請雙擊下方英文字幕播放視頻。
譯者: Yu-Ju Chen
審譯者: Wang-Ju Tsai
00:25
So anyway, who am I?
0
25000
1000
好,我是誰。
00:26
I usually say to people, when they say, "What do you do?"
1
26000
3000
當他們問我「你是做什麼的?」,我通常會這樣回應
00:29
I say, "I do hardware,"
2
29000
2000
我說:「我是做硬體的。」
00:31
because it sort of conveniently encompasses everything I do.
3
31000
2000
因為這樣很方便地涵括了我做的每一個東西。
00:33
And I recently said that to a venture capitalist casually at some
4
33000
4000
而且,我最近在一個矽谷會議上就是這樣隨意地跟一個風險資本家說的。
00:37
Valley event, to which he replied, "How quaint."
5
37000
3000
他則回答:「好奇怪。」
00:40
(Laughter)
6
40000
2000
笑聲
00:42
And I sort of really was dumbstruck.
7
42000
3000
我當時真的有些傻住了。
00:45
And I really should have said something smart.
8
45000
2000
我當時真該說點聰明的。
00:47
And now I've had a little bit of time to think about it,
9
47000
5000
現在我有一些時間去想想
00:52
I would have said, "Well, you know,
10
52000
2000
我應該這麼說:
00:54
if we look at the next 100 years
11
54000
2000
如果我們看未來的一百年,
00:56
and we've seen all these problems in the last few days,
12
56000
2000
而我們在過去那幾天看到了這些問題,
00:58
most of the big issues -- clean water, clean energy --
13
58000
3000
大部分這些重大議題,例如: 潔淨的飲水,潔淨的能源,
01:01
and they're interchangeable in some respects --
14
61000
2000
這兩者在某種程度上是可以相互替換的,
01:03
and cleaner, more functional materials --
15
63000
2000
且是更乾淨,更有功能的材料,
01:05
they all look to me to be hardware problems.
16
65000
3000
他們對我來說都是硬體的問題。
01:08
This doesn't mean we should ignore software,
17
68000
2000
這不代表我們應該忽視軟體,
01:10
or information, or computation."
18
70000
2000
或資訊或計算。
01:12
And that's in fact probably what I'm going to try and tell you about.
19
72000
3000
這事實上就是我接著要講的。
01:15
So, this talk is going to be about how do we make things
20
75000
3000
所以,這演講是關於我們如何做東西,
01:18
and what are the new ways that we're going to make things in the future.
21
78000
5000
以及我們將來有那些製造東西的新方法。
01:23
Now, TED sends you a lot of spam if you're a speaker
22
83000
5000
現在,如果你是演講者,TED會寄給你一堆郵件
01:28
about "do this, do that" and you fill out all these forms,
23
88000
2000
要你去做這個做那個,要你填一大堆表格
01:30
and you don't actually know how they're going to describe you,
24
90000
3000
而事實上你並不知道他們將如何描述你
01:33
and it flashed across my desk that they were going to introduce me as a futurist.
25
93000
3000
我剛剛才想到他們將把我描述成未來學家。
01:36
And I've always been nervous about the term "futurist,"
26
96000
2000
談到未來學家這個詞我總是感到緊張
01:38
because you seem doomed to failure because you can't really predict it.
27
98000
3000
由於未來是不可預測的,所以你似乎註定失敗。
01:41
And I was laughing about this with the very smart colleagues I have,
28
101000
3000
關於這個我和我聰明的同事們都一起笑了,
01:44
and said, "You know, well, if I have to talk about the future, what is it?"
29
104000
4000
接著說:「如果我必須談論未來,那未來是什麼?」
01:48
And George Homsey, a great guy, said, "Oh, the future is amazing.
30
108000
5000
我的同事George Homsey,一個很聰明的傢伙,他說:「未來很美好的
01:53
It is so much stranger than you think.
31
113000
2000
比你想像的還要更美好。
01:55
We're going to reprogram the bacteria in your gut,
32
115000
2000
我們將給在你腸子內的細菌重新排列
01:57
and we're going to make your poo smell like peppermint."
33
117000
5000
我們將讓你的大便聞起來像薄荷。」
02:02
(Laughter)
34
122000
2000
(笑聲)
02:04
So, you may think that's sort of really crazy,
35
124000
3000
你們可能覺得那真的非常瘋狂
02:07
but there are some pretty amazing things that are happening
36
127000
2000
但是有一些神奇的新發明
02:09
that make this possible.
37
129000
1000
使得那樣的事可能成真。
02:10
So, this isn't my work, but it's work of good friends of mine at MIT.
38
130000
4000
這不是我的作品,是我在MIT的好朋友的作品。
02:14
This is called the registry of standard biological parts.
39
134000
2000
這叫標準生物零件組。
02:16
This is headed by Drew Endy and Tom Knight
40
136000
2000
這是由Drew Endy和Tom Knight主導的,
02:18
and a few other very, very bright individuals.
41
138000
3000
還有一些其他非常非常優秀的人也參加。
02:21
Basically, what they're doing is looking at biology as a programmable system.
42
141000
3000
基本上,他們所做的是把生物學看做是一個可程式化的系統。
02:24
Literally, think of proteins as subroutines
43
144000
4000
把蛋白質想成是個副程式
02:28
that you can string together to execute a program.
44
148000
3000
你可以把一些副程式組合成一個可執行的程式。
02:31
Now, this is actually becoming such an interesting idea.
45
151000
5000
現在,這變成一個相當有趣的想法。
02:36
This is a state diagram. That's an extremely simple computer.
46
156000
3000
這是一個狀態圖。它是一部很簡單的電腦。
02:39
This one is a two-bit counter.
47
159000
2000
這是個雙位元的計算器。
02:41
So that's essentially the computational equivalent of two light switches.
48
161000
6000
或從計算的角度來說,相當是兩個燈的開關。
02:47
And this is being built by a group of students at Zurich
49
167000
3000
這是在一個生物設計競賽中
02:50
for a design competition in biology.
50
170000
2000
由一群瑞士的學生製成的。
02:52
And from the results of the same competition last year,
51
172000
3000
在去年相同比賽的結果中
02:55
a University of Texas team of students programmed bacteria
52
175000
4000
德州大學的學生給細菌寫入程式
02:59
so that they can detect light and switch on and off.
53
179000
3000
使得細菌可以感應燈光並且可以開燈和關燈。
03:02
So this is interesting in the sense that you can now
54
182000
2000
這在某程度上相當有趣
03:04
do "if-then-for" statements in materials, in structure.
55
184000
5000
將if then for的陳述句導入材料中、結構中
03:09
This is a pretty interesting trend,
56
189000
2000
將會是一個很有趣的趨勢。
03:11
because we used to live in a world where everyone's said glibly,
57
191000
2000
因為我們以前所生活的世界是一個模糊的世界,
03:13
"Form follows function," but I think I've sort of grown up in a world
58
193000
4000
先有功能後有形態,但我相信我成長在一個
03:17
-- you listened to Neil Gershenfeld yesterday;
59
197000
3000
像你昨天聽到Neil Gershenfeld描述的世界。
03:20
I was in a lab associated with his -- where it's really a world
60
200000
4000
我在一個和他有關的實驗室,在那裡
03:24
where information defines form and function.
61
204000
3000
是一個用資訊來定義形態和功能的世界。
03:27
I spent six years thinking about that,
62
207000
4000
我花了六年的時間來想
03:31
but to show you the power of art over science --
63
211000
2000
但要現在給你們看藝術的力量如何發揮在科學上。
03:33
this is actually one of the cartoons I write. These are called "HowToons."
64
213000
3000
這是我畫的一部漫畫。它們叫做"好圖"
03:36
I work with a fabulous illustrator called Nick Dragotta.
65
216000
2000
我和一個叫做Nick Dragotta的優秀漫畫家工作。
03:38
Took me six years at MIT,
66
218000
2000
我在MIT待了六年,
03:40
and about that many pages to describe what I was doing,
67
220000
4000
必須用很多篇幅來描述我那時做的事
03:44
and it took him one page. And so this is our muse Tucker.
68
224000
5000
但他只用一頁漫畫就夠了。Tucker是我們的靈感來源。
03:49
He's an interesting little kid -- and his sister, Celine --
69
229000
2000
他是一個很有趣的小孩,還有他姊姊Celine
03:51
and what he's doing here
70
231000
2000
他在這裡做的事,
03:53
is observing the self-assembly of his Cheerios in his cereal bowl.
71
233000
4000
是去觀察在他碗裡的燕麥圈自行組合的過程。
03:57
And in fact you can program the self-assembly of things,
72
237000
3000
事實上你可以透過寫程式來控制物品自行組合的過程
04:00
so he starts chocolate-dipping edges,
73
240000
2000
於是他從沾巧克力的燕麥圈開始做
04:02
changing the hydrophobicity and the hydrophylicity.
74
242000
2000
改變其耐水性及抗水性。
04:04
In theory, if you program those sufficiently,
75
244000
2000
理論上,只要你的程式夠完整
04:06
you should be able to do something pretty interesting
76
246000
2000
你可以做出很有趣的東西
04:08
and make a very complex structure.
77
248000
2000
還有很複雜的結構。
04:10
In this case, he's done self-replication of a complex 3D structure.
78
250000
5000
在這裡,他做出可自行複製複雜的三維結構。
04:15
And that's what I thought about for a long time,
79
255000
3000
我思考很久的正是這個,
04:18
because this is how we currently make things.
80
258000
2000
因為這是我們目前做東西的方法。
04:20
This is a silicon wafer, and essentially
81
260000
2000
這是一個矽晶片,而本質上,
04:22
that's just a whole bunch of layers of two-dimensional stuff, sort of layered up.
82
262000
4000
是數層二維的東西堆積起來。
04:26
The feature side is -- you know, people will say,
83
266000
2000
大部分的人認爲重要的特徵為
04:28
[unclear] down around about 65 nanometers now.
84
268000
2000
厚度是65奈米。
04:30
On the right, that's a radiolara.
85
270000
2000
右邊是一個放射蟲
04:32
That's a unicellular organism ubiquitous in the oceans.
86
272000
3000
它是一種在海洋中大量存在的單細胞生物。
04:35
And that has feature sizes down to about 20 nanometers,
87
275000
4000
而它的直徑為20奈米,
04:39
and it's a complex 3D structure.
88
279000
2000
是個複雜的三維結構。
04:41
We could do a lot more with computers and things generally
89
281000
4000
如果我們知道如何以這種方式製造
04:45
if we knew how to build things this way.
90
285000
3000
我們還可以用電腦製造很多其他的東西。
04:48
The secret to biology is, it builds computation
91
288000
3000
生物的奧秘在於,製造的時候有精細的計算。
04:51
into the way it makes things. So this little thing here, polymerase,
92
291000
3000
這邊這個小東西是聚合酶,
04:54
is essentially a supercomputer designed for replicating DNA.
93
294000
5000
本質上是一部專門複製DNA的超級電腦。
04:59
And the ribosome here is another little computer
94
299000
3000
而核醣體是另一部小型電腦
05:02
that helps in the translation of the proteins.
95
302000
2000
可幫助蛋白質的合成。
05:04
I thought about this
96
304000
1000
我常常在想
05:05
in the sense that it's great to build in biological materials,
97
305000
3000
在某方面來說用生物材料來建造是很棒的,
05:08
but can we do similar things?
98
308000
2000
但我們能夠做類似的事情嗎?
05:10
Can we get self-replicating-type behavior?
99
310000
2000
我們可以有自我複製的行為嗎?
05:12
Can we get complex 3D structure automatically assembling
100
312000
4000
我們可以有複雜三維結構的自我合成嗎?
05:16
in inorganic systems?
101
316000
2000
而且是在非生物的系統裡?
05:18
Because there are some advantages to inorganic systems,
102
318000
2000
因為在非生物系統裡有很好的優勢
05:20
like higher speed semiconductors, etc.
103
320000
2000
例如,更高速的半導體等等。
05:22
So, this is some of my work
104
322000
2000
所以這就是我的工作,
05:24
on how do you do an autonomously self-replicating system.
105
324000
6000
研究如何去建立一個可以自行複製的系統。
05:30
And this is sort of Babbage's revenge.
106
330000
2000
這有點像是巴貝奇最初設計的計算機
05:32
These are little mechanical computers.
107
332000
1000
這些是小型的機械電腦,
05:33
These are five-state state machines.
108
333000
3000
這是五狀態的狀態機,
05:36
So, that's about three light switches lined up.
109
336000
3000
有三個並排的電燈開關,
05:39
In a neutral state, they won't bind at all.
110
339000
2000
在中性狀態下,他們不會自然接合。
05:41
Now, if I make a string of these, a bit string,
111
341000
4000
但假如我做了一串這樣的東西,一個位元字串
05:45
they will be able to replicate.
112
345000
2000
他們就能自行複製。
05:47
So we start with white, blue, blue, white.
113
347000
1000
我們以白、藍、藍、白開始,
05:48
That encodes; that will now copy. From one comes two,
114
348000
6000
他們經過編碼,之後就可以自行複製。從一到二,
05:54
and then from two comes three.
115
354000
2000
再從二到三,
05:56
And so you've got this sort of replicating system.
116
356000
4000
所以就得到了這樣的複製系統。
06:00
It was work actually by Lionel Penrose,
117
360000
2000
這最初是由Lionel Penrose發現的,
06:02
father of Roger Penrose, the tiles guy.
118
362000
3000
也就是Roger Penrose的父親。
06:05
He did a lot of this work in the '60s,
119
365000
2000
他在六零年代做了很多這樣的東西,
06:07
and so a lot of this logic theory lay fallow
120
367000
2000
但他很多關於邏輯的理論並沒有被重視
06:09
as we went down the digital computer revolution, but it's now coming back.
121
369000
3000
現在因為有了數位計算機革命,這理論又有可能發光發熱。
06:12
So now I'm going to show you the hands-free, autonomous self-replication.
122
372000
4000
現在我要給大家看的是不經過人工干預且全自動的自行複製過程。
06:16
So we've tracked in the video the input string,
123
376000
2000
輸入的開始狀態是
06:18
which was green, green, yellow, yellow, green.
124
378000
2000
綠色,接著是綠、黃、黃、綠。
06:20
We set them off on this air hockey table.
125
380000
4000
我們把它放在桌上的冰球遊戲上。
06:24
You know, high science uses air hockey tables --
126
384000
2000
很多科學家都愛玩這遊戲。
06:26
(Laughter)
127
386000
1000
(笑聲)
06:27
-- and if you watch this thing long enough you get dizzy,
128
387000
2000
如果你看太久你會感到頭昏,
06:29
but what you're actually seeing is copies of that original string
129
389000
3000
但你實際上看到的是原來字串的複製,
06:32
emerging from the parts bin that you have here.
130
392000
3000
這都是以零件集裏面出來的。
06:35
So we've got autonomous replication of bit strings.
131
395000
5000
到此,我們看到了位元字串的自行複製。
06:40
So, why would you want to replicate bit strings?
132
400000
3000
所以,為何你會想要複製位元字串?
06:43
Well, it turns out biology has this other very interesting meme,
133
403000
3000
因為生物有個模仿特性,
06:46
that you can take a linear string, which is a convenient thing to copy,
134
406000
3000
你拿一個很容易自行複製的線性字串,
06:49
and you can fold that into an arbitrarily complex 3D structure.
135
409000
4000
就可以將它折疊成複雜的三維結構。
06:53
So I was trying to, you know, take the engineer's version:
136
413000
3000
所以我想,用工程師的想法:
06:56
Can we build a mechanical system in inorganic materials
137
416000
3000
我們能夠用非生物的材料來建造一個機械系統
06:59
that will do the same thing?
138
419000
1000
而且能執行同樣的過程嗎?
07:00
So what I'm showing you here is that we can make a 2D shape --
139
420000
5000
我現在要給你們看的是我們能夠做一個二維形狀
07:05
the B -- assemble from a string of components
140
425000
4000
圖上的B--它是由一串的零件
07:09
that follow extremely simple rules.
141
429000
2000
依照極簡單的規則組合起來的。
07:11
And the whole point of going with the extremely simple rules here,
142
431000
3000
而我們之所以要用極簡單的規則
07:14
and the incredibly simple state machines in the previous design,
143
434000
3000
和前一代極簡單的狀態機,
07:17
was that you don't need digital logic to do computation.
144
437000
3000
是因為我們不需用數位邏輯來計算。
07:20
And that way you can scale things much smaller than microchips.
145
440000
4000
而借此我們可以建構規模比微型晶片更小的東西。
07:24
So you can literally use these as the tiny components in the assembly process.
146
444000
4000
所以你可以用這些微小零件來組合。
07:28
So, Neil Gershenfeld showed you this video on Wednesday, I believe,
147
448000
5000
Neil Gershenfeld 在星期三展示這影片給你們看過了,
07:33
but I'll show you again.
148
453000
2000
但我要讓你們再看一遍。
07:35
This is literally the colored sequence of those tiles.
149
455000
3000
這是有色的瓷磚的序列。
07:38
Each different color has a different magnetic polarity,
150
458000
3000
每一種不同的顏色有不同的磁極,
07:41
and the sequence is uniquely specifying the structure that is coming out.
151
461000
5000
這序列獨特地說明了接下來要出現的結構。
07:46
Now, hopefully, those of you who know anything about graph theory
152
466000
3000
假如你們懂一點圖形理論的話,
07:49
can look at that, and that will satisfy you
153
469000
2000
可以看看這裡,你會感到很舒服,
07:51
that that can also do arbitrary 3D structure,
154
471000
3000
因為它還能演化為任意的三維結構,
07:54
and in fact, you know, I can now take a dog, carve it up
155
474000
5000
事實上我可以拿一條狗來,切開來
07:59
and then reassemble it so it's a linear string
156
479000
2000
然後將它重組成一個線性的長串,
08:01
that will fold from a sequence. And now
157
481000
2000
然後它會從序列折疊。
08:03
I can actually define that three-dimensional object as a sequence of bits.
158
483000
7000
我還能將三維的物體定義成一串字元。
08:10
So, you know, it's a pretty interesting world
159
490000
3000
當你用不同的角度去看這世界,
08:13
when you start looking at the world a little bit differently.
160
493000
2000
這些事很會變得很有趣。
08:15
And the universe is now a compiler.
161
495000
3000
宇宙是一台編輯器。
08:18
And so I'm thinking about, you know, what are the programs
162
498000
2000
於是我在想,那些給實體宇宙執行的
08:20
for programming the physical universe?
163
500000
3000
程式是什麼?
08:23
And how do we think about materials and structure,
164
503000
3000
我們如何能將材料與結構的問題
08:26
sort of as an information and computation problem?
165
506000
3000
變成資訊和計算的問題?
08:29
Not just where you attach a micro-controller to the end point,
166
509000
3000
不只是把微小的控制器連接到終端,
08:32
but that the structure and the mechanisms are the logic, are the computers.
167
512000
5000
而是把結構和機制當成是運算的邏輯,是一部電腦。
08:37
Having totally absorbed this philosophy,
168
517000
5000
完全了解這哲學後,
08:42
I started looking at a lot of problems a little differently.
169
522000
3000
我開始以不同的角度去看待很多問題。
08:45
With the universe as a computer,
170
525000
1000
將宇宙視為一個電腦,
08:46
you can look at this droplet of water
171
526000
2000
你可以把一滴水
08:48
as having performed the computations.
172
528000
2000
看成為執行計算的結果。
08:50
You set a couple of boundary conditions, like gravity,
173
530000
2000
你設定一些臨界條件,像重力,
08:52
the surface tension, density, etc., and then you press "execute,"
174
532000
4000
表面張力,濃密度等而你按壓執行鍵,
08:56
and magically, the universe produces you a perfect ball lens.
175
536000
5000
很神奇地,宇宙就幫你製造一個完美的球鏡。
09:01
So, this actually applied to the problem
176
541000
2000
所以,這個可以應用到一些問題,
09:03
of -- so there's a half a billion to a billion people in the world
177
543000
3000
例如,在這世界有五到十億的人,
09:06
don't have access to cheap eyeglasses.
178
546000
2000
無法取得便宜的眼鏡。
09:08
So can you make a machine
179
548000
2000
你可以製造一個機器
09:10
that could make any prescription lens very quickly on site?
180
550000
4000
以極快的速度且在任何地點做出人們需要的鏡片嗎?
09:14
This is a machine where you literally define a boundary condition.
181
554000
4000
在這一台機器上你要去設定它的臨界條件,
09:18
If it's circular, you make a spherical lens.
182
558000
3000
如果它是圓的,你可以做成球形鏡片
09:21
If it's elliptical, you can make an astigmatic lens.
183
561000
3000
如果它是橢圓的,你可以做出一個散光鏡片。
09:24
You then put a membrane on that and you apply pressure --
184
564000
3000
之後把薄膜放在上面,你還可以施加壓力,
09:27
so that's part of the extra program.
185
567000
2000
這一部分就需要另外的程式。
09:29
And literally with only those two inputs --
186
569000
3000
事實上只要有兩個輸入:
09:32
so, the shape of your boundary condition and the pressure --
187
572000
2000
臨界條件的形狀和壓力,
09:34
you can define an infinite number of lenses
188
574000
2000
就可以定義出無限種可能的鏡片,
09:36
that cover the range of human refractive error,
189
576000
2000
可涵蓋人類全部的反射缺限,
09:38
from minus 12 to plus eight diopters, up to four diopters of cylinder.
190
578000
5000
從負十二和正八的屈光度,
09:43
And then literally, you now pour on a monomer.
191
583000
3000
而後將其澆灌到一個單體上。
09:46
You know, I'll do a Julia Childs here.
192
586000
3000
我現在來學Julia Childs (著名法國菜廚師)
09:49
This is three minutes of UV light.
193
589000
3000
這是三分鐘的紫外綫。
09:52
And you reverse the pressure on your membrane
194
592000
3000
再換薄膜的另一面受壓,
09:55
once you've cooked it. Pop it out.
195
595000
3000
加熱好了後,敲一敲,給他打出來。
09:58
I've seen this video, but I still don't know if it's going to end right.
196
598000
3000
我看過這段影片,但我不知道結果會不會成功
10:01
(Laughter)
197
601000
3000
(笑聲)
10:04
So you reverse this. This is a very old movie,
198
604000
2000
你把它翻轉過來,這是一部老片了,
10:06
so with the new prototypes, actually both surfaces are flexible,
199
606000
4000
在新的設計裏,事實上兩面表面都是有彈性的,
10:10
but this will show you the point.
200
610000
2000
現在重點來了。
10:12
Now you've finished the lens, you literally pop it out.
201
612000
2000
這鏡片作好了,把它拿出來,
10:14
That's next year's Yves Klein, you know, eyeglasses shape.
202
614000
7000
這會是明年的Yves Klein,鏡片型的作品,
10:21
And you can see that that has a mild prescription of about minus two diopters.
203
621000
3000
你可以看到它有一個很小的負二屈光度。
10:24
And as I rotate it against this side shot, you'll see that that has cylinder,
204
624000
4000
當我以側面旋轉的時倏,你會看到有一個圓柱形
10:28
and that was programmed in --
205
628000
1000
這也是預先程式設計就有考慮到的,
10:29
literally into the physics of the system.
206
629000
4000
可以將系統的物理特性設計好。
10:33
So, this sort of thinking about structure as computation
207
633000
3000
這種將結構視為計算、
10:36
and structure as information leads to other things, like this.
208
636000
5000
還有將結構視為資訊的想法可帶出其他的東西,像這個。
10:41
This is something that my people at SQUID Labs
209
641000
3000
這是我在SQUID的朋友做的,
10:44
are working on at the moment, called "electronic rope."
210
644000
2000
叫電子繩。
10:46
So literally, you think about a rope. It has very complex structure in the weave.
211
646000
4000
談到繩子你會想到很複雜的纖維結構
10:50
And under no load, it's one structure.
212
650000
2000
當不受到外力的時候它是一種結構。
10:52
Under a different load, it's a different structure. And you can actually exploit that
213
652000
3000
在不同的外力下會有不同的結構。你可以利用這個特性,
10:55
by putting in a very small number of
214
655000
2000
加上一小量的
10:57
conducting fibers to actually make it a sensor.
215
657000
2000
導電纖維使它變成一個感應器。
10:59
So this is now a rope that knows the load on the rope
216
659000
3000
所以這是一個能感應外力的繩子
11:02
at any particular point in the rope.
217
662000
2000
在繩子的各個點上都能感應。
11:04
Just by thinking about the physics of the world,
218
664000
3000
想想這世界的物理特性,
11:07
materials as the computer,
219
667000
2000
把材料當成電腦,
11:09
you can start to do things like this.
220
669000
3000
你可以開始做類似這樣的東西。
11:12
I'm going to segue a little here.
221
672000
3000
現在我將轉換到這個圖。
11:15
I guess I'm just going to casually tell you the types of things
222
675000
2000
我將要概略地介紹幾種
11:17
that I think about with this.
223
677000
1000
我正在思考的這類東西。
11:18
One thing I'm really interested about this right now is, how,
224
678000
4000
我現在很感興趣的一點是
11:22
if you're really taking this view of the universe as a computer,
225
682000
4000
利用這種將宇宙視為電腦的觀點,
11:26
how do we make things in a very general sense,
226
686000
2000
我們如何製造一般的東西,
11:28
and how might we share the way we make things in a general sense
227
688000
4000
還有我們如何分享我們製造東西的方法和過程,
11:32
the same way you share open source hardware?
228
692000
3000
能否像分享開放性硬體一樣簡單?
11:35
And a lot of talks here have espoused the benefits
229
695000
3000
這裏很多的演講支持
11:38
of having lots of people look at problems,
230
698000
2000
讓很多人一起看問題、
11:40
share the information and work on those things together.
231
700000
3000
分享資訊和一同工作所帶來的好處。
11:43
So, a convenient thing about being a human is you move in linear time,
232
703000
3000
作為一個人我們都是在線性的時間裡移動的,
11:46
and unless Lisa Randall changes that,
233
706000
2000
除非Lisa Randall 能改變這個事實
11:48
we'll continue to move in linear time.
234
708000
3000
不然我們會一直以線性的時間移動。
11:51
So that means anything you do, or anything you make,
235
711000
2000
這意味著,做任何事、任何東西,
11:53
you produce a sequence of steps --
236
713000
2000
你都會產生一連串的步驟,
11:55
and I think Lego in the '70s nailed this,
237
715000
3000
Lego 在1970年代看到了這一點,
11:58
and they did it most elegantly.
238
718000
1000
並以最優雅的方式展現這一點。
11:59
But they can show you how to build things in sequence.
239
719000
4000
他們能展示如何以序列的方式製造東西。
12:03
So, I'm thinking about, how can we generalize
240
723000
3000
我想我們如何能概化
12:06
the way we make all sorts of things,
241
726000
2000
做所有東西的方式,
12:08
so you end up with this sort of guy, right?
242
728000
2000
你最後就會變成這樣的傢伙(Linux系統),是不是?
12:10
And I think this applies across a very broad -- sort of, a lot of concepts.
243
730000
5000
我想這個可以應用在很多概念。
12:15
You know, Cameron Sinclair yesterday said,
244
735000
2000
Cameron Sinclair 昨天說,
12:17
"How do I get everyone to collaborate on design
245
737000
2000
“我如何能讓每個人一起合作設計
12:19
globally to do housing for humanity?"
246
739000
3000
為全球的人們提供住宅?”
12:22
And if you've seen Amy Smith,
247
742000
2000
如果你看過Amy Smith的演講,
12:24
she talks about how you get students at MIT
248
744000
4000
她談到如何讓MIT的學生
12:28
to work with communities in Haiti.
249
748000
2000
去幫助海地居民重建社區。
12:30
And I think we have to sort of redefine and rethink
250
750000
2000
我想我們須重新定義和思考,
12:32
how we define structure and materials and assembly things,
251
752000
4000
我們如何定義結構和材料和組合東西,
12:36
so that we can really share the information
252
756000
2000
我們可以因此分享這些資訊
12:38
on how you do those things in a more profound way
253
758000
2000
如何以更深層的方式去做這些東西
12:40
and build on each other's source code for structure.
254
760000
3000
利用其他人的已有基礎來製造。
12:43
I don't know exactly how to do this yet,
255
763000
1000
該如何做,很多的細節我不是很清楚,
12:44
but, you know, it's something being actively thought about.
256
764000
5000
但現在很多人積極地在思考這件事。
12:49
So, you know, that leads to questions
257
769000
2000
所以這會帶來更多的問題,
12:51
like, is this a compiler? Is this a sub-routine?
258
771000
4000
像,這是編輯器還是副程式?
12:55
Interesting things like that.
259
775000
1000
等等這類有趣的事。
12:56
Maybe I'm getting a little too abstract, but you know,
260
776000
3000
也許我講得太抽象了,
12:59
this is the sort of -- returning to our comic characters --
261
779000
3000
但讓我們回到剛才那幅漫畫
13:02
this is sort of the universe, or a different universe view,
262
782000
2000
這樣一種不同的宇宙觀
13:04
that I think is going to be very prevalent in the future --
263
784000
2000
我想未來會相當盛行
13:06
from biotech to materials assembly. It was great to hear Bill Joy.
264
786000
3000
在生物科技或材料組合上。聽到Bill Joy的演講是很棒的。
13:09
They're starting to invest in materials science,
265
789000
3000
他們開始投資材料科學
13:12
but these are the new things in materials science.
266
792000
2000
但這些在材料科學中是新的。
13:14
How do we put real information and real structure into new ideas,
267
794000
4000
我們如何將真實資訊和結構變成新觀念
13:18
and see the world in a different way? And it's not going to be binary code
268
798000
3000
並以不同的角度看這世界?
13:21
that defines the computers of the universe --
269
801000
2000
那將不會是定義宇宙的電腦的二元程式碼
13:23
it's sort of an analog computer.
270
803000
2000
而是一種類比電腦。
13:25
But it's definitely an interesting new worldview.
271
805000
5000
這絕對是一種有趣的新世界觀。
13:30
I've gone too far. So that sounds like it's it.
272
810000
3000
我講得有些離題了。但聽起來就像是這樣。
13:33
I've probably got a couple of minutes of questions,
273
813000
2000
我還有幾分鐘可供提問,
13:35
or I can show -- I think they also said that I do extreme stuff
274
815000
4000
介紹我的時候,他們說我在做一些極端的東西
13:39
in the introduction, so I may have to explain that.
275
819000
4000
這一點我必須解釋一下。
13:43
So maybe I'll do that with this short video.
276
823000
3000
也許我該用這短片來解釋一下。
13:46
So this is actually a 3,000-square-foot kite,
277
826000
6000
這是一個三千平方英尺的風箏
13:52
which also happens to be a minimal energy surface.
278
832000
2000
也是一個可以吸取能量的最小表面。
13:54
So returning to the droplet, again,
279
834000
2000
還是回到剛才講的
13:56
thinking about the universe in a new way.
280
836000
2000
以新的方式來看宇宙。
13:58
This is a kite designed by a guy called Dave Kulp.
281
838000
2000
這是由Dave Kulp設計的風箏。
14:00
And why do you want a 3,000-square-foot kite?
282
840000
2000
為何你要一個這麼大的風箏?
14:02
So that's a kite the size of your house.
283
842000
2000
簡直跟你家的面積一樣大。
14:04
And so you want that to tow boats very fast.
284
844000
4000
只有這樣你才能很快地拉動一條船。
14:08
So I've been working on this a little, also,
285
848000
3000
我也在研究這個
14:11
with a couple of other guys.
286
851000
2000
跟一些朋友在做。
14:13
But, you know, this is another way to look at the --
287
853000
2000
這是另外一種
14:15
if you abstract again,
288
855000
2000
如果我用更抽象的語言來說的話
14:17
this is a structure that is defined by the physics of the universe.
289
857000
4000
這是一種用宇宙物理來定義的結構。
14:21
You could just hang it as a bed sheet,
290
861000
1000
你可以把它掛起來,像被單一樣
14:22
but again, the computation of all the physics
291
862000
2000
但經過這些物理特性的計算
14:24
gives you the aerodynamic shape.
292
864000
2000
你得到空氣動力的結構。
14:26
And so you can actually sort of almost double your boat speed
293
866000
3000
你幾乎可以加倍你船的速度
14:29
with systems like that. So that's sort of another interesting aspect of the future.
294
869000
7000
用像這樣的系統。這是未來一個很有趣的方向。
14:36
(Applause)
295
876000
1000
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。