Saul Griffith: Hardware solutions to everyday problems

25,403 views ใƒป 2007-03-23

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Sigal Tifferet
00:25
So anyway, who am I?
0
25000
1000
ื˜ื•ื‘. ืื– ืžื™ ืื ื™?
00:26
I usually say to people, when they say, "What do you do?"
1
26000
3000
ื›ืฉืฉื•ืืœื™ื ืื•ืชื™, "ื‘ืžื” ืืชื” ืขื•ืกืง?"
00:29
I say, "I do hardware,"
2
29000
2000
ืื ื™ ื‘ื“"ื› ืขื•ื ื”: "ืื ื™ ืžื™ื™ืฆืจ ื—ื•ืžืจื”."
ื›ื™ ื–ื” ืžืกื›ื ื‘ืฆื•ืจื” ื ื•ื—ื” ืืช ื›ืœ ืžื” ืฉืื ื™ ืขื•ืฉื”.
00:31
because it sort of conveniently encompasses everything I do.
3
31000
2000
00:33
And I recently said that to a venture capitalist casually at some
4
33000
4000
ืœืื—ืจื•ื ื” ืขื ื™ืชื™ ื›ืš ื›ืœืื—ืจ-ื™ื“ ืœืžืฉืงื™ืข ื”ื•ืŸ-ืกื™ื›ื•ืŸ ืื—ื“
00:37
Valley event, to which he replied, "How quaint."
5
37000
3000
ื‘ืื™ืจื•ืข ื‘"ืขืžืง", ื•ื”ื•ื ืขื ื”: "ื›ืžื” ืžืงืกื™ื."
00:40
(Laughter)
6
40000
2000
[ืฆื—ื•ืง]
00:42
And I sort of really was dumbstruck.
7
42000
3000
ื•ื”ืžืœื™ื ืžืžืฉ ื ืขืชืงื• ืžืคื™.
00:45
And I really should have said something smart.
8
45000
2000
ื—ื‘ืœ ืฉืœื ืืžืจืชื™ ืžืฉื”ื• ืžื—ื•ื›ื.
00:47
And now I've had a little bit of time to think about it,
9
47000
5000
ื•ืื—ืจื™ ืฉื—ืฉื‘ืชื™ ืขืœ ื–ื” ืงืฆืช,
ื”ื™ื™ืชื™ ืฆืจื™ืš ืœื•ืžืจ, "ืชืจืื”,
00:52
I would have said, "Well, you know,
10
52000
2000
00:54
if we look at the next 100 years
11
54000
2000
ืื ืชืกืชื›ืœ ืขืœ ืžืื” ื”ืฉื ื™ื ื”ื‘ืื•ืช,
ื•ื‘ื™ืžื™ื ื”ืื—ืจื•ื ื™ื ืจืื™ื ื• ืืช ื›ืœ ื”ื‘ืขื™ื•ืช ืฉื™ืฉ,
00:56
and we've seen all these problems in the last few days,
12
56000
2000
00:58
most of the big issues -- clean water, clean energy --
13
58000
3000
ืจื•ื‘ ื”ื ื•ืฉืื™ื ื”ื—ืฉื•ื‘ื™ื: ืžื™ื ื ืงื™ื™ื, ืื ืจื’ื™ื” ื ืงื™ื”--
01:01
and they're interchangeable in some respects --
14
61000
2000
ื•ื™ืฉ ื‘ื™ื ื™ื”ื ื™ื—ืกื™-ื’ื•ืžืœื™ืŸ ืžืกื•ื™ืžื™ื--
01:03
and cleaner, more functional materials --
15
63000
2000
ื•ื—ื•ืžืจื™ื ื ืงื™ื™ื ื•ืคืจืงื˜ื™ื™ื ื™ื•ืชืจ--
01:05
they all look to me to be hardware problems.
16
65000
3000
ื‘ืขื™ื ื™ ื›ืœ ืืœื” ื‘ืขื™ื•ืช ื—ื•ืžืจื”.
ื–ื” ืœื ืื•ืžืจ ืฉืขืœื™ื ื• ืœื”ืชืขืœื ืžื”ืชื•ื›ื ื”,
01:08
This doesn't mean we should ignore software,
17
68000
2000
01:10
or information, or computation."
18
70000
2000
ืื• ืžืŸ ื”ืžื™ื“ืข, ืื• ืžืŸ ื”ืžื™ื—ืฉื•ื‘.
01:12
And that's in fact probably what I'm going to try and tell you about.
19
72000
3000
ื•ืขืœ ื–ื” ื‘ืขืฆื ืื ืกื” ืœืกืคืจ ืœื›ื ื”ื™ื•ื.
01:15
So, this talk is going to be about how do we make things
20
75000
3000
ื”ืจืฆืื” ื–ื• ืชืขืกื•ืง ื‘ืฉืืœื” ืื™ืš ืื ื• ืžื™ื™ืฆืจื™ื ื“ื‘ืจื™ื
01:18
and what are the new ways that we're going to make things in the future.
21
78000
5000
ื•ื‘ืื™ืœื• ื“ืจื›ื™ื ื—ื“ืฉื•ืช ื ื™ื™ืฆืจ ื“ื‘ืจื™ื ื‘ืขืชื™ื“.
01:23
Now, TED sends you a lot of spam if you're a speaker
22
83000
5000
TED ืฉื•ืœื—ืช ืœื›ืœ ืžืจืฆื” ื”ืžื•ืŸ ื“ื•ืืœ-ื–ื‘ืœ:
01:28
about "do this, do that" and you fill out all these forms,
23
88000
2000
"ืชืขืฉื” ื›ืš, ืชืขืฉื” ื›ืš", ื•ืืชื” ืžืžืœื ืืช ื›ืœ ื”ื˜ืคืกื™ื ื”ืืœื”
01:30
and you don't actually know how they're going to describe you,
24
90000
3000
ื•ื‘ืขืฆื ืื™ืŸ ืœืš ืžื•ืฉื’ ืื™ืš ื™ืชืืจื• ืื•ืชืš,
01:33
and it flashed across my desk that they were going to introduce me as a futurist.
25
93000
3000
ื•ืจืื™ืชื™ ื‘ื—ื˜ืฃ ืฉื™ืฆื™ื’ื• ืื•ืชื™ ื‘ืชื•ืจ ืขืชื™ื“ืŸ.
01:36
And I've always been nervous about the term "futurist,"
26
96000
2000
ื•ื”ื‘ื™ื˜ื•ื™ "ืขืชื™ื“ืŸ" ืชืžื™ื“ ื”ื˜ืจื™ื“ ืื•ืชื™,
01:38
because you seem doomed to failure because you can't really predict it.
27
98000
3000
ื›ื™ ื‘ืจื•ืจ ืฉืชื™ื›ืฉืœ: ืื™ื ืš ื™ื›ื•ืœ ืœื—ื–ื•ืช ืืช ื”ืขืชื™ื“.
01:41
And I was laughing about this with the very smart colleagues I have,
28
101000
3000
ื”ืชื‘ื“ื—ืชื™ ืขืœ ื–ื” ืขื ื›ืžื” ื—ื‘ืจื™ื ื—ื›ืžื™ื ืžืื“,
01:44
and said, "You know, well, if I have to talk about the future, what is it?"
29
104000
4000
ื•ืืžืจืชื™, "ืื ืขืœื™ ืœื”ืจืฆื•ืช ืขืœ ื”ืขืชื™ื“, ืื– ืžื”ื•?"
01:48
And George Homsey, a great guy, said, "Oh, the future is amazing.
30
108000
5000
ื•ื’'ื•ืจื’' ื”ื•ืžืกื™, ื‘ื—ื•ืจ ื ื”ื“ืจ, ืืžืจ: "ื”ืขืชื™ื“ ื ืคืœื.
01:53
It is so much stranger than you think.
31
113000
2000
"ื”ื•ื ืžื•ื–ืจ ื‘ื”ืจื‘ื” ืžืžื” ืฉืืชื” ื—ื•ืฉื‘.
01:55
We're going to reprogram the bacteria in your gut,
32
115000
2000
"ืื ื• ื ื”ื ื“ืก ืžื—ื“ืฉ ืืช ื”ื—ื™ื™ื“ืงื™ื ื‘ืžืขื™ื™ื ืฉืœืš,
01:57
and we're going to make your poo smell like peppermint."
33
117000
5000
"ื•ื ืขืฉื” ืฉืœืงืงื™ ืฉืœืš ื™ื”ื™ื” ืจื™ื— ืžื ื˜ื”."
02:02
(Laughter)
34
122000
2000
[ืฆื—ื•ืง]
02:04
So, you may think that's sort of really crazy,
35
124000
3000
ืื•ืœื™ ืืชื ื—ื•ืฉื‘ื™ื ืฉื–ื” ืžื˜ื•ืจืฃ,
02:07
but there are some pretty amazing things that are happening
36
127000
2000
ืืš ืงื•ืจื™ื ื›ืžื” ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื ืฉืžืืคืฉืจื™ื ืืช ื–ื”.
02:09
that make this possible.
37
129000
1000
02:10
So, this isn't my work, but it's work of good friends of mine at MIT.
38
130000
4000
ื–ื• ืœื ืขื‘ื•ื“ื” ืฉืœื™, ืืœื ืฉืœ ื—ื‘ืจื™ื ื˜ื•ื‘ื™ื ื‘ื˜ื›ื ื™ื•ืŸ ืฉืœ ืžืกืฆ'ื•ืกื˜ืก
02:14
This is called the registry of standard biological parts.
39
134000
2000
ื–ื” ืงืจื•ื™ "ืžืขืจื›ืช ื”ืจื™ืฉื•ื ืฉืœ ื—ืœืงื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื ืชืงื ื™ื™ื".
02:16
This is headed by Drew Endy and Tom Knight
40
136000
2000
ืขื•ืžื“ื™ื ื‘ืจืืฉื” ื“ืจื• ืื ื“ื™ ื•ื˜ื•ื ื ื™ื™ื˜
02:18
and a few other very, very bright individuals.
41
138000
3000
ื•ืขื•ื“ ื›ืžื” ืื ืฉื™ื ืžื‘ืจื™ืงื™ื ืžืื“.
ื‘ืขื™ืงืจื•ืŸ, ื”ื ืžืชื™ื™ื—ืกื™ื ืœื‘ื™ื•ืœื•ื’ื™ื” ื›ืืœ ืžืขืจื›ืช ื‘ืจืช-ืชื™ื›ื ื•ืช.
02:21
Basically, what they're doing is looking at biology as a programmable system.
42
141000
3000
02:24
Literally, think of proteins as subroutines
43
144000
4000
ืคืฉื•ื˜ื• ื›ืžืฉืžืขื•: ื—ื•ืฉื‘ื™ื ืขืœ ื—ืœื‘ื•ื ื™ื ื›ืขืœ ืชืช-ืฉื’ืจื•ืช
02:28
that you can string together to execute a program.
44
148000
3000
ืฉื ื™ืชืŸ ืœืฉื–ื•ืจ ื‘ื™ื—ื“ ื›ื“ื™ ืœื”ืจื™ืฅ ืชื›ื ื™ืช.
02:31
Now, this is actually becoming such an interesting idea.
45
151000
5000
ื•ื–ื” ื”ื•ืคืš ื›ื™ื•ื ืœืจืขื™ื•ืŸ ืžืื“ ืžืขื ื™ื™ืŸ.
ื–ื”ื• ืชืจืฉื™ื ืฉืœ ืื•ื˜ื•ืžื˜ ืกื•ืคื™. ื–ื”ื• ืžื—ืฉื‘ ืคืฉื•ื˜ ืžืื“.
02:36
This is a state diagram. That's an extremely simple computer.
46
156000
3000
02:39
This one is a two-bit counter.
47
159000
2000
ื–ื”ื• ืžื•ื ื” ืฉืœ ืฉืชื™ ืกื™ื‘ื™ื•ืช.
02:41
So that's essentially the computational equivalent of two light switches.
48
161000
6000
ื–ื”ื• ื‘ืขืฆื ืฉื•ื•ื”-ื”ืขืจืš ื”ืžืžื•ื—ืฉื‘ ืฉืœ ืžืชื’ื™ื ื“ื•-ื ื•ืจืชื™ื™ื.
ื‘ื ืชื” ืื•ืชื• ื—ื‘ื•ืจืช ืกื˜ื•ื“ื ื˜ื™ื ื‘ืฆื™ืจื™ืš
02:47
And this is being built by a group of students at Zurich
49
167000
3000
ืขื‘ื•ืจ ืชื—ืจื•ืช ืขื™ืฆื•ื‘ ื‘ื‘ื™ื•ืœื•ื’ื™ื”.
02:50
for a design competition in biology.
50
170000
2000
02:52
And from the results of the same competition last year,
51
172000
3000
ื•ืœืคื™ ืชื•ืฆืื•ืช ืื•ืชื” ืชื—ืจื•ืช ืžื”ืฉื ื” ื”ืงื•ื“ืžืช,
02:55
a University of Texas team of students programmed bacteria
52
175000
4000
ืฆื•ื•ืช ืกื˜ื•ื“ื ื˜ื™ื ืžืื•ื ' ื˜ืงืกืก ืชื™ื›ื ืชื• ื—ื™ื™ื“ืงื™ื
02:59
so that they can detect light and switch on and off.
53
179000
3000
ืœื›ืš ืฉื™ื•ื›ืœื• ืœืืชืจ ืื•ืจ, ื•ืœื›ื‘ื•ืช ื•ืœื”ื“ืœื™ืง ืื•ืชื•.
03:02
So this is interesting in the sense that you can now
54
182000
2000
ื–ื” ืžืขื ื™ื™ืŸ ืžืคื ื™ ืฉื›ืขืช ืืคืฉืจ
03:04
do "if-then-for" statements in materials, in structure.
55
184000
5000
ืœื™ืฆื•ืจ ืžืฉืคื˜ื™ "ืื-ืื–" ื‘ื—ื•ืžืจื™ื, ื‘ื‘ื ื™ื™ื”.
03:09
This is a pretty interesting trend,
56
189000
2000
ื–ื• ืžื’ืžื” ืžืขื ื™ื™ื ืช ืœืžื“ื™.
03:11
because we used to live in a world where everyone's said glibly,
57
191000
2000
ื›ื™ ืขื“ ื›ื” ื—ื™ื™ื ื• ื‘ืขื•ืœื ืฉื‘ื• ื›ื•ืœื ื”ื ื™ื—ื• ื‘ื˜ื‘ืขื™ื•ืช
03:13
"Form follows function," but I think I've sort of grown up in a world
58
193000
4000
ืฉื”ืฆื•ืจื” ื ืืžื ื” ืœืชืคืงื•ื“, ืืš ืœื“ืขืชื™ ืื ื™ ื’ื“ืœืชื™ ื‘ืขื•ืœื--
03:17
-- you listened to Neil Gershenfeld yesterday;
59
197000
3000
--ืฉืžืขืชื ืืชืžื•ืœ ืืช ื ื™ืœ ื’ืจืฉื ืคืœื“,
03:20
I was in a lab associated with his -- where it's really a world
60
200000
4000
ื”ื™ื™ืชื™ ื‘ืžืขื‘ื“ื” ืฉืงืฉื•ืจื” ื‘ืขื‘ื•ื“ืชื•-- ืขื•ืœื ืฉื‘ื• ืœืžืขืฉื”
03:24
where information defines form and function.
61
204000
3000
ื”ืžื™ื“ืข ืžื’ื“ื™ืจ ืืช ื”ืฆื•ืจื” ื•ื”ืชืคืงื•ื“.
03:27
I spent six years thinking about that,
62
207000
4000
ื—ืฉื‘ืชื™ ืขืœ ื›ืš ื‘ืžืฉืš ืฉืฉ ืฉื ื™ื,
03:31
but to show you the power of art over science --
63
211000
2000
ื•ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื ืืช ืขืœื™ื•ื ื•ืช ื”ืืžื ื•ืช ืขืœ ื”ืžื“ืข--
03:33
this is actually one of the cartoons I write. These are called "HowToons."
64
213000
3000
ื–ื” ืื—ื“ ื”ืกืคืจื™ื ื”ืžืฆื•ื™ื™ืจื™ื ืฉืื ื™ ื›ื•ืชื‘, "ืงื•ืžื™ืงืก-ืื™ืš".
03:36
I work with a fabulous illustrator called Nick Dragotta.
65
216000
2000
ืื ื™ ืขื•ื‘ื“ ืขื ืžืื™ื™ืจ ื ื”ื“ืจ ื‘ืฉื ื ื™ืง ื“ืจื’ื•ื˜ื”.
03:38
Took me six years at MIT,
66
218000
2000
ื ื“ืจืฉื• ืœื™ ืฉืฉ ืฉื ื™ื ื‘ื˜ื›ื ื™ื•ืŸ ืฉืœ ืžืกืฆ'ื•ืกื˜ืก,
03:40
and about that many pages to describe what I was doing,
67
220000
4000
ื•ื›ืžื•ืช ื›ื–ื• ืฉืœ ื“ืคื™ื ื›ื“ื™ ืœืชืืจ ืืช ืžื” ืฉืื ื™ ืขื•ืฉื”,
03:44
and it took him one page. And so this is our muse Tucker.
68
224000
5000
ื•ืœื• ื ื“ืจืฉ ืขืžื•ื“ ืื—ื“. ื–ื”ื• ื˜ืืงืจ, ื”ืžื•ื–ื” ืฉืœื ื•.
ื–ื”ื• ื™ืœื“ ืงื˜ืŸ ื•ืžืขื ื™ื™ืŸ-- ื•ืื—ื•ืชื•, ืกืœื™ืŸ--
03:49
He's an interesting little kid -- and his sister, Celine --
69
229000
2000
03:51
and what he's doing here
70
231000
2000
ืžื” ืฉื”ื•ื ืขื•ืฉื” ื›ืืŸ
03:53
is observing the self-assembly of his Cheerios in his cereal bowl.
71
233000
4000
ื”ื•ื ื‘ื•ื—ืŸ ืื™ืš ื”"ืฆ'ื™ืจื™ื•ืก" ื‘ืงืขืจืช ื”ื“ื’ื ื™ื ืฉืœื• ืžืชืืจื’ื ื™ื ืžืขืฆืžื.
03:57
And in fact you can program the self-assembly of things,
72
237000
3000
ื ื™ืชืŸ ืœืชื›ื ืช ืืช ื”ืืจื’ื•ืŸ ื”ืขืฆืžื™ ื”ื–ื” ืฉืœ ื“ื‘ืจื™ื,
04:00
so he starts chocolate-dipping edges,
73
240000
2000
ืื– ื”ื•ื ืžืชื—ื™ืœ ืœื˜ื‘ื•ืœ ืคื™ืกื•ืช ืฉื•ืงื•ืœื“,
04:02
changing the hydrophobicity and the hydrophylicity.
74
242000
2000
ื•ืžืฉื ื” ืืช ืจืžื•ืช ื”ื”ื™ื“ื—ื•ืช ื•ื”ื”ื™ืžืฉื›ื•ืช ืœืžื™ื.
04:04
In theory, if you program those sufficiently,
75
244000
2000
ืชื™ืื•ืจื˜ื™ืช, ืื ืžืชื›ื ืชื™ื ืืช ื–ื” ืžืกืคื™ืง,
04:06
you should be able to do something pretty interesting
76
246000
2000
ืืคืฉืจ ืœืขืฉื•ืช ืžืฉื”ื• ืžืขื ื™ื™ืŸ ืœืžื“ื™
04:08
and make a very complex structure.
77
248000
2000
ื•ืœื—ื•ืœืœ ืžื‘ื ื” ืžื•ืจื›ื‘ ื‘ื™ื•ืชืจ.
ื›ืืŸ, ื”ื•ื ื’ืจื ืœืฉื›ืคื•ืœ ืขืฆืžื™ ืฉืœ ืžื‘ื ื” ืชืœืช-ืžื™ืžื“ื™ ืžื•ืจื›ื‘.
04:10
In this case, he's done self-replication of a complex 3D structure.
78
250000
5000
04:15
And that's what I thought about for a long time,
79
255000
3000
ื•ื–ื” ืžืฉื”ื• ืฉื—ืฉื‘ืชื™ ืขืœื™ื• ื–ืžืŸ ืจื‘,
04:18
because this is how we currently make things.
80
258000
2000
ื›ื™ ื›ืš ืื ื• ื™ื•ืฆืจื™ื ื›ื™ื•ื ื“ื‘ืจื™ื.
04:20
This is a silicon wafer, and essentially
81
260000
2000
ื–ืืช ืคืจื•ืกืช ืกื™ืœื™ืงื•ืŸ, ืฉื”ื™ื ืœืžืขืฉื”
04:22
that's just a whole bunch of layers of two-dimensional stuff, sort of layered up.
82
262000
4000
ืคืฉื•ื˜ ื”ืžื•ืŸ ืฉื›ื‘ื•ืช ืฉืœ ื—ื•ืžืจ ื“ื•-ืžื™ืžื“ื™ ืžืจื•ื‘ื“.
04:26
The feature side is -- you know, people will say,
83
266000
2000
ื”ืชื›ื•ื ื” ื”ื‘ื•ืœื˜ืช-- ืืชื ื™ื•ื“ืขื™ื, ืื•ืžืจื™ื ืฉื”ื™ื•ื
04:28
[unclear] down around about 65 nanometers now.
84
268000
2000
ื–ื” ื›ื‘ืจ ื”ืฆื˜ืžืฆื ืœืขื•ื‘ื™ ืฉืœ 65 ื ื ื•ืžื˜ืจ.
04:30
On the right, that's a radiolara.
85
270000
2000
ืžื™ืžื™ืŸ ื–ืืช ืจื“ื™ื•ืœืืจื”,
04:32
That's a unicellular organism ubiquitous in the oceans.
86
272000
3000
ืื•ืจื’ื ื™ื–ื ื—ื“-ืชืื™ ืฉื ืคื•ืฅ ื‘ืื•ืงื™ื ื•ืกื™ื.
04:35
And that has feature sizes down to about 20 nanometers,
87
275000
4000
ื”ื•ื ืงื˜ืŸ ืขื“ ื›ื“ื™ 20 ื ื ื•ืžื˜ืจ,
04:39
and it's a complex 3D structure.
88
279000
2000
ื•ื™ืฉ ืœื• ืžื‘ื ื” ืชืœืช-ืžื™ืžื“ื™ ืžื•ืจื›ื‘.
04:41
We could do a lot more with computers and things generally
89
281000
4000
ื›ืœืœื™ืช, ื™ื›ื•ืœื ื• ืœื”ืฉื™ื’ ื™ื•ืชืจ ืขื ืžื—ืฉื‘ื™ื ื•ื›ืืœื”
04:45
if we knew how to build things this way.
90
285000
3000
ืื™ืœื• ื™ื“ืขืชื™ ืื™ืš ืœื‘ื ื•ืช ื“ื‘ืจื™ื ื›ืš.
04:48
The secret to biology is, it builds computation
91
288000
3000
ื”ืกื•ื“ ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื”ื•ื ืฉื”ื™ื ืžื›ืœื™ืœื” ืืช ื”ืžื™ื—ืฉื•ื‘
04:51
into the way it makes things. So this little thing here, polymerase,
92
291000
3000
ื‘ืื•ืคืŸ ื‘ื• ื”ื™ื ื™ื•ืฆืจืช ื“ื‘ืจื™ื. ื”ื“ื‘ืจ ื”ืงื˜ืŸ ื”ื–ื”, ืคื•ืœื™ืžืจื–,
04:54
is essentially a supercomputer designed for replicating DNA.
93
294000
5000
ื”ื•ื ื‘ืขืฆื ืžื—ืฉื‘-ืขืœ ืฉืžื™ื•ืขื“ ืœืฉื›ืคื•ืœ ื“ื "ื.
04:59
And the ribosome here is another little computer
94
299000
3000
ื•ื”ืจื™ื‘ื•ื–ื•ื ื”ื–ื” ื›ืืŸ, ื”ื•ื ืขื•ื“ ืžื—ืฉื‘ ืงื˜ืŸ
05:02
that helps in the translation of the proteins.
95
302000
2000
ืฉืขื•ื–ืจ ืœืชืจื’ื ืืช ื”ื—ืœื‘ื•ื ื™ื.
05:04
I thought about this
96
304000
1000
ื—ืฉื‘ืชื™ ืขืœ ื–ื”
05:05
in the sense that it's great to build in biological materials,
97
305000
3000
ื‘ืžื•ื‘ืŸ ื–ื” ืฉื ื”ื“ืจ ืœื‘ื ื•ืช ื‘ื—ื•ืžืจื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื,
05:08
but can we do similar things?
98
308000
2000
ืืš ื”ืื ื‘ื™ื›ื•ืœืชื ื• ืœื™ืฆื•ืจ ื“ื‘ืจื™ื ื“ื•ืžื™ื?
05:10
Can we get self-replicating-type behavior?
99
310000
2000
ื”ืื ื ื•ื›ืœ ืœื”ื’ื™ืข ืœืกื•ื’ ืฉืœ ื”ืชื ื”ื’ื•ืช-ืฉื›ืคื•ืœ-ืขืฆืžื™?
05:12
Can we get complex 3D structure automatically assembling
100
312000
4000
ืื• ืœืžื‘ื ื” ืชืœืช-ืžื™ืžื“ื™ ืžื•ืจื›ื‘ ืฉืžืฉืชืœื‘ ืžืขืฆืžื•
05:16
in inorganic systems?
101
316000
2000
ื‘ืžืขืจื›ื•ืช ืœื-ืื•ืจื’ื ื™ื•ืช?
05:18
Because there are some advantages to inorganic systems,
102
318000
2000
ื›ื™ ื™ืฉ ื›ืžื” ื™ืชืจื•ื ื•ืช ืœืžืขืจื›ื•ืช ืœื-ืื•ืจื’ื ื™ื•ืช,
05:20
like higher speed semiconductors, etc.
103
320000
2000
ื›ืžื• ืžื•ืœื™ื›ื™ื-ืœืžื—ืฆื” ื‘ืขืœื™ ืžื”ื™ืจื•ืช-ืขืœ, ื•ื›ื•'.
05:22
So, this is some of my work
104
322000
2000
ืื– ื–ื” ื—ืœืง ืžืขื‘ื•ื“ืชื™:
05:24
on how do you do an autonomously self-replicating system.
105
324000
6000
ื›ื™ืฆื“ ืœื™ืฆื•ืจ ืžืขืจื›ืช ืขืฆืžืื™ืช ืฉืžืฉืชื›ืคืœืช ืžืขืฆืžื”.
05:30
And this is sort of Babbage's revenge.
106
330000
2000
ื•ื‘ืžื™ื“ื” ืžืกื•ื™ืžืช ื–ื• ื ืงืžืชื• ืฉืœ ื‘ื‘ื’'.
05:32
These are little mechanical computers.
107
332000
1000
ืืœื” ื”ื ืžื—ืฉื‘ื™ื ืžื›ื ื™ื™ื ืงื˜ื ื™ื.
05:33
These are five-state state machines.
108
333000
3000
ืืœื” ืื•ื˜ื•ืžื˜ื™ื ืกื•ืคื™ื™ื ืฉืœ 5 ืžืฆื‘ื™ื.
05:36
So, that's about three light switches lined up.
109
336000
3000
ื™ืฉ ืฉื•ืจื” ืฉืœ ื›-3 ืžืชื’ื™ ืชืื•ืจื”.
05:39
In a neutral state, they won't bind at all.
110
339000
2000
ื‘ืžืฆื‘ ื”ื ื™ื™ื˜ืจืœื™ ื”ื ื›ืœืœ ืœื ื™ื™ืงืฉืจื•.
05:41
Now, if I make a string of these, a bit string,
111
341000
4000
ืื ืื ื™ ื™ื•ืฆืจ ืžื”ื ืžื—ืจื•ื–ืช ืฉืœ ืกื™ื‘ื™ืช,
05:45
they will be able to replicate.
112
345000
2000
ื”ื ื™ื•ื›ืœื• ืœื”ืฉืชื›ืคืœ.
05:47
So we start with white, blue, blue, white.
113
347000
1000
ืื ื• ืžืชื—ื™ืœื™ื ืขื ืœื‘ืŸ, ื›ื—ื•ืœ, ื›ื—ื•ืœ, ืœื‘ืŸ.
05:48
That encodes; that will now copy. From one comes two,
114
348000
6000
ื–ื” ืงื•ื“ ืฉืื•ืžืจ: "ื–ื” ืขื›ืฉื™ื• ื™ืขืชื™ืง". ืžืื—ื“ ื™ื•ืฆืื™ื ืฉื ื™ื™ื.
05:54
and then from two comes three.
115
354000
2000
ื•ืžืฉื ื™ื™ื ื™ื•ืฆืื™ื ืฉืœื•ืฉื”.
05:56
And so you've got this sort of replicating system.
116
356000
4000
ืื– ืงื™ื‘ืœืชื ืžืขื™ืŸ ืžืขืจื›ืช ืฉื›ืคื•ืœ.
06:00
It was work actually by Lionel Penrose,
117
360000
2000
ื–ื• ืœืžืขืฉื” ืขื‘ื•ื“ืชื• ืฉืœ ืœื™ื•ื ืœ ืคื ืจื•ื–,
06:02
father of Roger Penrose, the tiles guy.
118
362000
3000
ืื‘ื™ื• ืฉืœ ืจื•ื’'ืจ ืคื ืจื•ื–, ื–ื” ืžืจื™ืฆื•ืฃ ื”ืžื™ืฉื•ืจ.
06:05
He did a lot of this work in the '60s,
119
365000
2000
ื”ื•ื ืขืฉื” ื”ืจื‘ื” ืžื”ืขื‘ื•ื“ื” ื”ื–ื• ื‘ืฉื ื•ืช ื”-60,
06:07
and so a lot of this logic theory lay fallow
120
367000
2000
ื•ื”ืจื‘ื” ืžื”ืœื•ื’ื™ืงื” ืฉืคื™ืชื— ื ื ื˜ืฉื”
06:09
as we went down the digital computer revolution, but it's now coming back.
121
369000
3000
ื‘ื–ืžืŸ ืžื”ืคื›ืช ื”ืžื™ื—ืฉื•ื‘ ื”ืกืคืจืชื™, ืืš ื›ืขืช ื”ื™ื ื—ื•ื–ืจืช.
06:12
So now I'm going to show you the hands-free, autonomous self-replication.
122
372000
4000
ื•ื›ืขืช ืืจืื” ืœื›ื ืฉื›ืคื•ืœ-ืขืฆืžื™ ืื•ื˜ื•ื ื•ืžื™ ืœืœื ืžื’ืข-ืื“ื.
06:16
So we've tracked in the video the input string,
123
376000
2000
ืขืงื‘ื ื• ื‘ืกืจื˜ื•ืŸ ืื—ืจ ืžื—ืจื•ื–ืช ื”ืงืœื˜,
06:18
which was green, green, yellow, yellow, green.
124
378000
2000
ืฉื”ื™ืชื” ื™ืจื•ืง, ื™ืจื•ืง, ืฆื”ื•ื‘, ืฆื”ื•ื‘, ื™ืจื•ืง.
06:20
We set them off on this air hockey table.
125
380000
4000
ืฉื—ืจืจื ื• ืื•ืชื ืขืœ ืฉื•ืœื—ืŸ ื”ื”ื•ืงื™-ืื•ื•ื™ืจ ื”ื–ื”.
06:24
You know, high science uses air hockey tables --
126
384000
2000
ื›ื™ื“ื•ืข ืœื›ื, ื‘ืžื“ืขื™ื ื”ื’ื‘ื•ื”ื™ื ืžืฉืชืžืฉื™ื ื‘ืฉื•ืœื—ื ื•ืช ื”ื•ืงื™-ืื•ื•ื™ืจ--
06:26
(Laughter)
127
386000
1000
[ืฆื—ื•ืง]
06:27
-- and if you watch this thing long enough you get dizzy,
128
387000
2000
--ืื ืชืฆืคื• ื“ื™ ื–ืžืŸ ื‘ื“ื‘ืจ ื”ื–ื” ืชื—ื˜ืคื• ืกื—ืจื—ื•ืจืช,
ืืš ืœืžืขืฉื” ืืชื ืจื•ืื™ื ืขื•ืชืงื™ื ืฉืœ ื”ืžื—ืจื•ื–ืช ื”ืžืงื•ืจื™ืช
06:29
but what you're actually seeing is copies of that original string
129
389000
3000
06:32
emerging from the parts bin that you have here.
130
392000
3000
ืฉื™ื•ืฆืื™ื ืžืืจื’ื– ื”ื—ืœืงื™ื ืฉื›ืืŸ.
06:35
So we've got autonomous replication of bit strings.
131
395000
5000
ืื– ืงื™ื‘ืœื ื• ืฉื›ืคื•ืœ ืื•ื˜ื•ื ื•ืžื™ ืฉืœ ืžื—ืจื•ื–ื•ืช ืกื™ื‘ื™ืช.
06:40
So, why would you want to replicate bit strings?
132
400000
3000
ืœืฉื ืžื” ืœืฉื›ืคืœ ืžื—ืจื•ื–ื•ืช ืกื™ื‘ื™ืช?
06:43
Well, it turns out biology has this other very interesting meme,
133
403000
3000
ืžืชื‘ืจืจ ืฉื‘ื‘ื™ื•ืœื•ื’ื™ื” ืงื™ื™ื ืขื•ื“ ืžื ืžืขื ื™ื™ืŸ ื‘ื™ื•ืชืจ,
06:46
that you can take a linear string, which is a convenient thing to copy,
134
406000
3000
ืœืคื™ื• ื ื™ืชืŸ ืœืงื—ืช ืžื—ืจื•ื–ืช ืงื•ื•ื™ืช, ืงืœื” ืœื”ืขืชืงื”,
06:49
and you can fold that into an arbitrarily complex 3D structure.
135
409000
4000
ื•ืœืงืคืœื” ื‘ืื•ืคืŸ ืฉืจื™ืจื•ืชื™ ืœืžื‘ื ื” ืชืœืช-ืžื™ืžื“ื™ ืžื•ืจื›ื‘.
06:53
So I was trying to, you know, take the engineer's version:
136
413000
3000
ื ื™ืกื™ืชื™ ืœื‘ืฆืข ืืช ื’ื™ืจืกืช ื”ืžื”ื ื“ืก:
06:56
Can we build a mechanical system in inorganic materials
137
416000
3000
ื”ืื ื ื•ื›ืœ ืœื‘ื ื•ืช ืžืขืจื›ืช ืžื›ื ื™ืช ืžื—ื•ืžืจื™ื ืœื-ืื•ืจื’ื ื™ื™ื
06:59
that will do the same thing?
138
419000
1000
ืฉืชืขืฉื” ืืช ืื•ืชื• ื”ื“ื‘ืจ?
07:00
So what I'm showing you here is that we can make a 2D shape --
139
420000
5000
ื•ื›ืขืช ืื ื™ ืžืจืื” ืœื›ื ืฉื‘ื™ื›ื•ืœืชื ื• ืœื™ืฆื•ืจ ืฆื•ืจื” ื“ื•-ืžื™ืžื“ื™ืช--
07:05
the B -- assemble from a string of components
140
425000
4000
ืฆื•ืจืช ื”ืื•ืช "ื‘ื™"-- ืœื”ืจื›ื™ื‘ ืžืžื—ืจื•ื–ืช ืฉืœ ืจื›ื™ื‘ื™ื
07:09
that follow extremely simple rules.
141
429000
2000
ืฉืžืชื ื”ื’ื™ื ืœืคื™ ื—ื•ืงื™ื ืคืฉื•ื˜ื™ื ื‘ื™ื•ืชืจ.
07:11
And the whole point of going with the extremely simple rules here,
142
431000
3000
ื•ื›ืœ ืขื ื™ื™ืŸ ื”ืขื‘ื•ื“ื” ืœืคื™ ื—ื•ืงื™ื ืคืฉื•ื˜ื™ื ื‘ื™ื•ืชืจ
07:14
and the incredibly simple state machines in the previous design,
143
434000
3000
ื•ื”ืื•ื˜ื•ืžื˜ื™ื ื”ืกื•ืคื™ื™ื ื”ืคืฉื•ื˜ื™ื ืœื”ืคืœื™ื ื‘ืชื›ื ื•ืŸ ื”ืงื•ื“ื,
07:17
was that you don't need digital logic to do computation.
144
437000
3000
ื”ื™ื” ืฉืื™ืŸ ืฆื•ืจืš ื‘ืœื•ื’ื™ืงื” ืกืคืจืชื™ืช ื›ื“ื™ ืœื—ื•ืœืœ ืžื™ื—ืฉื•ื‘.
07:20
And that way you can scale things much smaller than microchips.
145
440000
4000
ื•ืืคืฉืจ ื›ืš ืœื™ืฆื•ืจ ื“ื‘ืจื™ื ืงื˜ื ื™ื ื‘ื”ืจื‘ื” ืžืžื™ืงืจื•-ืฉื‘ื‘ื™ื.
07:24
So you can literally use these as the tiny components in the assembly process.
146
444000
4000
ืืคืฉืจ ืžืžืฉ ืœื”ืฉืชืžืฉ ื‘ืจื›ื™ื‘ื™ื ื–ืขื™ืจื™ื ืืœื” ื‘ืชื”ืœื™ืš ื”ื”ืจื›ื‘ื”.
07:28
So, Neil Gershenfeld showed you this video on Wednesday, I believe,
147
448000
5000
ื ื™ืœ ื’ืจืฉื ืคืœื“ ื”ืจืื” ืœื›ื ืืช ื”ืกืจื˜ื•ืŸ ื”ื–ื” ื‘ื™ื•ื ื“', ืœื“ืขืชื™,
07:33
but I'll show you again.
148
453000
2000
ืื‘ืœ ืื ื™ ืืฆื™ื’ ืื•ืชื• ืฉื•ื‘.
07:35
This is literally the colored sequence of those tiles.
149
455000
3000
ื–ื”ื• ืื›ืŸ ืจืฆืฃ ื”ืฆื‘ืขื™ื ืฉืœ ื”ืืจื™ื—ื™ื ื”ืืœื”.
07:38
Each different color has a different magnetic polarity,
150
458000
3000
ืœื›ืœ ืฆื‘ืข ื•ืฆื‘ืข ืงื•ื˜ื‘ื™ื•ืช ืžื’ื ื˜ื™ืช ืฉื•ื ื”,
07:41
and the sequence is uniquely specifying the structure that is coming out.
151
461000
5000
ื•ื”ืจืฆืฃ ืžืคืจื˜ ื‘ืื•ืคืŸ ื™ื™ื—ื•ื“ื™ ืืช ื”ืžื‘ื ื” ื”ื ื•ื‘ืข.
07:46
Now, hopefully, those of you who know anything about graph theory
152
466000
3000
ืื ื™ ืžืงื•ื•ื” ืฉืืœื” ืžื›ื ืฉื™ื•ื“ืขื™ื ืžืฉื”ื• ืขืœ ืชื™ืื•ืจื™ื™ืช ื”ื’ืจืคื™ื
07:49
can look at that, and that will satisfy you
153
469000
2000
ื™ื‘ื™ื˜ื• ื‘ื–ื”, ื•ื–ื” ื™ืฉื›ื ืข ืืชื›ื
07:51
that that can also do arbitrary 3D structure,
154
471000
3000
ืฉืืœื” ื™ื›ื•ืœื™ื ื’ื ืœื™ืฆื•ืจ ืžื‘ื ื” ืชืœืช-ืžื™ืžื“ื™ ืฉืจื™ืจื•ืชื™,
07:54
and in fact, you know, I can now take a dog, carve it up
155
474000
5000
ื•ืœืžืขืฉื” ืื ื™ ื™ื›ื•ืœ ืœืงื—ืช ืขื›ืฉื™ื• ื›ืœื‘, ืœืคืจื•ืก ืื•ืชื•
07:59
and then reassemble it so it's a linear string
156
479000
2000
ื•ืื– ืœื”ืจื›ื™ื‘ื• ืžื—ื“ืฉ ืขื“ ืœืจืžืช ื”ืžื—ืจื•ื–ืช ื”ืงื•ื•ื™ืช
08:01
that will fold from a sequence. And now
157
481000
2000
ืฉืชืชืงืคืœ ืžืชื•ืš ืจืฆืฃ. ื•ื›ืขืช
08:03
I can actually define that three-dimensional object as a sequence of bits.
158
483000
7000
ืื ื™ ื™ื›ื•ืœ ืžืžืฉ ืœื”ื’ื“ื™ืจ ืขืฆื ืชืœืช-ืžื™ืžื“ื™ ื–ื” ื›ืจืฆืฃ ืกื™ื‘ื™ื•ืช.
08:10
So, you know, it's a pretty interesting world
159
490000
3000
ื›ืš ืฉื–ื”ื• ืขื•ืœื ืžืขื ื™ื™ืŸ ืœืžื“ื™
08:13
when you start looking at the world a little bit differently.
160
493000
2000
ื•ืืคืฉืจ ืœื”ืชื—ื™ืœ ืœื”ืชื‘ื•ื ืŸ ื‘ืขื•ืœื ืงืฆืช ืื—ืจืช.
08:15
And the universe is now a compiler.
161
495000
3000
ื•ืื™ืœื• ื”ื™ืงื•ื ื”ื•ื ื›ืขืช ืžื”ื“ืจ.
08:18
And so I'm thinking about, you know, what are the programs
162
498000
2000
ื•ื›ืขืช ืื ื™ ืฉื•ืืœ ืžื”ืŸ ื”ืชื•ื›ื ื•ืช
08:20
for programming the physical universe?
163
500000
3000
ื”ืžืฉืžืฉื•ืช ื‘ืชื™ื›ื ื•ืช ื”ื™ืงื•ื ื”ืคื™ื–ื™?
08:23
And how do we think about materials and structure,
164
503000
3000
ื•ืื™ืš ืืคืฉืจ ืœื—ืฉื•ื‘ ืขืœ ื—ื•ืžืจื™ื ื•ืžื‘ื ื”,
08:26
sort of as an information and computation problem?
165
506000
3000
ื›ืขืช ืžื™ื“ืข ื•ื‘ืขื™ื™ืช ืžื™ื—ืฉื•ื‘?
08:29
Not just where you attach a micro-controller to the end point,
166
509000
3000
ืฉืœื ืจืง ืžื—ื‘ืจื™ื ื‘ื” ื‘ืงืจ-ื–ืขื™ืจ ืœื ืงื•ื“ื” ื”ืกื•ืคื™ืช ืฉืœื•,
08:32
but that the structure and the mechanisms are the logic, are the computers.
167
512000
5000
ืืœื ืฉื”ืžื‘ื ื” ื•ื”ืžื ื’ื ื•ื ื™ื ื”ื ืขืฆืžื ื”ืœื•ื’ื™ืงื”, ื”ืžื—ืฉื‘ื™ื.
08:37
Having totally absorbed this philosophy,
168
517000
5000
ืฉืงืขืชื™ ืœื’ืžืจื™ ื‘ืคื™ืœื•ืกื•ืคื™ื” ื”ื–ืืช,
08:42
I started looking at a lot of problems a little differently.
169
522000
3000
ื•ื”ืชื—ืœืชื™ ืœื‘ื—ื•ืŸ ื”ืžื•ืŸ ื‘ืขื™ื•ืช ื‘ืฆื•ืจื” ืงืฆืช ืื—ืจืช.
08:45
With the universe as a computer,
170
525000
1000
ื›ืฉื”ื™ืงื•ื ื”ื•ื ืžื—ืฉื‘,
08:46
you can look at this droplet of water
171
526000
2000
ืืคืฉืจ ืœื”ืชื™ื™ื—ืก ืœื˜ื™ืคืช ื”ืžื™ื ื”ื–ืืช
08:48
as having performed the computations.
172
528000
2000
ื›ืื™ืœื• ื”ื™ื ื‘ื™ืฆืขื” ืืช ื”ื—ื™ืฉื•ื‘ื™ื.
08:50
You set a couple of boundary conditions, like gravity,
173
530000
2000
ืžืฆื™ื‘ื™ื ืžืกืคืจ ืชื ืื™-ื’ื‘ื•ืœ, ื›ื’ื•ืŸ ื›ื‘ื™ื“ื”,
08:52
the surface tension, density, etc., and then you press "execute,"
174
532000
4000
ืžืชื—-ืคื ื™ื, ื“ื—ื™ืกื•ืช ื•ื›ื•', ื•ืœื•ื—ืฆื™ื "ื‘ืฆืข",
08:56
and magically, the universe produces you a perfect ball lens.
175
536000
5000
ื•ืจืื” ื–ื” ืคืœื, ื”ื™ืงื•ื ืžื™ื™ืฆืจ ืœื›ื ืขื“ืฉื” ื›ื“ื•ืจื™ืช ืžื•ืฉืœืžืช.
09:01
So, this actually applied to the problem
176
541000
2000
ืื– ื–ื” ื‘ืขืฆื ื ื•ื’ืข ืœื‘ืขื™ื”
09:03
of -- so there's a half a billion to a billion people in the world
177
543000
3000
ืฉืœ-- ื™ืฉ ื‘ืขื•ืœื ื—ืฆื™-ืžื™ืœื™ืืจื“ ืขื“ ืžื™ืœื™ืืจื“ ื‘ื ื™-ืื“ื
09:06
don't have access to cheap eyeglasses.
178
546000
2000
ืฉืœื ื™ื›ื•ืœื™ื ืœื”ืฉื™ื’ ืžืฉืงืคื™ื™ื ื–ื•ืœื™ื.
09:08
So can you make a machine
179
548000
2000
ื”ืื ืืคืฉืจ ืœื‘ื ื•ืช ืžื›ื•ื ื”
09:10
that could make any prescription lens very quickly on site?
180
550000
4000
ืฉืชื™ื™ืฆืจ ื‘ืžื”ื™ืจื•ืช ืขื“ืฉื•ืช ืžื“ื•ื™ืงื•ืช ื‘ืืชืจ ืขืฆืžื•?
09:14
This is a machine where you literally define a boundary condition.
181
554000
4000
ื–ื• ืžื›ื•ื ื” ืฉืžื’ื“ื™ืจื™ื ืœื” ื‘ืขืฆื ืชื ืื™-ื’ื‘ื•ืœ.
09:18
If it's circular, you make a spherical lens.
182
558000
3000
"ืื ื–ื” ืžืขื’ืœื™, ืชื™ื™ืฆืจื™ ืขื“ืฉื•ืช ื›ื“ื•ืจื™ื•ืช."
09:21
If it's elliptical, you can make an astigmatic lens.
183
561000
3000
"ืื ื–ื” ืกื’ืœื’ืœ, ืชื™ื™ืฆืจื™ ืขื“ืฉื•ืช ืืกื˜ื™ื’ืžื˜ื™ื•ืช."
09:24
You then put a membrane on that and you apply pressure --
184
564000
3000
ื›ืขืช ืžื ื™ื—ื™ื ืขืœ ื–ื” ืงืจื•ืžื™ืช ื•ืžืคืขื™ืœื™ื ืœื—ืฅ--
09:27
so that's part of the extra program.
185
567000
2000
ื–ื”ื• ื—ืœืง ืžื”ืชื›ื ื™ืช ื”ื ื•ืกืคืช.
09:29
And literally with only those two inputs --
186
569000
3000
ื•ืจืง ื‘ืขื–ืจืช ืฉื ื™ ื”ืงืœื˜ื™ื ื”ืืœื”, ืคืฉื•ื˜ื• ื›ืžืฉืžืขื•--
09:32
so, the shape of your boundary condition and the pressure --
187
572000
2000
ืฆื•ืจืช ืชื ืื™ ื”ื’ื‘ื•ืœ ืฉืœื›ื ื•ื”ืœื—ืฅ--
09:34
you can define an infinite number of lenses
188
574000
2000
ื ื™ืชืŸ ืœื”ื’ื“ื™ืจ ืื™ื ืกืคื•ืจ ืขื“ืฉื•ืช
09:36
that cover the range of human refractive error,
189
576000
2000
ืฉื™ืงื™ืคื• ืืช ื›ืœ ื˜ื•ื•ื— ื”ื˜ืขื•ืช ืฉืœ ืฉื‘ื™ืจืช ื”ืื•ืจ ื‘ืขื™ืŸ ื”ืื“ื,
09:38
from minus 12 to plus eight diopters, up to four diopters of cylinder.
190
578000
5000
ืžืžื™ื ื•ืก 12 ื•ืขื“ ืคืœื•ืก 8 ื“ื™ื•ืคื˜ืจื™ื, ืขื“ 4 ื“ื™ื•ืคื˜ืจื™ื ืœืฆื™ืœื™ื ื“ืจ.
09:43
And then literally, you now pour on a monomer.
191
583000
3000
ื•ืื– ืืคืฉืจ ืคืฉื•ื˜ ืœืฆืงืช ืžื•ื ื•ืžืจ.
09:46
You know, I'll do a Julia Childs here.
192
586000
3000
ืืขืฉื” ืงื˜ืข ืฉืœ ื’'ื•ืœื™ื” ืฆ'ื™ื™ืœื“ืก:
09:49
This is three minutes of UV light.
193
589000
3000
ืืœื” ื”ื ืฉืœื•ืฉ ื“ืงื•ืช ืฉืœ ืื•ืจ ืขืœ-ืกื’ื•ืœ.
09:52
And you reverse the pressure on your membrane
194
592000
3000
ื”ื•ืคื›ื™ื ืืช ื”ืœื—ืฅ ืขืœ ื”ืงืจื•ืžื™ืช
09:55
once you've cooked it. Pop it out.
195
595000
3000
ื‘ืจื’ืข ืฉื–ื” ื”ืชื‘ืฉืœ. ืžืงืคื™ืฆื™ื ืืช ื–ื” ื”ื—ื•ืฆื”.
09:58
I've seen this video, but I still don't know if it's going to end right.
196
598000
3000
ืจืื™ืชื™ ืืช ื”ืกืจื˜ื•ืŸ ื”ื–ื”, ืืš ืขื“ื™ื™ืŸ ืื™ื ื™ ื™ื•ื“ืข ืื ื–ื” ื™ื™ื’ืžืจ ื˜ื•ื‘.
10:01
(Laughter)
197
601000
3000
[ืฆื—ื•ืง]
10:04
So you reverse this. This is a very old movie,
198
604000
2000
ื”ื•ืคื›ื™ื ืืช ื–ื”. ื–ื”ื• ืกืจื˜ ื™ืฉืŸ ืžืื“.
10:06
so with the new prototypes, actually both surfaces are flexible,
199
606000
4000
ื‘ืื‘ื˜ื™ืคื•ืกื™ื ื”ื—ื“ืฉื™ื, ืคื ื™ ื”ืฉื˜ื— ื‘ืฉื ื™ ื”ืฆื“ื“ื™ื ื’ืžื™ืฉื™ื,
10:10
but this will show you the point.
200
610000
2000
ืื‘ืœ ื–ื” ื™ืžื—ื™ืฉ ืœื›ื ืืช ื”ืขื ื™ื™ืŸ.
10:12
Now you've finished the lens, you literally pop it out.
201
612000
2000
ื›ืฉื”ืขื“ืฉื•ืช ืžื•ื›ื ื•ืช,ืคืฉื•ื˜ ืžืงืคื™ืฆื™ื ืื•ืชืŸ ื”ื—ื•ืฆื”.
10:14
That's next year's Yves Klein, you know, eyeglasses shape.
202
614000
7000
ื–ื• ืชื”ื™ื” ืฆื•ืจืช ื”ืžืฉืงืคื™ื™ื ืฉืœ ืื™ื‘ ืงืœื™ื™ืŸ ื‘ืฉื ื” ื”ื‘ืื”.
10:21
And you can see that that has a mild prescription of about minus two diopters.
203
621000
3000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื™ืฉ ืœื–ื” ืžืจืฉื ื—ืœืฉ ืฉืœ ืžื™ื ื•ืก 2 ื“ื™ื•ืคื˜ืจื™ื.
10:24
And as I rotate it against this side shot, you'll see that that has cylinder,
204
624000
4000
ื›ืฉืื ื™ ืžืคื ื” ืืช ื–ื” ื”ืฆื™ื“ื”, ืจื•ืื™ื ืฉื™ืฉ ืœื–ื” ืฆื™ืœื™ื ื“ืจ,
10:28
and that was programmed in --
205
628000
1000
ื•ื–ื” ืชื•ื›ื ืช--
10:29
literally into the physics of the system.
206
629000
4000
ืคืฉื•ื˜ื• ื›ืžืฉืžืขื•, ืœืชื•ืš ื”ืคื™ื–ื™ืงื” ืฉืœ ื”ืžืขืจื›ืช.
10:33
So, this sort of thinking about structure as computation
207
633000
3000
ืื– ืฆื•ืจืช ื”ื—ืฉื™ื‘ื” ื”ื–ื•: ื”ืžื‘ื ื” ื›ืžื™ื—ืฉื•ื‘
10:36
and structure as information leads to other things, like this.
208
636000
5000
ื•ื”ืžื‘ื ื” ื›ืžื™ื“ืข, ืžื•ื‘ื™ืœื” ืœื“ื‘ืจื™ื ื ื•ืกืคื™ื, ื›ืžื• ื–ื”.
10:41
This is something that my people at SQUID Labs
209
641000
3000
ื–ื” ืžืฉื”ื• ืฉื”ื—ื‘ืจ'ื” ืฉืœื™ ื‘ืžืขื‘ื“ื•ืช "ืกืงื•ื•ื™ื“"
10:44
are working on at the moment, called "electronic rope."
210
644000
2000
ืขื•ื‘ื“ื™ื ืขืœื™ื• ื›ืจื’ืข, ื•ื”ื•ื ืงืจื•ื™ ื—ื‘ืœ ืืœืงื˜ืจื•ื ื™.
10:46
So literally, you think about a rope. It has very complex structure in the weave.
211
646000
4000
ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื—ื‘ืœ, ื™ืฉ ืœื• ื‘ืขืฆื ืžื‘ื ื” ืฉื–ื•ืจ ืžื•ืจื›ื‘.
10:50
And under no load, it's one structure.
212
650000
2000
ื•ื›ืฉืื™ืŸ ืขืœื™ื• ืขื•ืžืก, ื–ื”ื• ืžื‘ื ื” ืื—ื“,
10:52
Under a different load, it's a different structure. And you can actually exploit that
213
652000
3000
ื•ืชื—ืช ืขื•ืžืก ืฉื•ื ื” ื–ื” ืžื‘ื ื” ืฉื•ื ื”. ืืคืฉืจ ืœื ืฆืœ ื–ืืช
10:55
by putting in a very small number of
214
655000
2000
ืข"ื™ ื”ื›ื ืกืช ืžืขื˜ ืžืื“
10:57
conducting fibers to actually make it a sensor.
215
657000
2000
ืกื™ื‘ื™ื ืžื•ืœื™ื›ื™ื ื›ื“ื™ ืœื”ืคื•ืš ืื•ืชื• ืœื—ื™ื™ืฉืŸ.
10:59
So this is now a rope that knows the load on the rope
216
659000
3000
ื•ืขื›ืฉื™ื• ื–ื” ื—ื‘ืœ ืฉื™ื•ื“ืข ืžื” ื”ืขื•ืžืก ืฉืžื•ื˜ืœ ืขืœ ื”ื—ื‘ืœ
11:02
at any particular point in the rope.
217
662000
2000
ื‘ื›ืœ ื ืงื•ื“ื” ื•ื ืงื•ื“ื” ื‘ื—ื‘ืœ.
11:04
Just by thinking about the physics of the world,
218
664000
3000
ืื ืจืง ื—ื•ืฉื‘ื™ื ืขืœ ื—ื•ืงื™ ื”ืคื™ื–ื™ืงื” ืฉืœ ื”ืขื•ืœื,
11:07
materials as the computer,
219
667000
2000
ืขืœ ื—ื•ืžืจื™ื ื‘ืชืคืงื™ื“ ืฉืœ ืžื—ืฉื‘,
11:09
you can start to do things like this.
220
669000
3000
ืืคืฉืจ ืœื”ืชื—ื™ืœ ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืืœื”.
11:12
I'm going to segue a little here.
221
672000
3000
ืืกื˜ื” ืžืขื˜ ื›ืืŸ,
11:15
I guess I'm just going to casually tell you the types of things
222
675000
2000
ื•ืื•ืœื™ ืืกืคืจ ืœื›ื ื“ืจืš-ืื’ื‘ ืขืœ ื›ืœ-ืžื™ื ื™ ื“ื‘ืจื™ื
11:17
that I think about with this.
223
677000
1000
ืฉืื ื™ ื—ื•ืฉื‘ ื‘ืงืฉืจ ืœื›ืš.
11:18
One thing I'm really interested about this right now is, how,
224
678000
4000
ืžื” ืฉื‘ืืžืช ืžืขื ื™ื™ืŸ ืื•ืชื™ ื‘ื ื•ื’ืข ืœื›ืš ื›ืจื’ืข, ื”ื•ื
11:22
if you're really taking this view of the universe as a computer,
225
682000
4000
ืฉืื ื‘ืืžืช ืžืืžืฆื™ื ืืช ื”ื”ืฉืงืคื” ื”ื–ืืช ืขืœ ื”ื™ืงื•ื ื›ืžื—ืฉื‘,
11:26
how do we make things in a very general sense,
226
686000
2000
ืื™ืš ืœืขืฉื•ืช ื“ื‘ืจื™ื ื‘ืžื•ื‘ืŸ ื”ื›ืœืœื™ ืžืื“,
11:28
and how might we share the way we make things in a general sense
227
688000
4000
ื•ืื™ืš ืœื—ืœื•ืง ืืช ื”ื“ืจืš ืฉื‘ื” ืื ื• ืขื•ืฉื™ื ื“ื‘ืจื™ื ื‘ืžื•ื‘ืŸ ื›ืœืœื™
11:32
the same way you share open source hardware?
228
692000
3000
ื›ืžื• ืฉื—ื•ืœืงื™ื ื—ื•ืžืจืช ืงื•ื“ ืคืชื•ื—?
11:35
And a lot of talks here have espoused the benefits
229
695000
3000
ื•ื”ืจื‘ื” ื”ืจืฆืื•ืช ื›ืืŸ ืื™ืฉืฉื• ืืช ื”ื™ืชืจื•ื ื•ืช
11:38
of having lots of people look at problems,
230
698000
2000
ืฉื™ืฉ ืœื‘ื“ื™ืงืช ื‘ืขื™ื•ืช ืข"ื™ ืื ืฉื™ื ืจื‘ื™ื,
11:40
share the information and work on those things together.
231
700000
3000
ืฉื—ื•ืœืงื™ื ืืช ื”ืžื™ื“ืข ื•ืขื•ื‘ื“ื™ื ื‘ื™ื—ื“.
11:43
So, a convenient thing about being a human is you move in linear time,
232
703000
3000
ื•ืžื” ืฉื ื•ื— ื‘ืœื”ื™ื•ืช ืื ื•ืฉื™ ื”ื•ื ื”ืชื ื•ืขื” ื‘ื–ืžืŸ ืงื•ื•ื™.
11:46
and unless Lisa Randall changes that,
233
706000
2000
ื•ืื ืœื™ืกื” ืจื ื“ืœ ืœื ืชืฉื ื” ืืช ื–ื”,
11:48
we'll continue to move in linear time.
234
708000
3000
ื ืžืฉื™ืš ืœื ื•ืข ื‘ื–ืžืŸ ืงื•ื•ื™.
11:51
So that means anything you do, or anything you make,
235
711000
2000
ื•ื–ื” ืื•ืžืจ ืฉื‘ื›ืœ ืžื” ืฉืขื•ืฉื™ื ืื• ื™ื•ืฆืจื™ื,
11:53
you produce a sequence of steps --
236
713000
2000
ืžื™ื™ืฆืจื™ื ืจืฆืฃ ืฉืœ ืฉืœื‘ื™ื--
11:55
and I think Lego in the '70s nailed this,
237
715000
3000
ื•ืœื“ืขืชื™ ื”"ืœื’ื•" ืฉืœ ืฉื ื•ืช ื”-70 ืขืœื” ืขืœ ื–ื”,
11:58
and they did it most elegantly.
238
718000
1000
ื•ื”ื ืขืฉื• ืืช ื–ื” ื‘ืฆื•ืจื” ื”ื›ื™ ืืœื’ื ื˜ื™ืช.
11:59
But they can show you how to build things in sequence.
239
719000
4000
ื”ื ื™ื›ื•ืœื™ื ืœื”ืจืื•ืช ืื™ืš ื‘ื•ื ื™ื ื“ื‘ืจื™ื ื‘ืจืฆืฃ.
12:03
So, I'm thinking about, how can we generalize
240
723000
3000
ื•ืื ื™ ืฉื•ืืœ ื›ื™ืฆื“ ื ื•ื›ืœ ืœื”ื›ืœื™ืœ
12:06
the way we make all sorts of things,
241
726000
2000
ืืช ื”ื“ืจืš ื‘ื” ื›ื•ืœื ื• ืขื•ืฉื™ื ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื,
12:08
so you end up with this sort of guy, right?
242
728000
2000
ื›ื“ื™ ืœืงื‘ืœ ื‘ืกื•ืฃ ืžืฉื”ื• ื›ืžื• ื”ื˜ื™ืคื•ืก ื”ื–ื”, ื›ืŸ?
12:10
And I think this applies across a very broad -- sort of, a lot of concepts.
243
730000
5000
ื•ืœื“ืขืชื™ ื–ื” ื ื›ื•ืŸ ืœืงืฉืช ืจื—ื‘ื” ืฉืœ ืชืคื™ืกื•ืช.
12:15
You know, Cameron Sinclair yesterday said,
244
735000
2000
ืงืžืจื•ืŸ ืกื™ื ืงืœื™ื™ืจ ืืžืจ ืืชืžื•ืœ,
12:17
"How do I get everyone to collaborate on design
245
737000
2000
"ืื™ืš ืื•ื›ืœ ืœื”ื‘ื™ื ืืช ื›ื•ืœื ืœืฉืชืฃ ืคืขื•ืœื”
12:19
globally to do housing for humanity?"
246
739000
3000
"ื‘ืชื›ื ื•ืŸ ื’ืœื•ื‘ืœื™ ืฉื™ืกืคืง ื“ื™ื•ืจ ืœื›ืœ ื”ืื ื•ืฉื•ืช?"
12:22
And if you've seen Amy Smith,
247
742000
2000
ื•ืื ืจืื™ืชื ืืช ืื™ื™ืžื™ ืกืžื™ืช',
12:24
she talks about how you get students at MIT
248
744000
4000
ื”ื™ื ืžื“ื‘ืจืช ืขืœ ืื™ืš ืœื”ื‘ื™ื ืกื˜ื•ื“ื ื˜ื™ื ื‘ื˜ื›ื ื™ื•ืŸ ืฉืœ ืžืกืฆ'ื•ืกื˜ืก
12:28
to work with communities in Haiti.
249
748000
2000
ืœืขื‘ื•ื“ ืขื ืงื”ื™ืœื•ืช ื‘ื”ืื™ื˜ื™.
12:30
And I think we have to sort of redefine and rethink
250
750000
2000
ื•ืœื“ืขืชื™ ืขืœื™ื ื• ืœื”ื’ื“ื™ืจ ื•ืœื—ืฉื•ื‘ ืžื—ื“ืฉ
12:32
how we define structure and materials and assembly things,
251
752000
4000
ืขืœ ื”ื”ื’ื“ืจื” ืฉืœ ืžื‘ื ื” ื•ื—ื•ืžืจื™ื ื•ื”ืจื›ื‘ื” ืฉืœ ื“ื‘ืจื™ื,
12:36
so that we can really share the information
252
756000
2000
ื›ื“ื™ ืฉื ื•ื›ืœ ื‘ืืžืช ืœื—ืœื•ืง ืืช ื”ืžื™ื“ืข
12:38
on how you do those things in a more profound way
253
758000
2000
ื‘ืงืฉืจ ืœืขืฉื™ื™ื” ืฉืœ ื“ื‘ืจื™ื ื‘ื“ืจืš ืžืขืžื™ืงื” ื™ื•ืชืจ
12:40
and build on each other's source code for structure.
254
760000
3000
ื•ืœื”ืฉืชืžืฉ ื‘ืงื•ื“ ื”ื‘ื ื™ื™ื” ื”ืคืชื•ื—, ืื™ืฉ ืฉืœ ื–ื•ืœืชื•.
12:43
I don't know exactly how to do this yet,
255
763000
1000
ืขื“ื™ื™ืŸ ืื™ื ื™ ื™ื•ื“ืข ื‘ื“ื™ื•ืง ืื™ืš ืœืขืฉื•ืช ื–ืืช,
12:44
but, you know, it's something being actively thought about.
256
764000
5000
ืื‘ืœ ื–ื” ืžืฉื”ื• ืฉืื ื• ื—ื•ืฉื‘ื™ื ืขืœื™ื• ื‘ืื•ืคืŸ ืคืขื™ืœ.
12:49
So, you know, that leads to questions
257
769000
2000
ื•ื–ื” ืžื•ื‘ื™ืœ ืœืฉืืœื•ืช
12:51
like, is this a compiler? Is this a sub-routine?
258
771000
4000
ื›ื’ื•ืŸ, ื”ืื ื–ื”ื• ืžื”ื“ืจ, ืื• ืชืช-ืฉื’ืจื”?
12:55
Interesting things like that.
259
775000
1000
ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ื›ื“ื•ื’ืžืช ืืœื”.
12:56
Maybe I'm getting a little too abstract, but you know,
260
776000
3000
ืื•ืœื™ ืื ื™ ืžืชื—ื™ืœ ืœื“ื‘ืจ ื‘ืฆื•ืจื” ืžื•ืคืฉื˜ืช, ืื‘ืœ
12:59
this is the sort of -- returning to our comic characters --
261
779000
3000
ื–ื”ื• ื›ืื™ืœื• -- ืื ืœื—ื–ื•ืจ ืœื“ืžื•ื™ื•ืช ื”ืžืฆื•ื™ืจื•ืช--
13:02
this is sort of the universe, or a different universe view,
262
782000
2000
ื–ื”ื• ื›ืื™ืœื• ื”ื™ืงื•ื, ืื• ื”ืฉืงืคื” ืฉื•ื ื” ืขืœ ื”ื™ืงื•ื
13:04
that I think is going to be very prevalent in the future --
263
784000
2000
ืฉืœื“ืขืชื™ ืชื™ืขืฉื” ืจื•ื•ื—ืช ืžืื“ ื‘ืขืชื™ื“--
13:06
from biotech to materials assembly. It was great to hear Bill Joy.
264
786000
3000
ืžื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ื•ืขื“ ื”ืจื›ื‘ืช ื—ื•ืžืจื™ื. ื ื”ื ื™ืชื™ ืœื”ืื–ื™ืŸ ืœื‘ื™ืœ ื’'ื•ื™.
13:09
They're starting to invest in materials science,
265
789000
3000
ืžืชื—ื™ืœื™ื ืœื”ืฉืงื™ืข ื‘ืžื“ืข ื”ื—ื•ืžืจื™ื,
13:12
but these are the new things in materials science.
266
792000
2000
ืืš ืืœื” ื“ื‘ืจื™ื ื—ื“ืฉื™ื ื‘ืžื“ืข ื”ื—ื•ืžืจื™ื.
13:14
How do we put real information and real structure into new ideas,
267
794000
4000
ืื™ืš ื”ื•ืคื›ื™ื ืžื™ื“ืข ื•ืžื‘ื ื” ืืžื™ืชื™ื™ื ืœืจืขื™ื•ื ื•ืช ื—ื“ืฉื™ื,
13:18
and see the world in a different way? And it's not going to be binary code
268
798000
3000
ื•ืžืกืชื›ืœื™ื ืขืœ ื”ืขื•ืœื ืื—ืจืช? ื•ืœื ืงื•ื“ ื‘ื™ื ืืจื™
13:21
that defines the computers of the universe --
269
801000
2000
ื”ื•ื ืฉื™ื’ื“ื™ืจ ืืช ื”ืžื—ืฉื‘ื™ื ืฉืœ ื”ื™ืงื•ื--
13:23
it's sort of an analog computer.
270
803000
2000
ืืœื ืžื™ืŸ ืžื—ืฉื‘ ืื ืœื•ื’ื™.
13:25
But it's definitely an interesting new worldview.
271
805000
5000
ืืš ื–ืืช ื‘ื”ื—ืœื˜ ื”ืฉืงืคืช-ืขื•ืœื ืžืขื ื™ื™ื ืช.
13:30
I've gone too far. So that sounds like it's it.
272
810000
3000
ื”ืจื—ื‘ืชื™ ื™ื•ืชืจ ืžื“ื™. ื ืจืื” ืœื™ ืฉื–ื”ื• ื–ื”.
13:33
I've probably got a couple of minutes of questions,
273
813000
2000
ื™ืฉ ื•ื“ืื™ ื›ืžื” ื“ืงื•ืช ืœืฉืืœื•ืช,
13:35
or I can show -- I think they also said that I do extreme stuff
274
815000
4000
ืื• ืฉืืฆื™ื’-- ืœื“ืขืชื™ ืืžืจื• ื’ื ืฉืื ื™ ืขื•ืกืง ื‘ื“ื‘ืจื™ื ืงื™ืฆื•ื ื™ื™ื
13:39
in the introduction, so I may have to explain that.
275
819000
4000
ื‘ื”ืงื“ืžื”, ืื– ื™ื™ืชื›ืŸ ืฉืขืœื™ ืœื”ืกื‘ื™ืจ ื–ืืช.
13:43
So maybe I'll do that with this short video.
276
823000
3000
ืื•ืœื™ ืืขืฉื” ื–ืืช ื‘ืขื–ืจืช ื”ืกืจื˜ื•ืŸ ื”ืงืฆืจ ื”ื–ื”.
13:46
So this is actually a 3,000-square-foot kite,
277
826000
6000
ื–ื”ื• ืขืคื™ืคื•ืŸ ืฉืฉื˜ื—ื• 280 ืž"ืจ,
13:52
which also happens to be a minimal energy surface.
278
832000
2000
ืฉื–ื” ื‘ืžืงืจื” ื’ื ืžืฉื˜ื— ืื ืจื’ื™ื” ืžื–ืขืจื™.
13:54
So returning to the droplet, again,
279
834000
2000
ื•ืื ื ื—ื–ื•ืจ ืœื˜ื™ืคืช ื”ืžื™ื,
13:56
thinking about the universe in a new way.
280
836000
2000
ื–ื• ืฉื•ื‘ ื—ืฉื™ื‘ื” ื—ื“ืฉื” ืขืœ ื”ื™ืงื•ื.
13:58
This is a kite designed by a guy called Dave Kulp.
281
838000
2000
ื–ื”ื• ืขืคื™ืคื•ืŸ ืฉืชื•ื›ื ืŸ ืข"ื™ ื‘ื—ื•ืจ ื‘ืฉื ื“ื™ื™ื‘ ืงืœืค.
14:00
And why do you want a 3,000-square-foot kite?
282
840000
2000
ืœืฉื ืžื” ื ื—ื•ืฅ ืขืคื™ืคื•ืŸ ื‘ื’ื•ื“ืœ 280 ืž"ืจ?
14:02
So that's a kite the size of your house.
283
842000
2000
ื–ื”ื• ืขืคื™ืคื•ืŸ ื‘ื’ื•ื“ืœ ืฉืœ ื‘ื™ืช.
14:04
And so you want that to tow boats very fast.
284
844000
4000
ื•ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉื–ื” ื™ื’ืจื•ืจ ืกื™ืจื•ืช ืžื”ืจ ืžืื“.
14:08
So I've been working on this a little, also,
285
848000
3000
ื’ื ืื ื™ ืขื‘ื“ืชื™ ืขืœ ื–ื” ืงืฆืช,
14:11
with a couple of other guys.
286
851000
2000
ืขื ืขื•ื“ ื›ืžื” ื—ื‘ืจ'ื”.
14:13
But, you know, this is another way to look at the --
287
853000
2000
ืื‘ืœ ื–ื• ื“ืจืš ื—ื“ืฉื” ืœื”ืชื‘ื•ื ืŸ ื‘--
14:15
if you abstract again,
288
855000
2000
ืื ืชื—ืฉื‘ื• ืฉื•ื‘ ื‘ื”ืคืฉื˜ื”,
14:17
this is a structure that is defined by the physics of the universe.
289
857000
4000
ื–ื”ื• ืžื‘ื ื” ืฉืžื•ื’ื“ืจ ืข"ื™ ื—ื•ืงื™ ื”ืคื™ื–ื™ืงื” ืฉืœ ื”ื™ืงื•ื.
14:21
You could just hang it as a bed sheet,
290
861000
1000
ืืคืฉืจ ืœืชืœื•ืช ืืช ื–ื” ืกืชื ื›ืžื• ืกื“ื™ืŸ,
14:22
but again, the computation of all the physics
291
862000
2000
ืืš ืฉื•ื‘, ื—ื™ืฉื•ื‘ ื›ืœ ื—ื•ืงื™ ื”ืคื™ื–ื™ืงื”
14:24
gives you the aerodynamic shape.
292
864000
2000
ื ื•ืชืŸ ืืช ื”ืฆื•ืจื” ื”ืื•ื•ื™ืจื•ื“ื™ื ืžื™ืช.
14:26
And so you can actually sort of almost double your boat speed
293
866000
3000
ื•ื›ืš ืืคืฉืจ ืœืžืขืฉื” ืœื”ื›ืคื™ืœ ืืช ืžื”ื™ืจื•ืช ื”ืกื™ืจื”
14:29
with systems like that. So that's sort of another interesting aspect of the future.
294
869000
7000
ืขื ืžืขืจื›ื•ืช ื›ืืœื”. ืื– ื–ื”ื• ืขื•ื“ ื”ื™ื‘ื˜ ืžืขื ื™ื™ืŸ ืฉืœ ื”ืขืชื™ื“.
14:36
(Applause)
295
876000
1000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7