Sheila Nirenberg: A prosthetic eye to treat blindness

100,704 views ใƒป 2011-12-20

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yuval Globerson ืžื‘ืงืจ: Sigal Tifferet
00:15
I study how the brain processes
0
15330
2000
ืื ื™ ื—ื•ืงืจืช ื›ื™ืฆื“ ื”ืžื•ื— ืžืขื‘ื“
00:17
information. That is, how it takes
1
17330
2000
ืžื™ื“ืข. ื›ืœื•ืžืจ, ื›ื™ืฆื“ ื”ื•ื ืœื•ืงื—
00:19
information in from the outside world, and
2
19330
2000
ืžื™ื“ืข ืžืŸ ื”ืขื•ืœื ื”ื—ื™ืฆื•ื ื™,
00:21
converts it into patterns of electrical activity,
3
21330
2000
ื•ืžืžื™ืจ ืื•ืชื• ืœืชื‘ื ื™ื•ืช ืฉืœ ืคืขื™ืœื•ืช ื—ืฉืžืœื™ืช,
00:23
and then how it uses those patterns
4
23330
2000
ื•ื›ื™ืฆื“ ื”ื•ื ืžืฉืชืžืฉ ื‘ืชื‘ื ื™ื•ืช ื”ืœืœื•
00:25
to allow you to do things --
5
25330
2000
ื›ื“ื™ ืœืืคืฉืจ ืœื ื• ืœืขืฉื•ืช ื“ื‘ืจื™ื:
00:27
to see, hear, to reach for an object.
6
27330
2000
ืœืจืื•ืช, ืœืฉืžื•ืข, ืœื’ืขืช ื‘ื—ืคืฅ.
00:29
So I'm really a basic scientist, not
7
29330
2000
ืื– ืœืžืขืฉื” ืื ื™ ืžื“ืขื ื™ืช,
00:31
a clinician, but in the last year and a half
8
31330
2000
ืœื ืงืœื™ื ืื™ืช, ืืš ื‘ืฉื ื” ื•ื—ืฆื™ ื”ืื—ืจื•ื ื•ืช
00:33
I've started to switch over, to use what
9
33330
2000
ืขื‘ืจืชื™ ืืช ื”ืงื•ื•ื™ื ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ืžื”
00:35
we've been learning about these patterns
10
35330
2000
ืฉืœืžื“ื ื• ืขืœ ื”ืชื‘ื ื™ื•ืช ื”ืœืœื•
00:37
of activity to develop prosthetic devices,
11
37330
3000
ื›ื“ื™ ืœืคืชื— ืชื•ืชื‘ื™ื.
00:40
and what I wanted to do today is show you
12
40330
2000
ื”ื™ื•ื ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื
00:42
an example of this.
13
42330
2000
ื“ื•ื’ืžื ืœื›ืš.
00:44
It's really our first foray into this.
14
44330
2000
ื–ื”ื• ื‘ืืžืช ื”ื ื™ืกื™ื•ืŸ ื”ืจืืฉื•ืŸ ืฉืœื ื•
00:46
It's the development of a prosthetic device
15
46330
2000
ืœืคื™ืชื•ื— ืฉืœ ืžืชืงืŸ ืชื•ืชื‘
00:48
for treating blindness.
16
48330
2000
ืฉื™ื™ืจืคื ืขื™ื•ื•ืจื•ืŸ.
00:50
So let me start in on that problem.
17
50330
2000
ื”ื‘ื” ื ืชื—ื™ืœ ื‘ื‘ืขื™ื”.
00:52
There are 10 million people in the U.S.
18
52330
2000
ื™ืฉื ื 10 ืžื™ืœื™ื•ืŸ ืื ืฉื™ื ื‘ืืจื”"ื‘,
00:54
and many more worldwide who are blind
19
54330
2000
ื•ื”ืจื‘ื” ื™ื•ืชืจ ื‘ืจื—ื‘ื™ ื”ืขื•ืœื, ืขื™ื•ื•ืจื™ื
00:56
or are facing blindness due to diseases
20
56330
2000
ืื• ืฉืกื•ื‘ืœื™ื ืžืขื™ื•ื•ืจื•ืŸ ืขื›ื‘ ืžื—ืœื•ืช
00:58
of the retina, diseases like
21
58330
2000
ืจืฉืชื™ืช, ืžื—ืœื•ืช ื›ื’ื•ืŸ
01:00
macular degeneration, and there's little
22
60330
2000
ื ื™ื•ื•ืŸ ืžืงื•ืœืจื™, ื•ืจืง ืžืขื˜ ื ื™ืชืŸ
01:02
that can be done for them.
23
62330
2000
ืœืขืฉื•ืช ืœืžืขื ื.
01:04
There are some drug treatments, but
24
64330
2000
ื™ืฉื ื ื˜ื™ืคื•ืœื™ื ืชืจื•ืคืชื™ื™ื,
01:06
they're only effective on a small fraction
25
66330
2000
ืืš ื”ื ื™ืขื™ืœื™ื ืจืง ืขื‘ื•ืจ ื—ืœืง
01:08
of the population. And so, for the vast
26
68330
2000
ืงื˜ืŸ ืžื”ืื•ื›ืœื•ืกื™ื™ื”. ื›ืš ืฉืขื‘ื•ืจ ื”ืจื•ื‘
01:10
majority of patients, their best hope for
27
70330
2000
ื”ื’ื“ื•ืœ ืฉืœ ื”ืžื˜ื•ืคืœื™ื, ื”ืชืงื•ื•ื” ื”ื’ื“ื•ืœื”
01:12
regaining sight is through prosthetic devices.
28
72330
2000
ื”ื™ื ื”ืฉื‘ืช ื”ืจืื™ื™ื” ื‘ืขื–ืจืช ืžื›ืฉื™ืจ ืชื•ืชื‘.
01:14
The problem is that current prosthetics
29
74330
2000
ื”ื‘ืขื™ื” ืขื ื”ืชื•ืชื‘ื™ื ื”ื ื•ื›ื—ื™ื™ื ื”ื™ื
01:16
don't work very well. They're still very
30
76330
2000
ืฉืื™ื ื ืขื•ื‘ื“ื™ื ื˜ื•ื‘ ื‘ืžื™ื•ื—ื“.
01:18
limited in the vision that they can provide.
31
78330
2000
ื”ืจืื™ื™ื” ืฉื”ื ืžืกืคืงื™ื ืขื“ื™ื™ืŸ ืžื•ื’ื‘ืœืช.
01:20
And so, you know, for example, with these
32
80330
2000
ื›ืš, ืœื“ื•ื’ืžื, ื‘ืขื–ืจืช ื”ืžื›ืฉื™ืจื™ื ื”ืืœื”,
01:22
devices, patients can see simple things
33
82330
2000
ืžื˜ื•ืคืœ ื™ื›ื•ืœ ืœืจืื•ืช ื“ื‘ืจื™ื ืคืฉื•ื˜ื™ื
01:24
like bright lights and high contrast edges,
34
84330
2000
ื›ื’ื•ืŸ ืื•ืจื•ืช ื‘ื•ื”ืงื™ื ืื• ื ื™ื’ื•ื“ ืฆื‘ืขื™ื ื—ื–ืง,
01:26
not very much more, so nothing close
35
86330
2000
ื•ืœื ื”ืจื‘ื” ื™ื•ืชืจ. ืื– ืœื ื”ื™ื”
01:28
to normal vision has been possible.
36
88330
3000
ืคืชืจื•ืŸ ื”ืงืจื•ื‘ ืœืจืื™ื” ื ื•ืจืžืœื™ืช.
01:31
So what I'm going to tell you about today
37
91330
2000
ื”ื™ื•ื ืืกืคืจ ืœื›ื ืขืœ
01:33
is a device that we've been working on
38
93330
2000
ืžืชืงืŸ ืฉืื ื• ืขื•ื‘ื“ื™ื ืขืœื™ื•,
01:35
that I think has the potential to make
39
95330
2000
ื•ืื ื™ ืžืืžื™ื ื” ืฉื™ื”ื™ื” ืžืกื•ื’ืœ
01:37
a difference, to be much more effective,
40
97330
2000
ืœื—ื•ืœืœ ืฉื™ื ื•ื™, ืœื”ื™ื•ืช ื™ืขื™ืœ ื‘ื”ืจื‘ื”,
01:39
and what I wanted to do is show you
41
99330
2000
ื•ืจืฆื™ืชื™ ืœื”ืจืื•ืช ืœื›ื ื›ื™ืฆื“ ื”ื•ื ืขื•ื‘ื“.
01:41
how it works. Okay, so let me back up a
42
101330
2000
ืื•ืงื™ื™, ื‘ื•ืื• ื ื—ื–ื•ืจ ืžืขื˜ ืื—ื•ืจื”
01:43
little bit and show you how a normal retina
43
103330
2000
ื•ืชื—ื™ืœื” ื ืจืื” ื›ื™ืฆื“ ืขื•ื‘ื“ืช ืจืฉืชื™ืช ืจื’ื™ืœื”,
01:45
works first so you can see the problem
44
105330
2000
ื›ื“ื™ ืฉืชื•ื›ืœื• ืœื”ื‘ื™ืŸ ืืช ื”ื‘ืขื™ื”
01:47
that we were trying to solve.
45
107330
2000
ืฉืื ื• ืžื ืกื™ื ืœืคืชื•ืจ.
01:49
Here you have a retina.
46
109330
2000
ื”ื ื” ืจืฉืชื™ืช.
01:51
So you have an image, a retina, and a brain.
47
111330
2000
ื”ื ื” ืชืžื•ื ื”, ืจืฉืชื™ืช ื•ืžื•ื—.
01:53
So when you look at something, like this image
48
113330
2000
ื›ืฉืืชื ืžืกืชื›ืœื™ื ืขืœ ืžืฉื”ื•, ื›ืžื• ืชืžื•ื ื”
01:55
of this baby's face, it goes into your eye
49
115330
2000
ืฉืœ ืชื™ื ื•ืง, ื”ื™ื ื ื›ื ืกืช ืœืชื•ืš ืขื™ื ื›ื
01:57
and it lands on your retina, on the front-end
50
117330
2000
ื•ื ื•ื—ืชืช ืขืœ ื”ืจืฉืชื™ืช ืฉืœื›ื, ืขืœ ื”ืชืื™ื
01:59
cells here, the photoreceptors.
51
119330
2000
ื”ืงื“ืžื™ื™ื, ื”ืคื•ื˜ื•ืจืฆืคื˜ื•ืจื™ื.
02:01
Then what happens is the retinal circuitry,
52
121330
2000
ืžื” ืฉืงื•ืจื” ื›ืขืช ื”ื•ื ืฉื”ืžืขื’ืœื™ื ื”ืจืฉืชื™ื™ื,
02:03
the middle part, goes to work on it,
53
123330
2000
ื”ื—ืœืง ื”ืืžืฆืขื™, ืžืชื—ื™ืœ ืœืคืขื•ืœ,
02:05
and what it does is it performs operations
54
125330
2000
ื”ื•ื ืžื‘ืฆืข ืขืœ ื”ืชืžื•ื ื” ืคืขื•ืœื•ืช,
02:07
on it, it extracts information from it, and it
55
127330
2000
ืžื•ืฆื™ื ืžืžื ื” ืืช ื”ืžื™ื“ืข,
02:09
converts that information into a code.
56
129330
2000
ื•ืžืžื™ืจ ืืช ื”ืžื™ื“ืข ืœืงื•ื“.
02:11
And the code is in the form of these patterns
57
131330
2000
ื”ืงื•ื“ ื”ื–ื” ื”ื•ื ื‘ืฆื•ืจืช ืชื‘ื ื™ื•ืช ืฉืœ
02:13
of electrical pulses that get sent
58
133330
2000
ืคื•ืœืกื™ื ื—ืฉืžืœื™ื™ื ืฉื ืฉืœื—ื™ื
02:15
up to the brain, and so the key thing is
59
135330
2000
ืืœ ื”ืžื•ื—, ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื”ื•ื
02:17
that the image ultimately gets converted
60
137330
2000
ืฉื”ืชืžื•ื ื”, ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ืžื•ืžืจืช
02:19
into a code. And when I say code,
61
139330
2000
ืœืงื•ื“. ื•ื›ืฉืื ื™ ืื•ืžืจืช ืงื•ื“,
02:21
I do literally mean code.
62
141330
2000
ืื ื™ ืžืชื›ื•ื•ื ืช, ืžื™ืœื•ืœื™ืช, ืœืงื•ื“.
02:23
Like this pattern of pulses here actually means "baby's face,"
63
143330
3000
ืœืžืฉืœ ืชื‘ื ื™ืช ื–ื• ืฉืœ ืคื•ืœืกื™ื ืื•ืžืจืช "ืคื ื™ื ืฉืœ ืชื™ื ื•ืง",
02:26
and so when the brain gets this pattern
64
146330
2000
ื•ื›ืฉื”ืžื•ื— ืžืงื‘ืœ ืืช ืชื‘ื ื™ืช ื”ืคื•ืœืกื™ื
02:28
of pulses, it knows that what was out there
65
148330
2000
ื”ื–ื•, ื”ื•ื ื™ื•ื“ืข ืฉื™ืฉ ืฉื
02:30
was a baby's face, and if it
66
150330
2000
ืคื ื™ื ืฉืœ ืชื™ื ื•ืง, ื•ืื ื”ื•ื ื”ื™ื”
02:32
got a different pattern it would know
67
152330
2000
ืžืงื‘ืœ ืชื‘ื ื™ืช ืื—ืจืช, ื”ื•ื ื”ื™ื” ื™ื•ื“ืข
02:34
that what was out there was, say, a dog,
68
154330
2000
ืฉืžื” ืฉื™ืฉ ืฉื ื”ื•ื, ื ื ื™ื—, ื›ืœื‘,
02:36
or another pattern would be a house.
69
156330
2000
ืื• ืชื‘ื ื™ืช ืื—ืจืช ืชื”ื™ื” ื‘ื™ืช.
02:38
Anyway, you get the idea.
70
158330
2000
ื‘ื›ืœ ืžืงืจื”, ื”ื‘ื ืชื ืืช ื”ืจืขื™ื•ืŸ.
02:40
And, of course, in real life, it's all dynamic,
71
160330
2000
ื•ื‘ืžืฆื™ืื•ืช, ื›ืžื•ื‘ืŸ, ื”ื›ืœ ื“ื™ื ืืžื™,
02:42
meaning that it's changing all the time,
72
162330
2000
ื›ืœื•ืžืจ ืžืฉืชื ื” ื›ืœ ื”ื–ืžืŸ,
02:44
so the patterns of pulses are changing
73
164330
2000
ืื– ืชื‘ื ื™ื•ืช ื”ืคื•ืœืกื™ื ืžืฉืชื ื•ืช
02:46
all the time because the world you're
74
166330
2000
ื›ืœ ื”ื–ืžืŸ, ืžื›ื™ื•ื•ืŸ ืฉื”ืขื•ืœื
02:48
looking at is changing all the time too.
75
168330
3000
ืฉืืชื ืžืชื‘ื•ื ื ื™ื ื‘ื• ืžืฉืชื ื” ื›ืœ ื”ื–ืžืŸ.
02:51
So, you know, it's sort of a complicated
76
171330
2000
ืื–, ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื“ื‘ืจ ื™ื—ืกื™ืช
02:53
thing. You have these patterns of pulses
77
173330
2000
ืžื•ืจื›ื‘, ืชื‘ื ื™ื•ืช ื”ืคื•ืœืกื™ื ื”ืืœื”
02:55
coming out of your eye every millisecond
78
175330
2000
ื™ื•ืฆืื•ืช ืžืขื™ื ื›ื ื›ืœ ืืœืคื™ืช ืฉื ื™ื”,
02:57
telling your brain what it is that you're seeing.
79
177330
2000
ืžืกืคืจื•ืช ืœืžื•ื— ืžื” ืืชื ืจื•ืื™ื.
02:59
So what happens when a person
80
179330
2000
ืื– ืžื” ืงื•ืจื” ื›ืฉืื“ื
03:01
gets a retinal degenerative disease like
81
181330
2000
ืœื•ืงื” ื‘ืžื—ืœืช ื ื™ื•ื•ืŸ ืฉืœ ื”ืจืฉืชื™ืช ื›ืžื•
03:03
macular degeneration? What happens is
82
183330
2000
ื ื™ื•ื•ืŸ ืžืงื•ืœืจื™? ืžื” ืฉืงื•ืจื” ื”ื•ื
03:05
is that, the front-end cells die,
83
185330
2000
ืฉื”ืชืื™ื ื”ืงื“ืžื™ื™ื ืžืชื™ื,
03:07
the photoreceptors die, and over time,
84
187330
2000
ื”ืคื•ื˜ื•ืจืฆืคื˜ื•ืจื™ื ืžืชื™ื, ื•ื‘ืžื”ืœืš ื”ื–ืžืŸ
03:09
all the cells and the circuits that are
85
189330
2000
ื›ืœ ื”ืชืื™ื ื•ื”ืžืขื’ืœื™ื
03:11
connected to them, they die too.
86
191330
2000
ื”ืžืงื•ืฉืจื™ื ืืœื™ื”ื ืžืชื™ื ื’ื.
03:13
Until the only things that you have left
87
193330
2000
ืขื“ ืฉื”ื“ื‘ืจ ื”ื™ื—ื™ื“ ืฉื ื•ืชืจ ื”ื
03:15
are these cells here, the output cells,
88
195330
2000
ื”ืชืื™ื ื”ืืœื” ื›ืืŸ, ืชืื™ ื”ืคืœื˜,
03:17
the ones that send the signals to the brain,
89
197330
2000
ืืœื” ืฉืฉื•ืœื—ื™ื ืืช ื”ืื•ืชื•ืช ืœืžื•ื—,
03:19
but because of all that degeneration
90
199330
2000
ืื‘ืœ ื‘ื’ืœืœ ื”ื ื™ื•ื•ืŸ,
03:21
they aren't sending any signals anymore.
91
201330
2000
ื”ื ืœื ืฉื•ืœื—ื™ื ื™ื•ืชืจ ืื•ืชื•ืช ื›ืœืœ.
03:23
They aren't getting any input, so
92
203330
2000
ื”ื ื’ื ืœื ืžืงื‘ืœื™ื ืฉื ืงืœื˜,
03:25
the person's brain no longer gets
93
205330
2000
ืื– ืžื•ื—ื• ืฉืœ ื”ืื“ื ืœื ืžืงื‘ืœ ื™ื•ืชืจ
03:27
any visual information --
94
207330
2000
ืฉื•ื ืžื™ื“ืข ื—ื–ื•ืชื™ --
03:29
that is, he or she is blind.
95
209330
3000
ื›ืœื•ืžืจ, ื”ื ืขื™ื•ื•ืจื™ื.
03:32
So, a solution to the problem, then,
96
212330
2000
ืื– ืคืชืจื•ืŸ ืœื‘ืขื™ื” ื™ื”ื™ื”
03:34
would be to build a device that could mimic
97
214330
2000
ืœื‘ื ื•ืช ืžื›ืฉื™ืจ ืฉื™ื™ื—ืงื”
03:36
the actions of that front-end circuitry
98
216330
2000
ืืช ืคืขื•ืœืช ื”ืชืื™ื ื”ืงื“ืžื™ื™ื
03:38
and send signals to the retina's output cells,
99
218330
2000
ื•ื™ืฉืœื— ืื•ืชื•ืช ืœืชืื™ ื”ืคืœื˜ ืฉืœ ื”ืจืฉืชื™ืช,
03:40
and they can go back to doing their
100
220330
2000
ื•ื”ื ื™ื—ื–ืจื• ืœื‘ืฆืข ืืช
03:42
normal job of sending signals to the brain.
101
222330
2000
ืขื‘ื•ื“ืชื ื”ืจื’ื™ืœื” ืฉืœ ืฉืœื™ื—ืช ืื•ืชื•ืช ืœืžื•ื—.
03:44
So this is what we've been working on,
102
224330
2000
ืื– ืขืœ ื–ื” ืื ื—ื ื• ืขื‘ื“ื ื•,
03:46
and this is what our prosthetic does.
103
226330
2000
ื•ื–ื” ืžื” ืฉื”ืชื•ืชื‘ ืฉืœื ื• ืขื•ืฉื”.
03:48
So it consists of two parts, what we call
104
228330
2000
ื”ื•ื ืžื›ื™ืœ ืฉื ื™ ื—ืœืงื™ื, ืฉืื ื• ืžื›ื ื™ื
03:50
an encoder and a transducer.
105
230330
2000
ื”ืžืงื•ื“ื“ ื•ื”ืžืชืžื™ืจ.
03:52
And so the encoder does just
106
232330
2000
ื”ืžืงื•ื“ื“ ืคืฉื•ื˜ ืขื•ืฉื”
03:54
what I was saying: it mimics the actions
107
234330
2000
ืืช ืžื” ืฉืชื™ืืจืชื™: ื”ื•ื ืžื—ืงื” ืืช ืคืขื•ืœืช
03:56
of the front-end circuitry -- so it takes images
108
236330
2000
ื”ืชืื™ื ื”ืงื“ืžื™ื™ื - ืœื•ืงื— ืืช ื”ืชืžื•ื ื•ืช
03:58
in and converts them into the retina's code.
109
238330
2000
ื•ืžืžื™ืจ ืื•ืชืŸ ืœืงื•ื“ ืฉืœ ื”ืจืฉืชื™ืช.
04:00
And then the transducer then makes the
110
240330
2000
ืื– ื”ืžืชืžื™ืจ ื’ื•ืจื ืœืชืื™
04:02
output cells send the code on up
111
242330
2000
ื”ืคืœื˜ ืœืฉืœื•ื— ืืช ื”ืงื•ื“
04:04
to the brain, and the result is
112
244330
2000
ืืœ ื”ืžื•ื—, ื•ื”ืชื•ืฆืื” ื”ื™ื
04:06
a retinal prosthetic that can produce
113
246330
3000
ืฉืจืฉืชื™ืช ืชื•ืชื‘ืช ืžืคื™ืงื”
04:09
normal retinal output.
114
249330
2000
ืคืœื˜ ืฉืœ ืจืฉืชื™ืช ืจื’ื™ืœื”.
04:11
So a completely blind retina,
115
251330
2000
ืื– ืจืฉืชื™ืช ืขื™ื•ื•ืจืช ืœื—ืœื•ื˜ื™ืŸ,
04:13
even one with no front-end circuitry at all,
116
253330
2000
ืืคื™ืœื• ื›ื–ื• ืœืœื ืชืื™ื ืงื“ืžื™ื™ื ื‘ื›ืœืœ,
04:15
no photoreceptors,
117
255330
2000
ืœืœื ืคื•ื˜ื•ืจืฆืคื˜ื•ืจื™ื,
04:17
can now send out normal signals,
118
257330
2000
ื™ื›ื•ืœื” ื›ืขืช ืœืฉืœื•ื— ืื•ืชื•ืช ืจื’ื™ืœื™ื,
04:19
signals that the brain can understand.
119
259330
3000
ืื•ืชื•ืช ืฉื”ืžื•ื— ืžืกื•ื’ืœ ืœื”ื‘ื™ืŸ.
04:22
So no other device has been able
120
262330
2000
ื•ืืฃ ืžืชืงืŸ ืื—ืจ ืœื ื”ื™ื”
04:24
to do this.
121
264330
2000
ืžืกื•ื’ืœ ืœืขืฉื•ืช ื–ืืช.
04:26
Okay, so I just want to take
122
266330
2000
ืื•ืงื™ื™, ืขื›ืฉื™ื• ืื•ืžืจ
04:28
a sentence or two to say something about
123
268330
2000
ืžืฉืคื˜ ืื• ืฉื ื™ื™ื ื‘ืงืฉืจ
04:30
the encoder and what it's doing, because
124
270330
2000
ืœืžืงื•ื“ื“ ื•ืžื” ืฉื”ื•ื ืขื•ืฉื”, ืžื›ื™ื•ื•ืŸ
04:32
it's really the key part and it's
125
272330
2000
ืฉื–ื” ื‘ืืžืช ื”ื—ืœืง ื”ืขื™ืงืจื™,
04:34
sort of interesting and kind of cool.
126
274330
2000
ื•ื“ื™ ืžืขื ื™ื™ืŸ ื•ืžื’ื ื™ื‘.
04:36
I'm not sure "cool" is really the right word, but
127
276330
2000
ืื•ืœื™ "ืžื’ื ื™ื‘" ื–ื• ืœื ื”ืžื™ืœื” ื”ื ื›ื•ื ื”,
04:38
you know what I mean.
128
278330
2000
ืื‘ืœ ื”ื‘ื ืชื ืื•ืชื™.
04:40
So what it's doing is, it's replacing
129
280330
2000
ืื– ื”ืžืงื•ื“ื“ ืžื—ืœื™ืฃ
04:42
the retinal circuitry, really the guts of
130
282330
2000
ืืช ื”ืžืขื’ืœื™ื ื”ืจืฉืชื™ื™ื, ืžืžืฉ ืืช ืงืจื‘ื™ื”ื,
04:44
the retinal circuitry, with a set of equations,
131
284330
2000
ื‘ืžืขืจื›ืช ืžืฉื•ื•ืื•ืช,
04:46
a set of equations that we can implement
132
286330
2000
ืžืขืจื›ืช ืฉืœ ืžืฉื•ื•ืื•ืช ืฉืื ื• ื™ื›ื•ืœื™ื ืœืžืžืฉ
04:48
on a chip. So it's just math.
133
288330
2000
ืขืœ ืฉื‘ื‘. ื–ื• ืคืฉื•ื˜ ืžืชืžื˜ื™ืงื”.
04:50
In other words, we're not literally replacing
134
290330
3000
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ืื ื—ื ื• ืœื ื‘ืืžืช
04:53
the components of the retina.
135
293330
2000
ืžื—ืœื™ืคื™ื ืืช ืจื›ื™ื‘ื™ ื”ืจืฉืชื™ืช.
04:55
It's not like we're making a little mini-device
136
295330
2000
ื–ื” ืœื ืฉืื ื—ื ื• ื™ื•ืฆืจื™ื ืžื™ื ื™-ืžืชืงืŸ ืงื˜ืŸ
04:57
for each of the different cell types.
137
297330
2000
ืขื‘ื•ืจ ื›ืœ ืกื•ื’ ืฉืœ ืชื.
04:59
We've just abstracted what the
138
299330
2000
ืคืฉื•ื˜ ื”ืคืฉื˜ื ื• ืืช ืžื” ืฉืขื•ืฉื”
05:01
retina's doing with a set of equations.
139
301330
2000
ื”ืจืฉืชื™ืช ื‘ืขื–ืจืช ืžืขืจื›ืช ืžืฉื•ื•ืื•ืช.
05:03
And so, in a way, the equations are serving
140
303330
2000
ื›ืš ืฉื‘ื“ืจืš ื›ืœืฉื”ื™ ื”ืžืฉื•ื•ืื•ืช ืžืฉืžืฉื•ืช
05:05
as sort of a codebook. An image comes in,
141
305330
2000
ื›ืกื•ื’ ืฉืœ ืกืคืจ-ืงื•ื“. ืชืžื•ื ื” ื ื›ื ืกืช,
05:07
goes through the set of equations,
142
307330
3000
ืขื•ื‘ืจืช ื“ืจืš ืžืขืจื›ืช ื”ืžืฉื•ื•ืื•ืช,
05:10
and out comes streams of electrical pulses,
143
310330
2000
ื•ืื– ื™ื•ืฆื ื–ืจื ืฉืœ ืคื•ืœืกื™ื ื—ืฉืžืœื™ื™ื,
05:12
just like a normal retina would produce.
144
312330
4000
ืžืžืฉ ื›ืžื• ืฉืจืฉืชื™ืช ืจื’ื™ืœื” ื”ื™ื™ืชื” ืžืคื™ืงื”.
05:16
Now let me put my money
145
316330
2000
ืขื›ืฉื™ื• ืืจืื” ืœื›ื ืฉื–ื” ืœื
05:18
where my mouth is and show you that
146
318330
2000
ืจืง ื“ื™ื‘ื•ืจื™ื ื•ืืจืื” ืœื›ื ืฉืื ื•
05:20
we can actually produce normal output,
147
320330
2000
ืžืกื•ื’ืœื™ื ืœื”ืคื™ืง ืคืœื˜ ื ื•ืจืžืœื™,
05:22
and what the implications of this are.
148
322330
2000
ื•ืืช ื”ื”ืฉืœื›ื•ืช ืœื›ืš.
05:24
Here are three sets of
149
324330
2000
ื”ื ื” ืฉืœื•ืฉ ืงื‘ื•ืฆื•ืช ืฉืœ
05:26
firing patterns. The top one is from
150
326330
2000
ืชื‘ื ื™ื•ืช ื™ืจื™. ื”ืขืœื™ื•ื ื” ื”ื™ื
05:28
a normal animal, the middle one is from
151
328330
2000
ืžื—ื™ื” ื ื•ืจืžืœื™ืช, ื”ืืžืฆืขื™ืช
05:30
a blind animal that's been treated with
152
330330
2000
ืžื—ื™ื” ืขื™ื•ื•ืจืช ืฉื˜ื•ืคืœื” ื‘ืขื–ืจืช
05:32
this encoder-transducer device, and the
153
332330
2000
ื”ืžืชืงืŸ ื”ืžืงื•ื“ื“-ืžืชืžื™ืจ,
05:34
bottom one is from a blind animal treated
154
334330
2000
ื•ื”ืชื—ืชื•ื ื” ืžื—ื™ื” ืขื™ื•ื•ืจืช ืฉื˜ื•ืคืœื”
05:36
with a standard prosthetic.
155
336330
2000
ื‘ืขื–ืจืช ืชื•ืชื‘ ืกื˜ื ื“ืจื˜ื™.
05:38
So the bottom one is the state-of-the-art
156
338330
2000
ืื– ื”ืชื—ืชื•ื ื” ื”ื™ื ืžื”ืžืชืงืŸ
05:40
device that's out there right now, which is
157
340330
2000
ื”ืขื“ื›ื ื™ ื‘ื™ื•ืชืจ ืฉืงื™ื™ื ื›ื™ื•ื, ืฉื”ื•ื
05:42
basically made up of light detectors,
158
342330
2000
ื‘ืขื™ืงืจื•ืŸ ืขืฉื•ื™ ืžื—ื™ื™ืฉื ื™ ืื•ืจ,
05:44
but no encoder. So what we did was we
159
344330
2000
ืืš ืœืœื ืžืงื•ื“ื“. ืื ื—ื ื• ื”ืฆื’ื ื•
05:46
presented movies of everyday things --
160
346330
2000
ืกืจื˜ื™ื ืฉืœ ื“ื‘ืจื™ื ื™ื•ื-ื™ื•ืžื™ื™ื --
05:48
people, babies, park benches,
161
348330
2000
ืื ืฉื™ื, ืชื™ื ื•ืงื•ืช, ืกืคืกืœื™ื ื‘ืคืืจืง,
05:50
you know, regular things happening -- and
162
350330
2000
ืืชื ื™ื•ื“ืขื™ื, ื“ื‘ืจื™ื ืฉื’ืจืชื™ื™ื,
05:52
we recorded the responses from the retinas
163
352330
2000
ื•ื”ืงืœื˜ื ื• ืืช ื”ืชื’ื•ื‘ื•ืช ืžื”ืจืฉืชื™ื•ืช
05:54
of these three groups of animals.
164
354330
2000
ื‘ืฉืœื•ืฉ ื”ืงื‘ื•ืฆื•ืช ืฉืœ ื”ื—ื™ื•ืช.
05:56
Now just to orient you, each box is showing
165
356330
2000
ื›ืœ ืชื™ื‘ื” ืžืจืื” ืืช
05:58
the firing patterns of several cells,
166
358330
2000
ืชื‘ื ื™ืช ื”ื™ืจื™ ืฉืœ ืชืื™ื ืžืกื•ื™ืžื™ื,
06:00
and just as in the previous slides,
167
360330
2000
ืžืžืฉ ื›ืžื• ื‘ืฉืงื•ืคื™ื•ืช ื”ืงื•ื“ืžื•ืช,
06:02
each row is a different cell,
168
362330
2000
ื›ืœ ืฉื•ืจื” ื”ื™ื ืชื ืฉื•ื ื”,
06:04
and I just made the pulses a little bit smaller
169
364330
2000
ืจืง ื”ืงื˜ื ืชื™ ืžืขื˜ ืืช ื”ืคื•ืœืกื™ื
06:06
and thinner so I could show you
170
366330
3000
ื›ื“ื™ ืฉืื•ื›ืœ ืœื”ืจืื•ืช ืœื›ื
06:09
a long stretch of data.
171
369330
2000
ืจืฆืฃ ืืจื•ืš ืฉืœ ืžื™ื“ืข.
06:11
So as you can see, the firing patterns
172
371330
2000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช, ืชื‘ื ื™ื•ืช ื”ื™ืจื™
06:13
from the blind animal treated with
173
373330
2000
ืฉืœ ื—ื™ื” ืขื™ื•ื•ืจืช ื”ืžื˜ื•ืคืœืช
06:15
the encoder-transducer really do very
174
375330
2000
ื‘ืžืงื•ื“ื“-ืžืชืžื™ืจ ืื›ืŸ ืžืชืื™ืžื•ืช
06:17
closely match the normal firing patterns --
175
377330
2000
ืžืื•ื“ ืœืชื‘ื ื™ื•ืช ื”ื™ืจื™ ืฉืœ ื—ื™ื” ื ื•ืจืžืœื™ืช --
06:19
and it's not perfect, but it's pretty good --
176
379330
2000
ื–ื” ืœื ืžื•ืฉืœื, ืืš ื˜ื•ื‘ ืžืื•ื“ --
06:21
and the blind animal treated with
177
381330
2000
ื•ื”ื—ื™ื” ื”ืขื™ื•ื•ืจืช ืฉืžื˜ื•ืคืœืช
06:23
the standard prosthetic,
178
383330
2000
ื‘ืคืจื•ื˜ื–ื” ืกื˜ื ื“ืจื˜ื™ืช,
06:25
the responses really don't.
179
385330
2000
ื”ืชื’ื•ื‘ื•ืช ืื™ื ืŸ ืžืชืื™ืžื•ืช.
06:27
And so with the standard method,
180
387330
3000
ืื– ื‘ืฉื™ื˜ื” ื”ืกื˜ื ื“ืจื˜ื™ืช,
06:30
the cells do fire, they just don't fire
181
390330
2000
ื”ืชืื™ื ืื›ืŸ ื™ื•ืจื™ื, ืคืฉื•ื˜ ืœื
06:32
in the normal firing patterns because
182
392330
2000
ืืช ืชื‘ื ื™ื•ืช ื”ื™ืจื™ ื”ืจื’ื™ืœื•ืช
06:34
they don't have the right code.
183
394330
2000
ื›ื™ ืื™ืŸ ืœื”ื ืืช ื”ืงื•ื“ ื”ื ื›ื•ืŸ.
06:36
How important is this?
184
396330
2000
ืขื“ ื›ืžื” ื–ื” ื—ืฉื•ื‘?
06:38
What's the potential impact
185
398330
2000
ืžื” ื”ื”ืฉืคืขื” ื”ืคื•ื˜ื ืฆื™ืืœื™ืช
06:40
on a patient's ability to see?
186
400330
3000
ืขืœ ื™ื›ื•ืœืช ื”ืžื˜ื•ืคืœ ืœืจืื•ืช?
06:43
So I'm just going to show you one
187
403330
2000
ืืจืื” ืœื›ื ื ื™ืกื•ื™ ืžืคืชื—
06:45
bottom-line experiment that answers this,
188
405330
2000
ืฉืขื•ื ื” ืขืœ ืฉืืœื” ื–ื•.
06:47
and of course I've got a lot of other data,
189
407330
2000
ื›ืžื•ื‘ืŸ ืฉื™ืฉ ืœื™ ืขื•ื“ ื”ืžื•ืŸ ืžื™ื“ืข,
06:49
so if you're interested I'm happy
190
409330
2000
ืื ืืชื ืžืขื•ื ื™ื™ื ื™ื ืืฉืžื—
06:51
to show more. So the experiment
191
411330
2000
ืœื”ืจืื•ืช ืขื•ื“. ืื– ื”ื ื™ืกื•ื™
06:53
is called a reconstruction experiment.
192
413330
2000
ื ืงืจื ื ื™ืกื•ื™ ืฉื—ื–ื•ืจ.
06:55
So what we did is we took a moment
193
415330
2000
ืœืงื—ื ื• ืจื’ืข ื‘ื–ืžืŸ
06:57
in time from these recordings and asked,
194
417330
3000
ืžื”ื”ืงืœื˜ื•ืช ื”ืœืœื• ื•ืฉืืœื ื•
07:00
what was the retina seeing at that moment?
195
420330
2000
ืžื” ืจืืชื” ื”ืจืฉืชื™ืช ื‘ืจื’ืข ื”ื–ื”?
07:02
Can we reconstruct what the retina
196
422330
2000
ื”ืื ืื ื• ืžืกื•ื’ืœื™ื ืœืฉื—ื–ืจ ืžื” ืจืืชื”
07:04
was seeing from the responses
197
424330
2000
ื”ืจืฉืชื™ืช ืžื”ืชื’ื•ื‘ื•ืช
07:06
from the firing patterns?
198
426330
2000
ืฉื‘ืชื‘ื ื™ื•ืช ื”ื™ืจื™?
07:08
So, when we did this for responses
199
428330
3000
ื•ื‘ื›ืŸ, ืขืฉื™ื ื• ื–ืืช ืขื‘ื•ืจ ืชื’ื•ื‘ื•ืช
07:11
from the standard method and from
200
431330
3000
ืžื”ืฉื™ื˜ื” ื”ืกื˜ื ื“ืจื˜ื™ืช
07:14
our encoder and transducer.
201
434330
2000
ื•ืžื”ืžืงื•ื“ื“ ื•ื”ืžืชืžื™ืจ ืฉืœื ื•.
07:16
So let me show you, and I'm going to
202
436330
2000
ื›ืขืช ืืจืื” ืœื›ื, ืชื—ื™ืœื”
07:18
start with the standard method first.
203
438330
2000
ื‘ืฉื™ื˜ื” ื”ืกื˜ื ื“ืจื˜ื™ืช.
07:20
So you can see that it's pretty limited,
204
440330
2000
ืืชื ืจื•ืื™ื ืฉื–ื” ื“ื™ ืžื•ื’ื‘ืœ,
07:22
and because the firing patterns aren't
205
442330
2000
ืžื›ื™ื•ื•ืŸ ืฉืชื‘ื ื™ื•ืช ื”ื™ืจื™ ืื™ื ืŸ
07:24
in the right code, they're very limited in
206
444330
2000
ื‘ืงื•ื“ ื”ื ื›ื•ืŸ, ื”ืŸ ืžื•ื’ื‘ืœื•ืช ืžืื•ื“
07:26
what they can tell you about
207
446330
2000
ื‘ืžื” ืฉื”ืŸ ืžืกืคืจื•ืช ืขืœ
07:28
what's out there. So you can see that
208
448330
2000
ืžื” ืฉื ืžืฆื ื‘ื—ื•ืฅ. ื ื™ืชืŸ ืœืจืื•ืช
07:30
there's something there, but it's not so clear
209
450330
2000
ืฉื™ืฉ ืฉื ืžืฉื”ื•, ืืš ืœื ื‘ืจื•ืจ
07:32
what that something is, and this just sort of
210
452330
2000
ืžื” ื”ืžืฉื”ื• ื”ื–ื”, ื–ื” ืจืง ื—ื•ื–ืจ
07:34
circles back to what I was saying in the
211
454330
2000
ืื—ื•ืจื” ืœืžื” ืฉืืžืจืชื™
07:36
beginning, that with the standard method,
212
456330
2000
ื‘ื”ืชื—ืœื”, ืฉืขื ื”ืฉื™ื˜ื” ื”ืกื˜ื ื“ืจื˜ื™ืช,
07:38
patients can see high-contrast edges, they
213
458330
2000
ืžื˜ื•ืคืœ ื™ื›ื•ืœ ืœืจืื•ืช ื ื™ื’ื•ื“-ืฆื‘ืขื™ื ื—ื–ืง,
07:40
can see light, but it doesn't easily go
214
460330
2000
ืœืจืื•ืช ืื•ืจ, ืืš ืœื
07:42
further than that. So what was
215
462330
2000
ืžืขื‘ืจ ืœื›ืš. ืžื” ื”ื™ื™ืชื”
07:44
the image? It was a baby's face.
216
464330
3000
ื”ืชืžื•ื ื”? ืืœื” ืคื ื™ื ืฉืœ ืชื™ื ื•ืง.
07:47
So what about with our approach,
217
467330
2000
ื•ืžื” ืขื ื”ื’ื™ืฉื” ืฉืœื ื•,
07:49
adding the code? And you can see
218
469330
2000
ืฉืžื•ืกื™ืคื” ืืช ื”ืงื•ื“? ื ื™ืชืŸ ืœืจืื•ืช ืฉื”ื™ื
07:51
that it's much better. Not only can you
219
471330
2000
ื˜ื•ื‘ื” ื‘ื”ืจื‘ื”. ืœื ืจืง ืฉื ื™ืชืŸ
07:53
tell that it's a baby's face, but you can
220
473330
2000
ืœื•ืžืจ ืฉืืœื” ืคื ื™ื ืฉืœ ืชื™ื ื•ืง, ื ื™ืชืŸ ืืฃ ืœื•ืžืจ
07:55
tell that it's this baby's face, which is a
221
475330
2000
ืฉืืœื” ื”ืคื ื™ื ืฉืœ ื”ืชื™ื ื•ืง ื”ื–ื”,
07:57
really challenging task.
222
477330
2000
ื•ื–ื• ืžืฉื™ืžื” ืžืืชื’ืจืช.
07:59
So on the left is the encoder
223
479330
2000
ืžืฉืžืืœ ื–ื” ืžื”ืžืงื•ื“ื“
08:01
alone, and on the right is from an actual
224
481330
2000
ื‘ืœื‘ื“, ืžื™ืžื™ืŸ ืžืจืฉืชื™ืช ืขื™ื•ื•ืจืช
08:03
blind retina, so the encoder and the transducer.
225
483330
2000
ื•ืžืžืงื•ื“ื“ ื•ืžืชืžื™ืจ.
08:05
But the key one really is the encoder alone,
226
485330
2000
ืืš ื”ืขื™ืงืจื™ ื‘ืืžืช ื”ื•ื ื”ืžืงื•ื“ื“ ื‘ืœื‘ื“,
08:07
because we can team up the encoder with
227
487330
2000
ื›ื™ ืื ื• ืžืกื•ื’ืœื™ื ืœื—ื‘ืจ ืืช ื”ืžืงื•ื“ื“ ืขื
08:09
the different transducer.
228
489330
2000
ืžืชืžื™ืจ ืฉื•ื ื”.
08:11
This is just actually the first one that we tried.
229
491330
2000
ืœืžืขืฉื” ื–ื” ื”ืจืืฉื•ืŸ ืฉื ื™ืกื™ื ื•.
08:13
I just wanted to say something about the standard method.
230
493330
2000
ืจืฆื™ืชื™ ืœื•ืžืจ ืžืฉื”ื• ืœื’ื‘ื™ ื”ืฉื™ื˜ื” ื”ืกื˜ื ื“ืจื˜ื™ืช.
08:15
When this first came out, it was just a really
231
495330
2000
ื›ืฉื–ื” ื™ืฆื ืœืจืืฉื•ื ื”, ื–ื” ื”ื™ื” ื“ื‘ืจ
08:17
exciting thing, the idea that you
232
497330
2000
ืžืจื’ืฉ ืžืื•ื“, ื”ืจืขื™ื•ืŸ ืฉื ื™ืชืŸ
08:19
even make a blind retina respond at all.
233
499330
3000
ื‘ื›ืœืœ ืœื’ืจื•ื ืœืจืฉืชื™ืช ืขื™ื•ื•ืจืช ืœื”ื’ื™ื‘.
08:22
But there was this limiting factor,
234
502330
3000
ืืš ื”ื™ื” ืœื ื• ืืช ื”ื’ื•ืจื ื”ืžื’ื‘ื™ืœ,
08:25
the issue of the code, and how to make
235
505330
2000
ื”ื ื•ืฉื ืฉืœ ื”ืงื•ื“, ื•ื›ื™ืฆื“ ืœื’ืจื•ื
08:27
the cells respond better,
236
507330
2000
ืœืชืื™ื ืœื”ื’ื™ื‘ ื˜ื•ื‘ ื™ื•ืชืจ,
08:29
produce normal responses,
237
509330
2000
ืœื”ืคื™ืง ืชื’ื•ื‘ื•ืช ื ื•ืจืžืœื™ื•ืช,
08:31
and so this was our contribution.
238
511330
2000
ื•ื–ื• ื”ื™ื™ืชื” ื”ืชืจื•ืžื” ืฉืœื ื•.
08:33
Now I just want to wrap up,
239
513330
2000
ืื ื™ ืจื•ืฆื” ื›ืขืช ืœืกื›ื,
08:35
and as I was mentioning earlier
240
515330
2000
ื›ืžื• ืฉื”ื–ื›ืจืชื™ ืžื•ืงื“ื ื™ื•ืชืจ
08:37
of course I have a lot of other data
241
517330
2000
ื›ืžื•ื‘ืŸ ืฉื™ืฉ ื‘ืจืฉื•ืชื™ ื”ืžื•ืŸ ืžื™ื“ืข ื ื•ืกืฃ
08:39
if you're interested, but I just wanted to give
242
519330
2000
ืื ืชืจืฆื•, ืืš ืื ื™ ืจืง ืจื•ืฆื”
08:41
this sort of basic idea
243
521330
2000
ืœืชืืจ ืœื›ื ืืช ื”ืจืขื™ื•ืŸ ื”ื‘ืกื™ืกื™,
08:43
of being able to communicate
244
523330
3000
ืฉืœ ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืชืงืฉืจ
08:46
with the brain in its language, and
245
526330
2000
ืขื ื”ืžื•ื— ื‘ืฉืคืชื• ืฉืœื•,
08:48
the potential power of being able to do that.
246
528330
3000
ื•ื”ื›ื•ื— ื”ื’ืœื•ื ื‘ื™ื›ื•ืœืช ื”ื–ื•.
08:51
So it's different from the motor prosthetics
247
531330
2000
ื–ื” ืฉื•ื ื” ืžืคืจื•ื˜ื–ื•ืช ืžืžื•ื ืขื•ืช,
08:53
where you're communicating from the brain
248
533330
2000
ืฉื ืžืชืงืฉืจื™ื ืžื”ืžื•ื— ืืœ
08:55
to a device. Here we have to communicate
249
535330
2000
ื”ืžืชืงืŸ. ืคื” ืื ื• ื—ื™ื™ื‘ื™ื ืœืชืงืฉืจ
08:57
from the outside world
250
537330
2000
ืžื”ืขื•ืœื ื”ื—ื™ืฆื•ื ื™,
08:59
into the brain and be understood,
251
539330
2000
ืืœ ืชื•ืš ื”ืžื•ื— ื•ืœื”ื™ื•ืช ืžื•ื‘ื ื™ื
09:01
and be understood by the brain.
252
541330
2000
ืขืœ-ื™ื“ื™ ื”ืžื•ื—.
09:03
And then the last thing I wanted
253
543330
2000
ื•ื”ื“ื‘ืจ ื”ืื—ืจื•ืŸ ืฉืจืฆื™ืชื™
09:05
to say, really, is to emphasize
254
545330
2000
ืœื•ืžืจ, ื‘ืืžืช, ื”ื•ื ืœื”ื“ื’ื™ืฉ
09:07
that the idea generalizes.
255
547330
2000
ืฉื ื™ืชืŸ ืœื”ื›ืœื™ืœ ืืช ื”ืจืขื™ื•ืŸ ื”ื–ื”.
09:09
So the same strategy that we used
256
549330
2000
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืืกื˜ืจื˜ื’ื™ื”
09:11
to find the code for the retina we can also
257
551330
2000
ืœืžืฆื™ืืช ืงื•ื“ ื”ืจืฉืชื™ืช ื›ื“ื™
09:13
use to find the code for other areas,
258
553330
2000
ืœืžืฆื•ื ืืช ื”ืงื•ื“ื™ื ืฉืœ ืื–ื•ืจื™ื ืื—ืจื™ื,
09:15
for example, the auditory system and
259
555330
2000
ืœืžืฉืœ, ืืช ืžืขืจื›ืช ื”ืฉืžื™ืขื”,
09:17
the motor system, so for treating deafness
260
557330
2000
ื•ืžืขืจื›ืช ื”ืชื ื•ืขื”, ืขื‘ื•ืจ ื˜ื™ืคื•ืœ ื‘ื—ื™ืจืฉื•ืช,
09:19
and for motor disorders.
261
559330
2000
ื•ื‘ื”ืคืจืขื•ืช ื‘ืชื ื•ืขื”.
09:21
So just the same way that we were able to
262
561330
2000
ื‘ืื•ืชื” ื”ื“ืจืš ืฉื‘ื” ื™ื›ื•ืœื ื•
09:23
jump over the damaged
263
563330
2000
ืœื“ืœื’ ืžืขืœ ื”ืžืขื’ืœื™ื ื”ืจืฉืชื™ื™ื
09:25
circuitry in the retina to get to the retina's
264
565330
2000
ื”ืคื’ื•ืขื™ื, ื•ืœื”ื’ื™ืข ืืœ ืชืื™ ื”ืคืœื˜
09:27
output cells, we can jump over the
265
567330
2000
ืฉืœ ื”ืจืฉืชื™ืช, ืื ื• ืžืกื•ื’ืœื™ื ืœื“ืœื’
09:29
damaged circuitry in the cochlea
266
569330
2000
ืžืขืœ ื”ื—ื™ื‘ื•ืจ ื”ืคื’ื•ืข ื‘ืฉื‘ืœื•ืœ-ื”ืื•ื–ืŸ,
09:31
to get the auditory nerve,
267
571330
2000
ื•ืœื”ื’ื™ืข ืœืขืฆื‘ ื”ืฉืžื™ืขื”,
09:33
or jump over damaged areas in the cortex,
268
573330
2000
ืื• ืœื“ืœื’ ืžืขืœ ืื–ื•ืจื™ื ืคื’ื•ืขื™ื ื‘ืงื•ืจื˜ืงืก ื”ืžื•ื˜ื•ืจื™,
09:35
in the motor cortex, to bridge the gap
269
575330
3000
ื›ื“ื™ ืœื’ืฉืจ ืขืœ ื”ืคืขืจ
09:38
produced by a stroke.
270
578330
2000
ืฉื ื’ืจื ื›ืชื•ืฆืื” ืžืฉื‘ืฅ.
09:40
I just want to end with a simple
271
580330
2000
ืจืฆื™ืชื™ ืœืกื™ื™ื ืขื ืžืกืจ
09:42
message that understanding the code
272
582330
2000
ืคืฉื•ื˜ - ื”ื‘ื ื” ืฉืœ ื”ืงื•ื“
09:44
is really, really important, and if we
273
584330
2000
ื”ื™ื ื‘ืืžืช, ื‘ืืžืช ื—ืฉื•ื‘ื”, ื•ืื
09:46
can understand the code,
274
586330
2000
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื”ื‘ื™ืŸ ืืช ื”ืงื•ื“,
09:48
the language of the brain, things become
275
588330
2000
ืืช ืฉืคืชื• ืฉืœ ื”ืžื•ื—, ื“ื‘ืจื™ื
09:50
possible that didn't seem obviously
276
590330
2000
ืฉื ืจืื• ื‘ืœืชื™-ืืคืฉืจื™ื™ื
09:52
possible before. Thank you.
277
592330
2000
ื”ื•ืคื›ื™ื ืœืืคืฉืจื™ื™ื. ืชื•ื“ื” ืœื›ื.
09:54
(Applause)
278
594330
5000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7