How the Königsberg bridge problem changed mathematics - Dan Van der Vieren

1,404,683 views

2016-09-01 ・ TED-Ed


New videos

How the Königsberg bridge problem changed mathematics - Dan Van der Vieren

1,404,683 views ・ 2016-09-01

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Tamara Rabuzin Recezent: Ivan Stamenković
00:09
You'd have a hard time finding Königsberg on any modern maps,
0
9036
5070
Königsberg ćete teško pronaći na današnjoj zemljopisnoj karti,
00:14
but one particular quirk in its geography
1
14106
3309
ali jedna dosjetka vezana za njegov tlocrt
00:17
has made it one of the most famous cities in mathematics.
2
17415
4790
učinila ga je jednim od najslavnijih gradova vezanih uz matematiku.
00:22
The medieval German city lay on both sides of the Pregel River.
3
22205
4009
Srednjovjekovni njemački grad ležao je na obje strane rijeke Pregel.
00:26
At the center were two large islands.
4
26214
2661
U središtu su bila dva velika otoka.
00:28
The two islands were connected to each other and to the river banks
5
28875
4249
Dva otoka bila su povezana međusobno i s obalama rijeke
00:33
by seven bridges.
6
33124
2760
pomoću sedam mostova.
00:35
Carl Gottlieb Ehler, a mathematician who later became the mayor of a nearby town,
7
35884
5412
Carl Gottlieb Ehler, matematičar koji je postao gradonačelnik obližnjeg grada,
00:41
grew obsessed with these islands and bridges.
8
41296
3099
postao je opsjednut ovim otocima i mostovima.
00:44
He kept coming back to a single question:
9
44395
2810
Stalno se vraćao na isto pitanje:
00:47
Which route would allow someone to cross all seven bridges
10
47205
3890
na koji način netko može prijeći svih sedan mostova
00:51
without crossing any of them more than once?
11
51095
4041
tako da svaki most prijeđe samo jednom?
00:55
Think about it for a moment.
12
55136
1810
Razmislite o tome na trenutak.
00:56
7
13
56946
990
7
00:57
6
14
57936
1011
6
00:58
5
15
58947
969
5
00:59
4
16
59916
931
4
01:00
3
17
60847
1109
3
01:01
2
18
61956
930
2
01:02
1
19
62886
1110
1
01:03
Give up?
20
63996
1080
Odustajete?
01:05
You should.
21
65076
1122
Trebali biste.
01:06
It's not possible.
22
66198
1315
To nije moguće učiniti.
01:07
But attempting to explain why led famous mathematician Leonhard Euler
23
67513
5123
Ali pokušaj objašnjavanja zašto je tako vodio je matematičara Leonharda Eulera
01:12
to invent a new field of mathematics.
24
72636
3361
do stvaranja novog područja matematike.
01:15
Carl wrote to Euler for help with the problem.
25
75997
2651
Carl je pisao Euleru moleći ga za pomoć.
01:18
Euler first dismissed the question as having nothing to do with math.
26
78648
4719
Euler je najprije odbacio problem jer je vjerovao da nema veze s matematikom.
01:23
But the more he wrestled with it,
27
83367
1769
Ali što je više razmišljao o njemu,
01:25
the more it seemed there might be something there after all.
28
85136
3841
činilo se više mogućim da se u njemu nešto krije.
01:28
The answer he came up with had to do with a type of geometry
29
88977
3929
Odgovor do kojeg je došao imao je veze s vrstom geometrije
01:32
that did not quite exist yet, what he called the Geometry of Position,
30
92906
5352
koja još nije postojala, a koju je on nazvao Geometrija položaja,
01:38
now known as Graph Theory.
31
98258
3639
a danas je poznata kao Teorija grafova.
01:41
Euler's first insight
32
101897
1546
Eulerova prva spoznaja
01:43
was that the route taken between entering an island or a riverbank and leaving it
33
103443
5064
bila je da ruta između stupanja na otok ili obalu rijeke i napuštanja istog
01:48
didn't actually matter.
34
108507
2071
zapravo nije važna.
01:50
Thus, the map could be simplified with each of the four landmasses
35
110578
3849
Prema tome, karta se može pojednostavniti tako da se svaki od četiri kopnena čvora
01:54
represented as a single point,
36
114427
2200
prikaže pomoću točke,
01:56
what we now call a node,
37
116627
2670
koju ćemo zvati vrh,
01:59
with lines, or edges, between them to represent the bridges.
38
119297
4901
a linije koje prikazuju mostove, zvat ćemo bridovi.
02:04
And this simplified graph allows us to easily count the degrees of each node.
39
124198
5421
Na ovom jednostavnom grafu lako možemo odrediti stupanj svakog vrha.
02:09
That's the number of bridges each land mass touches.
40
129619
3600
To je broj mostova kojim je svaki kopneni čvor povezan.
02:13
Why do the degrees matter?
41
133219
1379
Zašto je stupanj važan?
02:14
Well, according to the rules of the challenge,
42
134598
2230
Prema pravilima izazova,
02:16
once travelers arrive onto a landmass by one bridge,
43
136828
3850
kad putnik stigne na kopneni čvor pomoću jednog mosta,
02:20
they would have to leave it via a different bridge.
44
140678
3122
mora ga napustiti prelazeći preko drugog.
02:23
In other words, the bridges leading to and from each node on any route
45
143800
4368
Drugim riječima, mostovi koji vode do vrha i s njega na bilo kojoj ruti
02:28
must occur in distinct pairs,
46
148168
2419
moraju se pojavljivati u parovima,
02:30
meaning that the number of bridges touching each landmass visited
47
150587
3652
što znači da broj mostova koji dodiruju svaki prijeđeni čvor
02:34
must be even.
48
154239
2129
mora biti paran.
02:36
The only possible exceptions would be the locations of the beginning
49
156368
3661
Jedine moguće iznimke bile bi
02:40
and end of the walk.
50
160029
2238
početak i kraj šetnje.
02:42
Looking at the graph, it becomes apparent that all four nodes have an odd degree.
51
162267
4951
Gledajući graf, postaje očito da sva četiri vrha imaju neparan stupanj.
02:47
So no matter which path is chosen,
52
167218
1969
Pa koji god put odaberemo,
02:49
at some point, a bridge will have to be crossed twice.
53
169187
4253
u jednom trenutku, jedan od mostova moramo prijeći dvaput.
02:53
Euler used this proof to formulate a general theory
54
173440
4269
Euler je pomoću ovog dokaza oblikovao opću teoriju
02:57
that applies to all graphs with two or more nodes.
55
177709
4012
koja se odnosi na sve grafove s dva i više vrha.
03:01
A Eulerian path that visits each edge only once
56
181721
4069
Eulerova staza kod koje se svaki vrh prelazi jednom
03:05
is only possible in one of two scenarios.
57
185790
3369
moguća je jedino u dva slučaja.
03:09
The first is when there are exactly two nodes of odd degree,
58
189159
4610
Prvi je kad postoje točno dva vrha neparnog stupnja,
03:13
meaning all the rest are even.
59
193769
2541
pa su svi ostali parni.
03:16
There, the starting point is one of the odd nodes,
60
196310
3349
Tada je početna točka jedan od dva neparna vrha,
03:19
and the end point is the other.
61
199659
2111
a kraj šetnje je drugi.
03:21
The second is when all the nodes are of even degree.
62
201770
4321
Drugi slučaj je kada su svi vrhovi parnog stupnja.
03:26
Then, the Eulerian path will start and stop in the same location,
63
206091
5140
Tad će Eulerova staza započeti i završiti u istom vrhu,
03:31
which also makes it something called a Eulerian circuit.
64
211231
3527
što se u teoriji grafova zove Eulerova tura.
03:34
So how might you create a Eulerian path in Königsberg?
65
214758
3702
Dakle, kako kreirati Eulerovu stazu u Königsbergu?
03:38
It's simple.
66
218460
842
Jednostavno je.
03:39
Just remove any one bridge.
67
219302
2100
Samo treba ukloniti jedan most.
03:41
And it turns out, history created a Eulerian path of its own.
68
221402
4678
Dogodilo se da je povijest sama stvorila Eulerovu stazu.
03:46
During World War II, the Soviet Air Force destroyed two of the city's bridges,
69
226080
4118
U II. svjetskom ratu Sovjetske zračne sile uništile su jedan od dva gradska mosta,
03:50
making a Eulerian path easily possible.
70
230198
3333
pa je Eulerova staza postala moguća.
03:53
Though, to be fair, that probably wasn't their intention.
71
233531
3760
Doduše, to vjerojatno nije bila njihova namjera.
03:57
These bombings pretty much wiped Königsberg off the map,
72
237291
3490
Bombardiranje je gotovo izbrisalo Königsberg s karte,
04:00
and it was later rebuilt as the Russian city of Kaliningrad.
73
240781
4129
te je poslije ponovo izgrađen kao ruski grad Kaliningrad.
04:04
So while Königsberg and her seven bridges may not be around anymore,
74
244910
4173
Iako Königsberg i njegovih sedam mostova više ne postoje,
04:09
they will be remembered throughout history by the seemingly trivial riddle
75
249083
4278
bit će zapamćeni u povijesti zbog naizgled trivijalne zagonetke
04:13
which led to the emergence of a whole new field of mathematics.
76
253361
4301
koja je vodila do stvaranja potpuno nove grane matematike.
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7