How the Königsberg bridge problem changed mathematics - Dan Van der Vieren
1,407,326 views ・ 2016-09-01
请双击下面的英文字幕来播放视频。
翻译人员: Yuyang Zhao
校对人员: Lipeng Chen
在现在的地图上,你很难找到哥尼斯堡这个城市
00:09
You'd have a hard time finding
Königsberg on any modern maps,
0
9036
5070
00:14
but one particular quirk in its geography
1
14106
3309
但是它在地理上奇特之处
00:17
has made it one of the most famous cities
in mathematics.
2
17415
4790
使得它在数学上成为最为著名的城市之一。
00:22
The medieval German city lay on both sides
of the Pregel River.
3
22205
4009
这个中世纪的德国城市坐落于普雷格尔河的两岸。
00:26
At the center were two large islands.
4
26214
2661
河的中央有两座大的岛屿。
00:28
The two islands were connected
to each other and to the river banks
5
28875
4249
这两座岛屿通过七座桥
00:33
by seven bridges.
6
33124
2760
与河的两岸以及与彼此连接。
00:35
Carl Gottlieb Ehler, a mathematician who
later became the mayor of a nearby town,
7
35884
5412
后来成为附近小镇市长的数学家卡尔·戈特利布·埃勒,
00:41
grew obsessed with these islands
and bridges.
8
41296
3099
对这些桥和岛屿十分着迷。
00:44
He kept coming back to a single question:
9
44395
2810
他一直在考虑一个问题:
00:47
Which route would allow someone
to cross all seven bridges
10
47205
3890
哪一条路径可以使人穿过所有这七座桥
00:51
without crossing any of them
more than once?
11
51095
4041
并且同一座桥只能经过一次?
00:55
Think about it for a moment.
12
55136
1810
思考一下。
00:56
7
13
56946
990
7
00:57
6
14
57936
1011
6
00:58
5
15
58947
969
5
00:59
4
16
59916
931
4
01:00
3
17
60847
1109
3
01:01
2
18
61956
930
2
01:02
1
19
62886
1110
1
01:03
Give up?
20
63996
1080
放弃了吗?
01:05
You should.
21
65076
1122
应该是的。
01:06
It's not possible.
22
66198
1315
这是不可能的。
01:07
But attempting to explain why
led famous mathematician Leonhard Euler
23
67513
5123
但是,大数学家莱昂哈德·欧拉
在试图解释这个数学问题时,
01:12
to invent a new field of mathematics.
24
72636
3361
开拓了一个新的数学领域。
01:15
Carl wrote to Euler for help
with the problem.
25
75997
2651
卡尔向欧拉写信求助。
01:18
Euler first dismissed the question as
having nothing to do with math.
26
78648
4719
开始,欧拉认为这个问题和数学
无关,所以不关心这个问题。
01:23
But the more he wrestled with it,
27
83367
1769
但是随着他对该问题的思考,
01:25
the more it seemed there might
be something there after all.
28
85136
3841
他越来越发现该问题有一定的意义。
01:28
The answer he came up with
had to do with a type of geometry
29
88977
3929
他得出的答案与一类几何学相关
01:32
that did not quite exist yet,
what he called the Geometry of Position,
30
92906
5352
但当时并不存在,他称之为位置几何学,
01:38
now known as Graph Theory.
31
98258
3639
就是现在著名的图论。
01:41
Euler's first insight
32
101897
1546
欧拉最初的想法
01:43
was that the route taken between entering
an island or a riverbank and leaving it
33
103443
5064
是进入岛屿或河岸和离开岛屿或河岸的路线
01:48
didn't actually matter.
34
108507
2071
实际上并不重要。
01:50
Thus, the map could be simplified with
each of the four landmasses
35
110578
3849
这样,地图上便可以简化为四个岛
01:54
represented as a single point,
36
114427
2200
用四个简单的点表示,
01:56
what we now call a node,
37
116627
2670
我们现在称之为节点
01:59
with lines, or edges, between them
to represent the bridges.
38
119297
4901
它们之间的线或边代表桥。
02:04
And this simplified graph allows us
to easily count the degrees of each node.
39
124198
5421
这样,简化的图使我们比较容易计算每个节点的度,
02:09
That's the number of bridges
each land mass touches.
40
129619
3600
即连接岛之间桥的数量。
02:13
Why do the degrees matter?
41
133219
1379
为什么度很重要呢?
02:14
Well, according to the rules
of the challenge,
42
134598
2230
试想,根据这个问题的规定,
02:16
once travelers arrive onto a landmass
by one bridge,
43
136828
3850
一旦有人想要通过一座桥到达一个岛屿,
02:20
they would have to leave it
via a different bridge.
44
140678
3122
他就必须通过另外的桥离开。
02:23
In other words, the bridges leading
to and from each node on any route
45
143800
4368
也就是说,在任何路线上,通往和离开每个节点的桥
02:28
must occur in distinct pairs,
46
148168
2419
必须是不同的桥,
02:30
meaning that the number of bridges
touching each landmass visited
47
150587
3652
这意味着连接每个岛的桥的数量
02:34
must be even.
48
154239
2129
一定是偶数。
02:36
The only possible exceptions would be
the locations of the beginning
49
156368
3661
唯一可能的例外是在出发的位置
02:40
and end of the walk.
50
160029
2238
和离开的位置。
02:42
Looking at the graph, it becomes apparent
that all four nodes have an odd degree.
51
162267
4951
看下图,很明显所有四个节点的度都为奇数。
02:47
So no matter which path is chosen,
52
167218
1969
于是,无论选择什么样的路线,
02:49
at some point,
a bridge will have to be crossed twice.
53
169187
4253
在一些点上,一座桥势必会被经过两次。
02:53
Euler used this proof to formulate
a general theory
54
173440
4269
欧拉用这个证明发展出了一个通用的理论,
02:57
that applies to all graphs with two
or more nodes.
55
177709
4012
适用于存在两个或两个以上节点的图。
03:01
A Eulerian path
that visits each edge only once
56
181721
4069
每一个边仅经过一次的欧拉路径
03:05
is only possible in one of two scenarios.
57
185790
3369
只在两种情况下有可能。
03:09
The first is when there are exactly
two nodes of odd degree,
58
189159
4610
第一,当仅有两个节点为奇数度时,
03:13
meaning all the rest are even.
59
193769
2541
这意味着其它的都是偶数度。
03:16
There, the starting point is one
of the odd nodes,
60
196310
3349
这样,开始点就是奇数度的一个,
03:19
and the end point is the other.
61
199659
2111
结束点是另外一个。
03:21
The second is when all the nodes
are of even degree.
62
201770
4321
第二,当所有的节点都是偶数度时,
03:26
Then, the Eulerian path will start
and stop in the same location,
63
206091
5140
那么,欧拉路径就从同一个位置开始和结束,
03:31
which also makes it something called
a Eulerian circuit.
64
211231
3527
这被称为欧拉回路。
03:34
So how might you create a Eulerian path
in Königsberg?
65
214758
3702
于是,你怎么才能在格尼斯堡找到欧拉路径呢?
03:38
It's simple.
66
218460
842
这很简单。
03:39
Just remove any one bridge.
67
219302
2100
只要移走任一座桥。
03:41
And it turns out, history created
a Eulerian path of its own.
68
221402
4678
事实说明,历史创造了欧拉路径。
03:46
During World War II, the Soviet Air Force
destroyed two of the city's bridges,
69
226080
4118
二战期间,苏联空军摧毁了两个城市之间的一座桥,
03:50
making a Eulerian path easily possible.
70
230198
3333
这便创造出了欧拉路径。
03:53
Though, to be fair, that probably
wasn't their intention.
71
233531
3760
虽然,公平来说,他们的目的不是这样。
03:57
These bombings pretty much wiped
Königsberg off the map,
72
237291
3490
这些炸弹从地图上抹掉了格尼斯堡,
04:00
and it was later rebuilt
as the Russian city of Kaliningrad.
73
240781
4129
并且这里被重建为之后的俄罗斯加里宁格勒市。
04:04
So while Königsberg and her seven bridges
may not be around anymore,
74
244910
4173
所以尽管格尼斯堡和她的七座桥不再存在,
04:09
they will be remembered throughout
history by the seemingly trivial riddle
75
249083
4278
但是它们会因这个导致全新数学
领域出现的谜团被历史记录下来。
04:13
which led to the emergence of
a whole new field of mathematics.
76
253361
4301
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。