจืืฉื•ื ื” ืฉืžืงื‘ืœืช ืงื™ืฆื‘ืช ื–ืงื ื”.
06:00
That actually occurred this year. She took early retirement.
142
360260
2000
ื–ื” ืงืจื” ืœืžืขืฉื” ื”ืฉื ื”. ื”ื™ื ื™ืฆืื” ืœืคืจื™ืฉื” ืžื•ืงื“ืžืช.
06:02
She was born one second after midnight in 1946.
143
362260
4000
ื”ื™ื ื ื•ืœื“ื” ืฉื ื™ื” ืื—ืช ืื—ืจื™ ื—ืฆื•ืช ื‘ 1946.
06:06
A retired school teacher,
144
366260
2000
ืžื•ืจื” ื‘ื’ืžืœืื•ืช,
06:08
there she is with a Social Security administrator.
145
368260
2000
ื”ื ื” ื”ื™ื ืขื ืžื ื”ืœ ื”ื‘ื™ื˜ื•ื— ื”ืœืื•ืžื™.
06:10
The first boomer actually, we didn't even wait till 2011, next year.
146
370260
3000
ื”ื‘ื•ืžืจื™ืช ื”ืจืืฉื•ื ื” ืœืžืขืฉื”, ืœื ื—ื™ื›ื™ื ื• ืืคื™ืœื• ืขื“ 2011, ืฉื ื” ื”ื‘ืื”.
06:13
We're already starting to see early retirement occur this year.
147
373260
3000
ื›ื‘ืจ ื”ืชื—ืœื ื• ืœืจืื•ืช ืคืจื™ืฉื” ืžื•ืงื“ืžืช ื”ืฉื ื”.
06:16
All right, so it's here. This Y2K + 10 problem is at our door.
148
376260
3000
ื‘ืกื“ืจ, ืื– ื–ื” ืคื”. ื‘ืขื™ืช ื” Y2K + 10 ืขืœ ืžืคืชืŸ ื“ืœืชื ื•.
06:19
This is 50 tsunamis scheduled on the calendar,
149
379260
5000
ื–ื” 50 ืฆื•ื ืืžื™ ืžืชื•ื›ื ื ื™ื ืขืœ ืœื•ื— ื”ืฉื ื”,
06:24
but somehow we can't sort of marshal our government
150
384260
3000
ืื‘ืœ ืื™ืš ืฉื”ื•ื ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืฉืœื•ื˜ ื‘ืžืžืฉืœื” ืฉืœื ื•
06:27
and innovative forces to sort of get out in front of it
151
387260
2000
ื•ืœื—ื“ืฉ ื›ื•ื—ื•ืช ื›ื“ื™ ืœื”ืชื›ื•ื ืŸ ืœื–ื”
06:29
and do something about it. We'll wait until
152
389260
2000
ื•ืœืขืฉื•ืช ืžืฉื”ื• ื‘ืงืฉืจ ืœื–ื”. ืื ื—ื ื• ื ื—ื›ื” ืขื“
06:31
it's more of a catastrophe, and react,
153
391260
2000
ืฉื–ื” ื™ื”ื™ื” ื™ื•ืชืจ ืงื˜ืกื˜ืจื•ืคืœื™ ื•ืื– ื ื’ื™ื‘,
06:33
as opposed to prepare for it.
154
393260
2000
ื‘ืžืงื•ื ืœื”ืชื›ื•ื ืŸ ืœื–ื”.
06:35
So, one of the reasons it's so
155
395260
2000
ืื–, ืื—ืช ื”ืกื™ื‘ื•ืช ืฉื–ื” ื›ืœ ื›ืš
06:37
challenging to prepare for this Y2K problem
156
397260
2000
ืžืืชื’ืจ ืœื”ืชื›ื•ื ืŸ ืœื‘ืขื™ื™ืช Y2K ื”ื–ื•
06:39
is, I want to argue, we have what I would call
157
399260
2000
ื”ื™ื ืฉื™ืฉ ืœื ื•, ื‘ืžื™ืœื™ื ืฉืœื™,
06:41
mainframe poisoning.
158
401260
2000
ื”ืจืขืœืช ืžื™ื™ื ืคืจื™ื™ื.
06:43
Andy Grove, about six or seven years ago,
159
403260
3000
ืื ื“ื™ ื’ืจื•ื‘, ืœืคื ื™ ื‘ืขืจืš ืฉืฉ ืื• ืฉื‘ืข ืฉื ื™ื,
06:46
he doesn't even know or remember this, in a Fortune Magazine article
160
406260
2000
ื”ื•ื ืืคื™ืœื• ืœื ื™ื•ื“ืข ืื• ื–ื•ื›ืจ ืืช ื–ื”, ื‘ืžืืžืจ ืฉืœ ืžื’ื–ื™ืŸ ืคื•ืจืฆ'ืŸ
06:48
he used the phrase "mainframe healthcare,"
161
408260
3000
ื”ื•ื ื”ืฉืชืžืฉ ื‘ื‘ื™ื˜ื•ื™ "ืจืคื•ืืช ืžื™ื™ื ืคืจื™ื™ื,"
06:51
and I've been extending and expanding this.
162
411260
2000
ื•ื”ืจื—ื‘ืชื™ ื•ื”ืจื—ื‘ืชื™ ืืช ื–ื”.
06:53
He saw it written down somewhere. He's like, "Eric that's a really cool concept."
163
413260
3000
ื”ื•ื ืจืื” ืืช ื–ื” ื›ืชื•ื‘ ื”ื™ื›ืŸ ืฉื”ื•ื. ื•ื”ื•ื ืืžืจ "ืืจื™ืง ื–ื” ืงื•ื ืกืคื˜ ืžื’ื ื™ื‘."
06:56
I was like, "Actually it was your idea. You said it in a Fortune Magazine article.
164
416260
2000
ื•ืืžืจืชื™ ืœื• "ืœืžืขืฉื” ื–ื” ื”ื™ื” ื”ืจืขื™ื•ืŸ ืฉืœืš. ืืžืจืช ืืช ื–ื” ื‘ืžืืžืจ ื‘ืžื’ื–ื™ืŸ ืคื•ืจืฆ'ืŸ.
06:58
I just extended it."
165
418260
2000
ืคืฉื•ื˜ ื”ืจื—ื‘ืชื™ ืืช ื–ื”."
07:00
You know, this is the mainframe.
166
420260
2000
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื”ืžื™ื™ื ืคืจื™ื™ื.
07:02
This mentality of traveling to
167
422260
3000
ื”ืžื ื˜ืœื™ื•ืช ืฉืœ ื”ื’ืขื”
07:05
and timesharing large, expensive healthcare systems
168
425260
3000
ื•ืฉื™ืชื•ืฃ ืฉืœ ืžืขืจื›ื•ืช ื‘ืจื™ืื•ืช ื’ื“ื•ืœื•ืช ื•ื™ืงืจื•ืช
07:08
actually began in 1787.
169
428260
2000
ื”ืชื—ื™ืœื” ืœืžืขืฉื” ื‘ 1787.
07:10
This is the first general hospital in Vienna.
170
430260
3000
ื–ื” ื‘ื™ืช ื”ื—ื•ืœื™ื ื”ื›ืœืœื™ ื”ืจืืฉื•ืŸ ื‘ื•ื™ื ื”.
07:13
And actually the second general hospital in Vienna,
171
433260
2000
ื•ืœืžืขืฉื” ื‘ื™ืช ื”ื—ื•ืœื™ื ื”ื›ืœืœื™ ื”ืฉื ื™ ื‘ื•ื™ื ื”,
07:15
in about 1850, was where we started to build out
172
435260
3000
ื‘ 1850 ื‘ืขืจืš, ื”ื™ื” ื”ื™ื›ืŸ ืฉื”ืชื—ืœื ื• ืœื‘ื ื•ืช
07:18
an entire curriculum for teaching med students specialties.
173
438260
4000
ืชื•ื›ื ื™ืช ืฉืœืžื” ืœืœื™ืžื•ื“ ื”ืชืžื—ื•ื™ื•ืช ืœืกื˜ื•ื“ื ื˜ื™ื ืœืจืคื•ืื”.
07:22
And it's a place in which we started developing
174
442260
2000
ื•ื–ื” ืžืงื•ื ื‘ื• ื”ืชื—ืœื ื• ืœืคืชื—
07:24
architecture that literally divided the body,
175
444260
2000
ืืจื›ื™ื˜ืงื˜ื•ืจื” ืฉืžืžืฉ ื—ื™ืœืงื” ืืช ื”ื’ื•ืฃ,
07:26
and divided care into departments and compartments.
176
446260
3000
ื•ื—ื™ืœืงื” ืืช ื”ื˜ื™ืคื•ืœ ืœืžื—ืœืงื•ืช ื•ืชืื™ื.
07:29
And it was reflected in our architecture,
177
449260
2000
ื•ื–ื” ื”ืฉืชืงืฃ ื‘ืืจื›ื™ื˜ืงื˜ื•ืจื” ืฉืœื ื•,
07:31
it was reflected in the way that we taught students,
178
451260
2000
ื–ื” ื”ืฉืชืงืฃ ื‘ื“ืจืš ื‘ื” ืœื™ืžื“ื ื• ืกื˜ื•ื“ื ื˜ื™ื,
07:33
and this mainframe mentality persists today.
179
453260
3000
ื•ืžื ื˜ืœื™ื•ืช ื”ืžื™ื™ื ืคืจื™ื™ื ืžืžืฉื™ื›ื” ื”ื™ื•ื.
07:36
Now, I'm not anti-hospital.
180
456260
3000
ืขื›ืฉื™ื•, ืื ื™ ืœื ื ื’ื“ ื‘ืชื™ ื—ื•ืœื™ื.
07:39
With my own healthcare problems, I've taken drug therapies,
181
459260
2000
ืขื ื‘ืขื™ื•ืช ื”ื‘ืจื™ืื•ืช ืฉืœื™, ื”ืฉืชืžืฉืชื™ ื‘ืชืจื•ืคื•ืช,
07:41
I've traveled to this hospital and others, many, many times.
182
461260
3000
ื ืกืขืชื™ ืœื‘ื™ืช ื”ื—ื•ืœื™ื ื”ื–ื” ื•ืื—ืจื™ื, ื”ืจื‘ื” ื”ืจื‘ื” ืคืขืžื™ื.
07:44
But we worship the high hospital on a hill. Right?
183
464260
4000
ืื‘ืœ ืื ื—ื ื• ืžืขืจื™ืฆื™ื ืืช ื‘ื™ืช ื”ื—ื•ืœื™ื ื”ื’ื‘ื•ื” ืขืœ ื”ื’ื‘ืขื”. ื ื›ื•ืŸ?
07:48
And this is mainframe healthcare.
184
468260
2000
ื•ื–ื• ืจืคื•ืืช ืžื™ื™ื ืคืจื™ื™ื.
07:50
And just as 30 years ago
185
470260
2000
ื•ื›ืžื• ืœืคื ื™ 30 ืฉื ื”
07:52
we couldn't conceive that we would have the power
186
472260
3000
ืœื ื™ื›ื•ืœื ื• ืœืงืœื•ื˜ ืฉื™ื”ื™ื” ืœื ื• ืืช ื”ื›ื•ื—
07:55
of a mainframe computer that took up a room this size
187
475260
3000
ืฉืœ ืžื—ืฉื‘ื™ ืžื™ื™ื ืคืจื™ื™ื ืฉืชืคืกื• ื—ื“ืจ ื‘ื’ื•ื“ืœ ื›ื–ื”
07:58
in our purses and on our belts,
188
478260
2000
ื‘ืชื™ืงื™ื ืฉืœื ื• ื•ืขืœ ื”ื—ื’ื•ืจื•ืช ืฉืœื ื•,
08:00
that we're carrying around in our cell phone today,
189
480260
2000
ืฉืื ื—ื ื• ื ื•ืฉืื™ื ืื™ืชื ื• ื‘ืกืœื•ืœืจื™ื™ื ืฉืœื ื• ื”ื™ื•ื,
08:02
and suddenly, computing,
190
482260
2000
ื•ืคืชืื•ื ืžื—ืฉื•ื‘,
08:04
that used to be an expert driven system,
191
484260
2000
ืฉื”ื™ื” ืžืขืจื›ืช ืžื•ื ืขืช ืžืงืฆื•ืขื ื™ื,
08:06
it was a personal system that we all owned as part of our daily lives --
192
486260
3000
ื”ืคื›ื” ืœืžืขืจื›ืช ืื™ืฉื™ืช ื‘ื‘ืขืœื•ืช ื›ื•ืœื ื• ื‘ื—ื™ื™ ื”ื™ื•ื ื™ื•ื ืฉืœื ื• --
08:09
that shift from mainframe to personal computing
193
489260
3000
ื”ืžืขื‘ืจ ื”ื–ื” ืžืžื—ืฉื•ื‘ ืžืจื›ื–ื™ ืœืžื—ืฉื•ื‘ ืื™ืฉื™
08:12
is what we have to do for healthcare.
194
492260
2000
ื–ื” ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืœืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช.
08:14
We have to shift from this mainframe mentality of healthcare
195
494260
3000
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœืขื‘ื•ืจ ืžืžื ื˜ืœื™ื•ืช ื”ืžื™ื™ื ืคืจื™ื™ื ืฉืœ ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช
08:17
to a personal model of healthcare.
196
497260
2000
ืœืžื•ื“ืœ ืื™ืฉื™ ืฉืœ ื‘ืจื™ืื•ืช.
08:19
We are obsessed with this way of thinking.
197
499260
3000
ืื ื—ื ื• ืžืงื•ื‘ืขื™ื ื‘ื“ืจืš ื”ืžื—ืฉื‘ื” ื”ื–ื•.
08:22
When Intel does surveys all around the world and we say,
198
502260
2000
ื›ืฉืื™ื ื˜ืœ ืขื•ืจื›ืช ืกืงืจื™ื ื‘ื›ืœ ื”ืขื•ืœื ื•ืื ื—ื ื• ืื•ืžืจื™ื,
08:24
"Quick response: healthcare."
199
504260
2000
"ืชื’ื•ื‘ื” ืžื”ื™ืจื”": ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช."
08:26
The first word that comes up is "doctor."
200
506260
2000
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืขื•ืœื” ืœืจืืฉ ื”ื•ื "ืจื•ืคื."
08:28
The second that comes up is "hospital." And the third is "illness" or "sickness." Right?
201
508260
3000
ื”ืฉื ื™ ืฉืขื•ืœื” ื”ื•ื "ื‘ื™ืช ื—ื•ืœื™ื." ื•ื”ืฉืœื™ืฉื™ "ืžื—ืœื”" ืื• "ื—ื•ืœื™." ื ื›ื•ืŸ?
08:31
We are wired, in our imagination, to think about healthcare
202
511260
4000
ืื ื—ื ื• ืžื—ื•ื•ื˜ื™ื, ื‘ื“ืžื™ื•ืŸ ืฉืœื ื•, ืœื—ืฉื•ื‘ ืขืœ ืจืคื•ืื”
08:35
and healthcare innovation as something
203
515260
2000
ื•ื—ื“ืฉื ื•ืช ื‘ืจืคื•ืื” ื›ืžืฉื”ื•
08:37
that goes into that place.
204
517260
2000
ืฉื ื›ื ืก ืœืžืงื•ื ื”ื”ื•ื.
08:39
Our entire health reform discussion right now,
205
519260
2000
ื›ืœ ื”ื“ื™ื‘ื•ืจ ืขืœ ืจืคื•ืจืžืช ื”ื‘ืจื™ืื•ืช ืฉืœื ื• ืขื›ืฉื™ื•,
08:41
health I.T., when we talk with policy makers,
206
521260
3000
ืžืขืจื›ื•ืช ืžื™ื“ืข ืจืคื•ืื™ื•ืช, ื›ืฉืื ื—ื ื• ืžื“ื‘ืจื™ื ืขื ืงื•ื‘ืขื™ ื”ืžื“ื™ื ื™ื•ืช,
08:44
equals "How are we going to get doctors using
207
524260
2000
ืฉื•ื•ื” ืœ"ืื™ืš ืื ื—ื ื• ื ื’ืจื•ื ืœืจื•ืคืื™ื ืœื”ืฉืชืžืฉ
08:46
electronic medical records in the mainframe?"
208
526260
2000
ื‘ืžืกืžื›ื™ื ืืœืงื˜ืจื•ื ื™ื™ื ื‘ืฉืจืชื™ื?"
08:48
We're not thinking about
209
528260
2000
ืื ื—ื ื• ืœื ื—ื•ืฉื‘ื™ื ืขืœ
08:50
how do we shift from the mainframe to the home.
210
530260
2000
ืื™ืš ืื ื—ื ื• ืขื•ื‘ืจื™ื ืžื”ืžื™ื™ื ืคืจื™ื™ื ืืœ ื”ื‘ื™ืช.
08:52
And the problem with this is
211
532260
2000
ื•ื”ื‘ืขื™ื” ืขื ื–ื” ื”ื™ื
08:54
the way we conceive healthcare. Right?
212
534260
2000
ื”ื“ืจืš ื‘ื” ืื ื—ื ื• ืชื•ืคืกื™ื ืืช ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช. ื‘ืกื“ืจ?
08:56
This is a very reactive, crisis-driven system.
213
536260
2000
ื–ื• ืžืขืจื›ืช ืžืื•ื“ ืชื’ื•ื‘ืชื™ืช ื”ืžื•ื ืขืช ืžืžืฉื‘ืจื™ื.
08:58
We're doing 15-minute exams with patients.
214
538260
2000
ืื ื—ื ื• ืขื•ืฉื™ื ื‘ื“ื™ืงื•ืช ืฉืœ 15 ื“ืงื•ืช ืขื ื—ื•ืœื™ื.
09:00
It's population-based.
215
540260
2000
ื–ื” ืžื‘ื•ืกืก ืื•ื›ืœื•ืกื™ื”.
09:02
We collect a bunch of biological information in this artificial setting,
216
542260
3000
ืื ื—ื ื• ืื•ืกืคื™ื ื”ืจื‘ื” ืžื™ื“ืข ื‘ื™ื•ืœื•ื’ื™ ื‘ืกื‘ื™ื‘ื” ื”ืžืœืื›ื•ืชื™ืช ื”ื–ื•,
09:05
and we fix them up, like Humpty-Dumpty all over again,
217
545260
2000
ื•ืื ื—ื ื• ืžืชืงื ื™ื ืื•ืชื, ื›ืžื• ื”ืžืคื˜ื™ ื“ืžืคื˜ื™,
09:07
and send them home,
218
547260
2000
ื•ืฉื•ืœื—ื™ื ืื•ืชื ื”ื‘ื™ืชื”,
09:09
and hope -- we might hand them a brochure, maybe an interactive website --
219
549260
3000
ื•ืžืงื•ื•ื™ื -- ืื•ืœื™ ื ื™ืชืŸ ืœื”ื ื“ืคื™ ืžื™ื“ืข, ืื•ืœื™ ืืชืจ ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ --
09:12
that they do as asked and don't come back into the mainframe.
220
552260
4000
ื›ืš ืฉื™ืขืฉื• ื›ืžื• ืฉื”ืชื‘ืงืฉื• ื•ืœื ื™ื—ื–ืจื• ืœืžื™ื™ื ืคืจื™ื™ื.
09:16
And the problem is we can't afford it today, folks.
221
556260
3000
ื•ื”ื‘ืขื™ื” ื”ื™ื ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืžืžืŸ ืืช ื–ื” ื”ื™ื•ื, ื—ื‘ืจื”.
09:19
We can't afford mainframe healthcare today to include the uninsured.
222
559260
4000
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื ื• ืจืคื•ืืช ืžื™ื™ื ืคืจื™ื™ื ื”ื™ื•ื ืฉืชื›ืœื•ืœ ืืช ื”ืœื ืžื‘ื•ื˜ื—ื™ื.
09:23
And now we want to do a double-double
223
563260
2000
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช ื›ืคื•ืœ-ื›ืคื•ืœ
09:25
of the age wave coming through?
224
565260
2000
ืžื’ืœ ื”ืžื‘ื•ื’ืจื™ื ืฉืžื’ื™ืข?
09:27
Business as usual in healthcare is broken and we've got to do something different.
225
567260
3000
ืฉื™ื˜ืช ื”ืขืกืงื™ื ื›ืจื’ื™ืœ ื‘ืจืคื•ืื” ืœื ืขื•ื‘ื“ืช ื•ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœืขืฉื•ืช ืžืฉื”ื• ืฉื•ื ื”.
09:30
We've got to focus on the home.
226
570260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืชืžืงื“ ื‘ื‘ื™ืช.
09:32
We've got to focus on a personal healthcare paradigm
227
572260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืชืžืงื“ ื‘ืคืจื“ื™ื’ืžืช ื‘ืจื™ืื•ืช ืื™ืฉื™ืช
09:34
that moves care to the home. How do we be more proactive,
228
574260
2000
ืฉืžืขื‘ื™ืจื” ืืช ื”ื˜ื™ืคื•ืœ ืœื‘ื™ืช. ืื™ืš ื ื•ื›ืœ ืœื”ื™ื•ืช ื™ื•ืชืจ ืคืจื•ืืงื˜ื™ื‘ื™ื™ื,
09:36
prevention-driven?
229
576260
2000
ืžื•ื ืขื™ื ืœืžื ื™ืขื”?
09:38
How do we collect vital signs and other kinds of information 24 by 7?
230
578260
4000
ืื™ืš ืื ื—ื ื• ืื•ืกืคื™ื ื ืชื•ื ื™ื ื—ื™ื•ื ื™ื™ื ื•ืกื•ื’ื™ื ืื—ืจื™ื ืฉืœ ืžื™ื“ืข 24/7?
09:42
How do we get a personal baseline about what's going to work for you?
231
582260
3000
ืื™ืš ืื ื—ื ื• ืžื•ืฆืื™ื ืืช ืงื• ื”ื‘ืกื™ืก ืฉืœ ืื“ื ื‘ืงืฉืจ ืœืžื” ื™ืขื‘ื•ื“ ืขื‘ื•ืจื•?
09:45
How do we collect not just biological data
232
585260
2000
ืื™ืš ืื ื—ื ื• ืื•ืกืคื™ื ืœื ืจืง ืžื™ื“ืข ื‘ื™ื•ืœื•ื’ื™
09:47
but behavioral data, psychological data,
233
587260
2000
ืืœื ืžื™ื“ืข ื”ืชื ื”ื’ื•ืชื™, ืžื™ื“ืข ืคืกื™ื›ื•ืœื•ื’ื™,
09:49
relational data, in and on and around the home?
234
589260
3000
ืžื™ื“ืข ื—ื‘ืจืชื™, ื‘ืชื•ืš, ืขืœ ื•ืžืกื‘ื™ื‘ ืœื‘ื™ืช?
09:52
And how do we drive compliance to be a customized care plan
235
592260
3000
ื•ืื™ืš ืื ื—ื ื• ื™ื•ืฆืจื™ื ื”ืขื ื•ืช ืœืชื•ื›ื ื™ืช ื˜ื™ืคื•ืœ ืื™ืฉื™ืช
09:55
that uses all this great technology that's around us
236
595260
2000
ืฉืžืฉืชืžืฉืช ื‘ื›ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื ืคืœืื” ื”ื–ื• ืฉืžืกื‘ื™ื‘ื ื•
09:57
to change our behavior?
237
597260
2000
ื›ื“ื™ ืœืฉื ื•ืช ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœื ื•?
09:59
That's what we need to do for our personal health model.
238
599260
3000
ื–ื” ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืœืžื•ื“ืœ ื”ืจืคื•ืื” ื”ืคืจื˜ื™ ืฉืœื ื•.
10:02
I want to give you a couple of examples. This is Mimi
239
602260
2000
ืื ื™ ืจื•ืฆื” ืœืชืช ืœื›ื ื›ืžื” ื“ื•ื’ืžืื•ืช. ื–ื• ืžื™ืžื™
10:04
from one of our studies --
240
604260
2000
ืžืื—ื“ ื”ืžื—ืงืจื™ื ืฉืœื ื• --
10:06
in her 90s, had to move out of her home
241
606260
2000
ื‘ืฉื ื•ืช ื” 90 ืฉืœื”, ื”ื™ืชื” ืฆืจื™ื›ื” ืœืขื–ื•ื‘ ืืช ื‘ื™ืชื”
10:08
because her family was worried about falls.
242
608260
2000
ืžืคื ื™ ืฉืžืฉืคื—ืชื” ื”ื™ืชื” ืžื•ื“ืื’ืช ืžื”ื ืคื™ืœื•ืช ืฉืœื”.
10:10
Raise your hand if you had a serious fall
243
610260
2000
ื”ืจื™ืžื• ืืช ื™ื“ื›ื ืื ื”ื™ืชื” ืœื›ื ื ืคื™ืœื” ืจืฆื™ื ื™ืช
10:12
in your household, or any of your loved ones,
244
612260
2000
ื‘ื‘ื™ืช, ืื• ืžื™ืฉื”ื• ืงืจื•ื‘ ืืœื™ื›ื,
10:14
your parents or so forth. Right?
245
614260
2000
ื”ื•ืจื™ื™ื›ื ืื• ืžืฉื”ื• ื›ื–ื”. ื‘ืกื“ืจ?
10:16
Classic. Hip fracture often leads to institutionalization of a senior.
246
616260
4000
ืงืœืืกื™. ืฉื‘ืจ ื‘ื™ืจืš ืžื•ื‘ื™ืœ ืจื‘ื•ืช ืœืืฉืคื•ื– ืฉืœ ืžื‘ื•ื’ืจื™ื.
10:20
This is what was happening to Mimi; the family was worried about it,
247
620260
2000
ื–ื” ืžื” ืฉืงืจื” ืœืžื™ืžื™; ื”ืžืฉืคื—ื” ื”ื™ืชื” ืžื•ื“ืื’ืช ืžื–ื”,
10:22
moved her out of her own home into an assisted living facility.
248
622260
3000
ื•ื”ืขื‘ื™ืจื” ืื•ืชื” ืžื‘ื™ืชื” ืœื“ื™ื•ืจ ืžื•ื’ืŸ.
10:25
She tripped over her oxygen tank.
249
625260
3000
ื”ื™ื ืžืขื“ื” ืขืœ ืžื™ื›ืœ ื”ื—ืžืฆืŸ ืฉืœื”.
10:28
Many people in this generation won't press the button,
250
628260
2000
ื”ืจื‘ื” ืื ืฉื™ื ื‘ื“ื•ืจ ื”ื–ื” ืœื ื™ืœื—ืฆื• ืขืœ ื”ื›ืคืชื•ืจ,
10:30
even if they have an alert call system, because they don't want to bother anybody,
251
630260
2000
ืืคื™ืœื• ืื ื™ืฉ ืœื”ื ืžืขืจื›ืช ืงืจื™ืื•ืช ื—ืจื•ื, ื›ื™ ื”ื ืœื ืจื•ืฆื™ื ืœื”ื˜ืจื™ื“ ืืฃ ืื—ื“,
10:32
even though they've been paying 30 dollars a month.
252
632260
2000
ืืคื™ืœื• ืื ืฉื™ืœืžื• 30 ื“ื•ืœืจ ื‘ื—ื•ื“ืฉ.
10:34
Boomers will press the button. Trust me.
253
634260
2000
ื‘ื•ืžืจื™ื ื™ืœื—ืฆื• ืขืœ ื”ื›ืคืชื•ืจ. ืชืืžื™ื ื• ืœื™.
10:36
They're going to be pressing that button non-stop. Right?
254
636260
4000
ื”ื ื™ืœื—ืฆื• ืขืœ ื”ื›ืคืชื•ืจ ื‘ืœื™ ื”ืคืกืงื”. ื‘ืกื“ืจ?
10:40
Mimi broke her pelvis, lay all night, all morning,
255
640260
4000
ืžื™ืžื™ ืฉื‘ืจื” ืืช ื”ืื’ืŸ, ืฉื›ื‘ื” ื›ืœ ื”ืœื™ืœื”, ื›ืœ ื”ื‘ื•ืงืจ,
10:44
finally somebody came in and found her,
256
644260
2000
ื•ื‘ืกื•ืฃ ืžื™ืฉื”ื• ื‘ื ื•ืžืฆื ืื•ืชื”,
10:46
sent her to the hospital.
257
646260
2000
ื•ืฉืœื— ืื•ืชื” ืœื‘ื™ืช ื”ื—ื•ืœื™ื.
10:48
They fixed her back up. She was never going to be able to move back
258
648260
2000
ื”ื ื˜ื™ืคืœื• ื‘ื”. ื”ื™ื ืœื ื™ื›ืœื” ืœื—ื–ื•ืจ
10:50
into the assisted living. They put her into the nursing home unit.
259
650260
2000
ืœื“ื™ื•ืจ ืžื•ื’ืŸ. ื”ื ืฉืžื• ืื•ืชื” ื‘ื™ื—ื™ื“ื” ืกื™ืขื•ื“ื™ืช.
10:52
First night in the nursing home unit where she had been
260
652260
2000
ื‘ืœื™ืœื” ื”ืจืืฉื•ืŸ ื‘ื™ื—ื™ื“ื” ื”ืกืขื•ื“ื™ืช ื‘ื” ื”ื™ื ื”ื™ืชื”
10:54
in the same assisted living facility, moved her from one bed to another,
261
654260
3000
ื‘ืื•ืชื• ื‘ื™ืช ื“ื™ื•ืจ ืžื•ื’ืŸ, ื”ื–ื™ื–ื• ืื•ืชื” ืžืžื™ื˜ื” ืœืžื™ื˜ื”,
10:57
kind of threw her, rebroke her pelvis,
262
657260
2000
ื–ืจืงื• ืื•ืชื”, ื•ืฉื‘ืจื• ืœื” ืฉื•ื‘ ืืช ื”ืื’ืŸ,
10:59
sent her back to the hospital that she had just come from,
263
659260
3000
ืฉืœื—ื• ืื•ืชื” ื—ื–ืจื” ืœื‘ื™ืช ื”ื—ื•ืœื™ื ืžืžื ื• ื”ื™ื ื‘ื“ื™ื•ืง ื—ื–ืจื”,
11:02
no one read the chart, put her on Tylenol,
264
662260
2000
ืืฃ ืื—ื“ ืœื ืงืจื ืืช ื”ืชื™ืง ืฉืœื”, ื•ื ืชื ื• ืœื” ืืงืžื•ืœ,
11:04
which she is allergic to, broke out, got bedsores,
265
664260
2000
ืฉื”ื™ื ืืœืจื’ื™ืช ืืœื™ื•, ืงื™ื‘ืœื”ืคืจื™ื—ื” ื•ืคืฆืขื™ ืœื—ืฅ,
11:06
basically, had heart problems, and died
266
666260
3000
ื‘ืขื™ืงืจื•ืŸ, ื”ื™ื• ืœื” ื‘ืขื™ื•ืช ืœื‘ ื•ื”ื™ื ืžืชื”
11:09
from the fall and the complications and the errors that were there.
267
669260
3000
ืžื”ื ืคื™ืœื” ื•ื”ืกื™ื‘ื•ื›ื™ื ื•ื”ืฉื’ื™ืื•ืช ืฉืงืจื• ืฉื.
11:12
Now, the most frightening thing about this is
268
672260
4000
ืขื›ืฉื™ื•, ื”ื“ื‘ืจ ื”ื›ื™ ืžืคื—ื™ื“ ื‘ื–ื” ื”ื•ื
11:16
this is my wife's grandmother.
269
676260
3000
ืฉื–ื• ืกื‘ืชื” ืฉืœ ืืฉืชื™.
11:19
Now, I'm Eric Dishman. I speak English,
270
679260
2000
ืขื›ืฉื™ื•, ืื ื™ ืืจื™ืง ื“ื™ืฉืžืŸ. ืื ื™ ื“ื•ื‘ืจ ืื ื’ืœื™ืช,
11:21
I work for Intel, I make a good salary,
271
681260
2000
ืื ื™ ืขื•ื‘ื“ ื‘ืื™ื ื˜ืœ, ืื ื™ ืžืจื•ื•ื™ื— ื˜ื•ื‘,
11:23
I'm smart about falls and fall-related injuries --
272
683260
3000
ืื ื™ ืžื‘ื™ืŸ ื‘ื ืคื™ืœื•ืช ื•ืคืฆื™ืขื•ืช ื ืœื•ื•ืช --
11:26
it's an area of research that I work on.
273
686260
2000
ื–ื” ืชื—ื•ื ืžื—ืงืจ ืฉืื ื™ ืขื•ื‘ื“ ืขืœื™ื•.
11:28
I have access to senators and CEOs.
274
688260
3000
ื™ืฉ ืœื™ ื’ื™ืฉื” ืœืกื ืื˜ื•ืจื™ื ื•ืžื ื›"ืœื™ื.
11:31
I can't stop this from happening.
275
691260
2000
ืื ื™ ืœื ื™ื›ื•ืœ ืœืขืฆื•ืจ ืืช ื”ื”ืชืจื—ืฉื•ืช ื”ื–ื•.
11:33
What happens if you don't have money, you don't speak English
276
693260
2000
ืžื” ืงื•ืจื” ืื ืื™ืŸ ืœื›ื ื›ืกืฃ, ืืชื ืœื ื“ื•ื‘ืจื™ ืื ื’ืœื™ืช
11:35
or don't have the kind of access
277
695260
2000
ืื• ืฉืื™ืŸ ืœื›ื ื’ื™ืฉื”
11:37
to deal with these kinds of problems that inevitably occur?
278
697260
3000
ืœื”ืชืžื•ื“ื“ ืขื ื‘ืขื™ื•ืช ืžื”ืกื•ื’ ื”ื–ื” ืฉื™ืงืจื• ืœืœื ืกืคืง?
11:40
How do we actually prevent the vast majority of falls
279
700260
3000
ืื™ืš ืื ื—ื ื• ืžื•ื ืขื™ื ืืช ืจื•ื‘ ื”ื ืคื™ืœื•ืช
11:43
from ever occurring in the first place?
280
703260
2000
ืžืœืงืจื•ืช ืžืœื›ืชื—ื™ืœื”?
11:45
Let me give you a quick example of work that we're doing
281
705260
2000
ื”ืจืฉื• ืœื™ ืœืชืช ืœื›ื ื“ื•ื’ืžื” ืžื”ื™ืจื” ืฉืœ ื”ืขื‘ื•ื“ื” ืฉืื ื—ื ื• ืขื•ืฉื™ื
11:47
to try to do exactly that.
282
707260
2000
ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื” ื‘ื“ื™ื•ืง.
11:49
I've been wearing a little technology that we call Shimmer.
283
709260
3000
ืื ื™ ื—ื•ื‘ืฉ ืกื•ื’ ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ืงื˜ื ื” ืฉืื ื—ื ื• ืงื•ืจืื™ื ืœื” ืฉื™ืžืจ (ื ืฆื ื•ืฅ).
11:52
It's a research platform.
284
712260
2000
ื–ื• ืคืœื˜ืคื•ืจืžืช ืžื—ืงืจ.
11:54
It has accelerometry. You can plug in a three-lead ECG.
285
714260
3000
ื™ืฉ ืœื” ืžื“ ืชืื•ืฆื”. ืืคืฉืจ ืœื—ื‘ืจ ืืœื™ื• ECG ืฉืœ ืฉืœื•ืฉื” ื—ื•ื˜ื™ื.
11:57
There is all kinds of sort of plug-and-play
286
717260
2000
ื™ืฉ ื›ืœ ืžื™ื ื™ ืžื›ืฉื™ืจื™ ื—ื‘ืจ ื•ื”ืคืขืœ
11:59
kind of Legos that you can do to capture, in the wild,
287
719260
2000
ื›ืžื• ืœื’ื• ืฉืืคืฉืจ ืœื—ื‘ืจ ื›ื“ื™ ืœืžื“ื•ื“, ื‘ื—ื•ืฅ,
12:01
in the real world,
288
721260
2000
ื‘ืขื•ืœื ื”ืืžื™ืชื™,
12:03
things like tremor, gait,
289
723260
2000
ื“ื‘ืจื™ื ื›ืžื• ืจืขื“, ืฆื•ืจืช ื”ืœื™ื›ื”,
12:05
stride length and those kinds of things.
290
725260
2000
ืื•ืจืš ื”ืฆืขื“ ื•ื“ื‘ืจื™ื ื“ื•ืžื™ื.
12:07
The problem is, our understanding of falls today,
291
727260
4000
ื”ื‘ืขื™ื” ื”ื™ื, ืฉื‘ืžื—ืงืจ ืฉืœ ื ืคื™ืœื•ืช ื”ื™ื•ื,
12:11
like Mimi, is get a survey in the mail three months after you fell,
292
731260
3000
ื›ืžื• ืืฆืœ ืžื™ืžื™, ื”ื™ื ืœืงื‘ืœ ืกืงืจ ื‘ื“ื•ืืจ ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื ืื—ืจื™ ืฉื ืคืœืชื,
12:14
from the State, saying, "What were you doing when you fell?"
293
734260
3000
ืžื”ืžื“ื™ื ื”, ืฉืื•ืžืจ, "ืžื” ืขืฉื™ืชื ื›ืฉื ืคืœืชื?"
12:17
That's sort of the state of the art.
294
737260
2000
ื–ื• ืงื“ืžืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
12:19
But with something like Shimmer, or we have something called the Magic Carpet,
295
739260
3000
ืื‘ืœ ืขื ืžืฉื”ื• ื›ืžื• ืฉื™ืžืจ, ืื• ืžืฉื”ื• ืฉื ืงืจื ืฉื˜ื™ื— ื”ืงืกื,
12:22
embedded sensors in carpet, or camera-based systems
296
742260
2000
ื—ื™ื™ืฉื ื™ื ืžื•ื˜ืžืขื™ื ื‘ืฉื˜ื™ื—, ืื• ืžืขืจื›ืช ืžื‘ื•ืกืกืช ืžืฆืœืžื”
12:24
that we borrowed from sports medicine,
297
744260
2000
ืฉืฉืืœื ื• ืžืจืคื•ืืช ื”ืกืคื•ืจื˜,
12:26
we're starting for the first time in those 600 elderly households
298
746260
3000
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘600 ื‘ืชื™ ื”ืื‘ ื”ืืœื”
12:29
to collect actual kinematic motion data
299
749260
3000
ืœืืกื•ืฃ ืžื™ื“ืข ืชื ื•ืขืชื™ ืงื™ื ืžื˜ื™
12:32
to understand: What are the subtle changes that are occurring
300
752260
4000
ื›ื“ื™ ืœื”ื‘ื™ืŸ: ืžื” ื”ืฉื™ื ื•ื™ื™ื ื”ืขื“ื™ื ื™ื ืฉืžืชืจื—ืฉื™ื
12:36
that can show us that mom has become risk at falls?
301
756260
3000
ืฉื™ื›ื•ืœื™ื ืœื”ืจืื•ืช ืœื ื• ืฉืืžื ืขื›ืฉื™ื• ื‘ืกื›ื ื” ืœื ืคื™ืœื”?
12:39
And most often we can do two interventions,
302
759260
2000
ื•ืœืจื•ื‘ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ืฆืข ืฉืชื™ ื”ืชืขืจื‘ื•ื™ื•ืช,
12:41
fix the meds mix.
303
761260
2000
ืœืชืงืŸ ืืช ืชืžื”ื™ืœ ื”ืชืจื•ืคื•ืช.
12:43
I'm a qualitative researcher, but when I look at these data streams coming in
304
763260
3000
ืื ื™ ื—ื•ืงืจ ื›ืžื•ืชื™, ื•ื›ืฉืื ื™ ืžื‘ื™ื˜ ื‘ื–ืจืžื™ ื”ืžื™ื“ืข ื ื›ื ืกื™ื
12:46
from these homes, I can look at the data and tell you the day
305
766260
3000
ืžื”ื‘ืชื™ื ื”ืืœื”, ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ื˜ ื‘ืžื™ื“ืข ื•ืœื”ื’ื™ื“ ืœื›ื ืืช ื”ื™ื•ื
12:49
that some doctor prescribed them something that nobody else
306
769260
2000
ืฉืจื•ืคื ืžืกื•ื™ื™ื ืจืฉื ืœื”ื ืžืฉื”ื• ืฉืืฃ ืื—ื“ ืื—ืจ
12:51
knew that they were on, because we see the changes
307
771260
2000
ืœื ื™ื“ืข ืฉื”ื ืขืœื™ื•, ืžืคื ื™ ืฉืื ื—ื ื• ืจื•ืื™ื ืืช ื”ืฉื™ื ื•ื™ื™ื
12:53
in their patterns in the household. Right?
308
773260
3000
ื‘ืชื‘ื ื™ื•ืช ืฉืœื”ื ื‘ื‘ื™ืช. ื‘ืกื“ืจ?
12:56
These discoveries of behavioral markers,
309
776260
3000
ื”ื’ื™ืœื•ื™ื™ื ื”ืืœื” ืฉืœ ืกืžื ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื,
12:59
and behavioral changes
310
779260
2000
ื•ืฉื™ื ื•ื™ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื
13:01
are game changing, and like the discovery of the microscope
311
781260
2000
ืžืฉื ื™ ืžืฉื—ืง, ื•ื›ืžื• ื’ื™ืœื•ื™ ื”ืžื™ืงืจื•ืกืงื•ืค
13:03
because of our collecting data streams that we've actually never done before.
312
783260
3000
ื‘ื’ืœืœ ืฉืื ื—ื ื• ืื•ืกืคื™ื ื–ืจืžื™ ืžื™ื“ืข, ืžื” ืฉืœื ืขืฉื™ื ื• ืžืขื•ืœื ื‘ืขื‘ืจ.
13:06
This is an example in our TRIL Clinic in Ireland
313
786260
2000
ื–ื• ื“ื•ื’ืžื” ื‘ืžืขื‘ื“ืช TRIL ืฉืœื ื• ื‘ืื™ืจืœื ื“
13:08
of -- actually what you're seeing is
314
788260
2000
ืฉืœ -- ืœืžืขืฉื” ืžื” ืฉืืชื ืจื•ืื™ื ื”ื•ื
13:10
she's looking at data,
315
790260
2000
ืฉื”ื™ื ืžื‘ื™ื˜ื” ื‘ืžื™ื“ืข,
13:12
in this picture, from the Magic Carpet.
316
792260
2000
ื‘ืชืžื•ื ื” ื”ื–ื•, ืžืฉื˜ื™ื— ื”ืงืกื.
13:14
So, we have a little carpet that you can look at your amount of postural sway,
317
794260
3000
ืื–, ื™ืฉ ืœื ื• ืฉื˜ื™ื— ืงื˜ืŸ ืฉื‘ื• ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืžื™ื“ืช ื”ื ื˜ื™ื” ื”ื™ืฆื™ื‘ืชื™ืช,
13:17
and look at the changes in your postural sway over many months.
318
797260
3000
ื•ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™ื™ื ื‘ื ื˜ื™ื™ื” ื”ื™ืฆื™ื‘ืชื™ืช ื‘ืžืฉืš ื”ืจื‘ื” ื—ื•ื“ืฉื™ื.
13:20
Here's what some of this data might look like.
319
800260
2000
ื›ืš ื ืจืื” ื—ืœืง ืžื”ืžื™ื“ืข ื”ื–ื”.
13:22
This is actually sensor firings.
320
802260
2000
ืืœื” ืœืžืขืฉื” ื—ื™ื™ืฉื ื™ื ืฉื™ื•ืจื™ื.
13:24
These are two different subjects in our study.
321
804260
2000
ืืœื” ืฉื ื™ ื ื•ืฉืื™ื ืฉื•ื ื™ื ื‘ืžื—ืงืจ.
13:26
It's about a year's worth of data.
322
806260
2000
ื–ื” ื‘ืขืจืš ืฉื ื” ืฉืœ ืžื™ื“ืข.
13:28
The color represents different rooms they are in the house.
323
808260
3000
ื”ืฆื‘ืข ืžื™ื™ืฆื’ ื—ื“ืจื™ื ืฉื•ื ื™ื ื‘ื”ื ื”ื ื ืžืฆืื™ื ื‘ื‘ื™ืช.
13:31
This person on the left is living in their own home.
324
811260
2000
ื”ืื™ืฉ ื”ื–ื” ืžืฉืžืืœ ื—ื™ ื‘ื‘ื™ืช ืฉืœื•.
13:33
This person on the right is actually living in an assisted living facility.
325
813260
3000
ื”ืื™ืฉ ืžื™ืžื™ืŸ ื—ื™ ืœืžืขืฉื” ื‘ื“ื™ื•ืจ ืžื•ื’ืŸ.
13:36
I know this because look at how punctuated meal time is
326
816260
3000
ืื ื™ ื™ื•ื“ืข ืืช ื–ื” ื›ื™ ืืคืฉืจ ืœืจืื•ืช ืืช ืฉืขื•ืช ื”ืืจื•ื—ื•ืช ื”ืžืกื•ื“ืจื•ืช
13:39
when they are no longer in their particular rooms here. Right?
327
819260
3000
ื›ืฉื”ื ื›ื‘ืจ ืœื ื‘ื—ื“ืจื™ื”ื. ื ื›ื•ืŸืŸ?
13:42
Now, this doesn't mean that much to you.
328
822260
3000
ืขื›ืฉื™ื•, ื–ื” ืœื ืื•ืžืจ ืœื›ื ื”ืจื‘ื”.
13:45
But when we look at these cycles of data
329
825260
2000
ืื‘ืœ ื›ืฉืžื‘ื™ื˜ื™ื ื‘ืžื—ื–ื•ืจื™ื ื”ืืœื” ืฉืœ ื”ืžื™ื“ืข
13:47
over a longer period of time -- and we're looking at everything from
330
827260
2000
ื‘ืžืฉืš ืชืงื•ืคืช ื–ืžืŸ ืืจื•ื›ื” ื™ื•ืชืจ -- ื•ืื ื—ื ื• ืžืกืชื›ืœื™ื ืขืœ ื”ื›ืœ
13:49
motion around different rooms in the house,
331
829260
2000
ื”ื—ืœ ืžืชื ื•ืขื•ืช ื‘ื—ื“ืจื™ื ืฉื•ื ื™ื ื‘ื‘ื™ืช,
13:51
to sort of micro-motions that Shimmer picks up,
332
831260
3000
ืขื“ ืœืžื™ืงืจื• ืชื ื•ืขื•ืช ืฉื”ืฉื™ืžืจื™ื ืงื•ืœื˜ื™ื,
13:54
about gait and stride length -- these streams of data
333
834260
2000
ืขืœ ืฆื•ืจืช ื”ืฆืขื“ ื•ืื•ืจื›ื• -- ื–ืจืžื™ ื”ืžื™ื“ืข ื”ืืœื”
13:56
are starting to tell us things about behavioral patterns
334
836260
2000
ืžืชื—ื™ืœื™ื ืœื”ื’ื™ื“ ืœื ื• ื“ื‘ืจื™ื ืขืœ ืชื‘ื ื™ื•ืช ื”ืชื ื”ื’ื•ืชื™ื•ืช
13:58
that we've never understood before.
335
838260
2000
ืฉืžืขื•ืœื ืœื ื”ื‘ื ื• ืœืคื ื™ ื›ืŸ.
14:00
You can go to ORCATech.org --
336
840260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืœื›ืช ืœ ORCATech.org --
14:02
it has nothing to do with whales, it's the Oregon Center for Aging and Technology --
337
842260
3000
ืื™ืŸ ืœื–ื” ืฉื•ื ืงืฉืจ ืœืœื•ื™ืชื ื™ื, ื–ื” ื”ืžืจื›ื– ืœื”ื–ื“ืงื ื•ืช ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœ ืื•ืจื’ื•ืŸ --
14:05
to see more about that.
338
845260
2000
ืœืงื‘ืœ ื™ื•ืชืจ ืคืจื˜ื™ื.
14:07
The problem is, Intel is still one of the largest
339
847260
2000
ื”ื‘ืขื™ื” ื”ื™ื, ืื™ื ื˜ืœ ื”ื™ื ืขื“ื™ื™ืŸ ืื—ื“
14:09
funders in the world
340
849260
2000
ืžื”ืžืžืžื ื™ื ื”ื’ื“ื•ืœื™ื ื‘ืขื•ืœื
14:11
of independent living technology research.
341
851260
3000
ืฉืœ ืžื—ืงืจ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื™ื™ื ืขืฆืžืื™ื™ื.
14:14
I'm not bragging about how much we fund;
342
854260
2000
ืื ื™ ืœื ืžืชืจื‘ืจื‘ ืขืœ ื›ืžื” ืื ื—ื ื• ืžืžืžื ื™ื;
14:16
it's how little anyone else actually pays attention
343
856260
2000
ืืœื ืžืฆื™ื™ืŸ ื›ืžื” ืžืขื˜ ืชื•ืฉืžืช ืœื‘ ืžื’ื™ืขื” ืžืื—ืจื™ื
14:18
to aging and funds innovation on aging,
344
858260
3000
ืœื”ื–ื“ืงื ื•ืช ื•ืžื™ืžื•ืŸ ื—ื“ืฉื ื•ืช ื‘ืงืฉืจ ืœื”ื–ื“ืงื ื•ืช,
14:21
chronic disease management and independent living in the home.
345
861260
3000
ื ื™ื”ื•ืœ ืžื—ืœื•ืช ื›ืจื•ื ื™ื•ืช ื•ื—ื™ื™ื ืขืฆืžืื™ื™ื ื‘ื‘ื™ืช.
14:24
So, my mantra here, my fourth slogan is:
346
864260
2000
ืื–, ื”ืžื ื˜ืจื” ืฉืœื™ ืคื”, ื”ืกืœื•ื’ืŸ ื”ืจื‘ื™ืขื™ ืฉืœื™ ื”ื•ื:
14:26
10,000 households or bust.
347
866260
3000
10,000 ื‘ืชื™ื ืื• ื›ืœื•ื.
14:29
We need to drive
348
869260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื ื™ืข
14:31
a national, if not international, Framingham-type heart study
349
871260
4000
ืžื—ืงืจ ืœื‘ ืืจืฆื™, ืื ืœื ื‘ื™ืŸ ืœืื•ืžื™, ืžืกื•ื’ ืคืจืžื™ื ื’ื”ื
14:35
of independent living technologies,
350
875260
2000
ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื™ื™ื ืขืฆืžืื™ื™ื,
14:37
where we have 10,000 elderly connected households
351
877260
3000
ื‘ื• ื™ืฉ ืœื ื• 10,000 ื‘ืชื™ ืงืฉื™ืฉื™ื ืžื—ื•ื‘ืจื™ื
14:40
with broadband, full medical characterization,
352
880260
3000
ืขื ื—ื™ื‘ื•ืจ ืคืก ืจื—ื‘, ื•ืืคื™ื•ืŸ ืจืคื•ืื™ ืžืœื,
14:43
and a platform by which we can start to experiment
353
883260
2000
ื•ืคืœื˜ืคื•ืจืžื” ืื™ืชื” ื ื•ื›ืœ ืœื”ืชื—ื™ืœ ืœื ืกื•ืช
14:45
and turn these from 20-household anecdotal studies
354
885260
3000
ื•ืœื”ืคื•ืš ืืช ื–ื” ืžืื ืงื“ื•ื˜ื” ืฉืœ ืžื—ืงืจ ืขืœ 20 ื‘ืชื™ื
14:48
that the universities fund,
355
888260
2000
ืฉื”ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ืžืžืžื ื•ืช,
14:50
to large clinical trials that prove out the value of these technologies.
356
890260
3000
ืœื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื ื’ื“ื•ืœื™ื ืฉืžื•ื›ื™ื—ื™ื ืืช ื”ืขืจืš ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื•.
14:53
So, 10,000 households or bust.
357
893260
2000
ืื–, 10,000 ื‘ืชื™ื ืื• ื›ืœื•ื.
14:55
These are just some of the households that we've done in the Intel studies.
358
895260
4000
ืืœื” ืจืง ื—ืœืง ืžื”ื‘ืชื™ื ืฉื‘ื“ืงื ื• ื‘ืžื—ืงืจื™ื ืฉืœ ืื™ื ื˜ืœ.
14:59
My fifth and final phrase:
359
899260
2000
ื”ืžืฉืคื˜ ื”ื—ืžื™ืฉื™ ื•ื”ืื—ืจื•ืŸ ืฉืœื™:
15:01
I have tried for two years,
360
901260
2000
ื ื™ืกื™ืชื™ ื‘ืžืฉืš ืฉื ืชื™ื™ื,
15:03
and there were moments when we were quite close,
361
903260
3000
ื•ื”ื™ื• ืจื’ืขื™ื ื‘ื”ื ื”ื™ื™ื ื• ื“ื™ ืงืจื•ื‘ื™ื,
15:06
to make this healthcare reform bill be about reform
362
906260
3000
ืœื”ืคื•ืš ืืช ืจืคื•ืจืžืช ื”ื‘ืจื™ืื•ืช ื”ื–ื• ืœืจืคื•ืจืžื” ืืžื™ืชื™ืช
15:09
from something and to something,
363
909260
2000
ืœื”ืฉืชื ื•ืช ืžื“ื‘ืจ ืื—ื“ ืœื“ื‘ืจ ืื—ืจ,
15:11
from a mainframe model
364
911260
2000
ืžืžื•ื“ืœ ื”ืžื™ื™ื ืคืจื™ื™ื
15:13
to a personal health model,
365
913260
2000
ืœืžื•ื“ืœ ื‘ืจื™ืื•ืช ืื™ืฉื™,
15:15
or to mean something more than just a debate
366
915260
2000
ืื• ืœื”ื™ื•ืช ืžืฉื”ื• ื™ื•ืชืจ ืžืกืชื ื•ื™ื›ื•ื—
15:17
about the public option and how we're going to finance.
367
917260
2000
ืขืœ ื”ืื•ืคืฆื™ื•ืช ืฉืœ ื”ืฆื™ื‘ื•ืจ ื•ืขืœ ื“ืจื›ื™ ื”ืžื™ืžื•ืŸ.
15:19
It doesn't matter how we finance healthcare.
368
919260
3000
ื–ื” ืœื ืžืฉื ื” ืื™ืš ืื ื—ื ื• ืžืžืžื ื™ื ืืช ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช.
15:22
We're going to figure something out
369
922260
2000
ืื ื—ื ื• ื ืกืชื“ืจ ื‘ืกื•ืฃ
15:24
for the next 10 years, and try it.
370
924260
2000
ืœืขืฉืจ ื”ืฉื ื™ื ื”ื‘ืื•ืช, ื•ื ื ืกื” ืืช ื–ื”.
15:26
No matter who pays for it,
371
926260
2000
ืœื ืžืฉื ื” ืžื™ ืžืฉืœื ืขืœ ื–ื”,
15:28
we better start doing care in a fundamentally different way
372
928260
2000
ื›ื“ืื™ ืฉื ืชื—ื™ืœ ืœืกืคืง ื˜ื™ืคื•ืœ ื‘ื“ืจืš ืฉื•ื ื” ื‘ืื•ืคืŸ ื‘ืกื™ืกื™
15:30
and treating the home and the patient
373
930260
3000
ื•ืœื˜ืคืœ ื‘ื‘ื™ืช ื•ื‘ื—ื•ืœื”
15:33
and the family member and the caregivers
374
933260
2000
ื•ื‘ื—ื‘ืจ ื”ืžืฉืคื—ื” ื•ื‘ืžื˜ืคืœื™ื
15:35
as part of these coordinated care teams
375
935260
2000
ื›ื—ืœืง ืžืฆื•ื•ืชื™ ื˜ื™ืคื•ืœ ืžืชื•ืืžื™ื
15:37
and using disruptive technologies that are already here
376
937260
4000
ื•ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžืฉื‘ืฉื•ืช ืฉื›ื‘ืจ ื ืžืฆืื•ืช ืคื”
15:41
to do care in some pretty fundamental different ways.
377
941260
3000
ื›ื“ื™ ืœืชืช ื˜ื™ืคื•ืœ ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช ื‘ืื•ืคืŸ ื‘ืกื™ืกื™.
15:44
The president needs to stand up and say,
378
944260
3000
ื”ื ืฉื™ื ืฆืจื™ืš ืœืงื•ื ื•ืœื”ื’ื™ื“,
15:47
at the end of a healthcare reform debate,
379
947260
3000
ื‘ืกื•ืฃ ื”ื“ื™ื•ืŸ ื‘ื ื•ืฉื ืจืคื•ืจืžืช ื”ื‘ืจื™ืื•ืช,
15:50
"Our goal as a country is to move 50 percent of care
380
950260
3000
"ื”ืžืฉื™ืžื” ืฉืœื ื• ื›ืžื“ื™ื ื” ื”ื™ื ืœื”ืขื‘ื™ืจ 50 ืื—ื•ื– ืžื”ื˜ื™ืคื•ืœ
15:53
out of institutions, clinics, hospitals and nursing homes,
381
953260
3000
ื”ื—ื•ืฆื” ืžืžื•ืกื“ื•ืช, ืงืœื™ื ื™ืงื•ืช, ื‘ืชื™ ื—ื•ืœื™ื ื•ื‘ืชื™ ืื‘ื•ืช,
15:56
to the home, in 10 years."
382
956260
2000
ืœื‘ื™ืช, ืชื•ืš 10 ืฉื ื™ื."
15:58
It's achievable. We should do it economically,
383
958260
2000
ื–ื” ื‘ืจ ื”ืฉื’ื”. ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื” ื‘ืฆื•ืจื” ื›ืœื›ืœื™ืช,
16:00
we should do it morally,
384
960260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื” ืžืกื™ื‘ื•ืช ืžื•ืกืจื™ื•ืช,
16:02
and we should do it for quality of life.
385
962260
2000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื” ืœืžืขืŸ ืื™ื›ื•ืช ื—ื™ื™ื.
16:04
But there is no goal within this health reform.
386
964260
2000
ืื‘ืœ ืื™ืŸ ืฉื•ื ืžื˜ืจื” ื‘ืจืคื•ืจืžืช ื”ื‘ืจื™ืื•ืช ื”ื–ื•.
16:06
It's just a mess today.
387
966260
2000
ื–ื” ืคืฉื•ื˜ ื‘ืœื’ืŸ ื”ื™ื•ื.
16:08
So, you know, that's my last message to you.
388
968260
2000
ืื–, ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื”ืžืกืจ ื”ืื—ืจื•ืŸ ืฉืœื™ ืœื›ื.
16:10
How do we set a going-to-the-moon goal
389
970260
3000
ืื™ืš ืื ื—ื ื• ืžืฆื™ื‘ื™ื ืžื˜ืจื” ื›ืžื• ืœื”ื’ื™ืข ืœื™ืจื—
16:13
of dealing with the Y2K +10 problem that's coming?
390
973260
4000
ืœื˜ื™ืคื•ืœ ื‘ื‘ืขื™ืช ื” Y2K +10 ืฉืžื’ื™ืขื”?
16:17
It's not that innovation and technology is going to be the
391
977260
2000
ื–ื” ืœื ืฉื”ื—ื“ืฉื ื•ืช ื•ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืขื•ืžื“ื™ื ืœื”ื™ื•ืช
16:19
magic pill that cures all, but it's going to be part of the solution.
392
979260
3000
ื’ืœื•ืœืช ืคืœื ืฉืžืจืคืื” ื”ื›ืœ, ืื‘ืœ ื–ื” ื™ื”ื™ื” ื—ืœืง ืžื”ืคืชืจื•ืŸ.
16:22
And if we don't create a personal health movement,
393
982260
3000
ื•ืื ืœื ื ื™ืฆื•ืจ ืชื ื•ืขืช ืจืคื•ืื” ืื™ืฉื™ืช,
16:25
something that we're all aiming towards in reform,
394
985260
2000
ืžืฉื”ื• ืฉื›ื•ืœื ื• ืžื›ื•ื•ื ื™ื ืืœื™ื• ื‘ืจืคื•ืจืžื”,
16:27
then we're going to move nowhere.
395
987260
2000
ืื– ืœื ื ื’ื™ืข ืœืฉื•ื ืžืงื•ื.
16:29
So, I hope you'll turn this conference into that kind of movement forward.
396
989260
2000
ืื–, ืื ื™ ืžืงื•ื•ื” ืฉืชื”ืคื›ื• ืืช ื”ื•ืขื™ื“ื” ื”ื–ื• ืœืกื•ื’ ื›ื–ื” ืฉืœ ืชื ื•ืขื” ืงื“ื™ืžื”.
16:31
Thanks very much.
397
991260
2000
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
16:33
(Applause)
398
993260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7