How the Königsberg bridge problem changed mathematics - Dan Van der Vieren

1,399,943 views ・ 2016-09-01

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Songzhe Gao 審譯者: 瑞文Eleven 林Lim
你很難在任何現代地圖上 找到柯尼斯堡
00:09
You'd have a hard time finding Königsberg on any modern maps,
0
9036
5070
它怪異的地理位置
00:14
but one particular quirk in its geography
1
14106
3309
00:17
has made it one of the most famous cities in mathematics.
2
17415
4790
使它成為數學界最知名的城市之一
00:22
The medieval German city lay on both sides of the Pregel River.
3
22205
4009
這座中世紀的普魯士城 位於普列戈利亞河兩岸
00:26
At the center were two large islands.
4
26214
2661
河中間有兩座大島嶼
00:28
The two islands were connected to each other and to the river banks
5
28875
4249
以七座橋互相連接
00:33
by seven bridges.
6
33124
2760
00:35
Carl Gottlieb Ehler, a mathematician who later became the mayor of a nearby town,
7
35884
5412
數學家卡爾·戈特利布·依拉 是附近小鎮的準鎮長
00:41
grew obsessed with these islands and bridges.
8
41296
3099
他從小痴迷於這些島和橋樑
00:44
He kept coming back to a single question:
9
44395
2810
他在同一個問題上反覆打轉
00:47
Which route would allow someone to cross all seven bridges
10
47205
3890
到底怎麼走才能跨越七座橋
00:51
without crossing any of them more than once?
11
51095
4041
卻不會重覆走過任何一座?
00:55
Think about it for a moment.
12
55136
1810
大家來想一想
00:56
7
13
56946
990
7
00:57
6
14
57936
1011
6
00:58
5
15
58947
969
5
00:59
4
16
59916
931
4
01:00
3
17
60847
1109
3
01:01
2
18
61956
930
2
01:02
1
19
62886
1110
1
01:03
Give up?
20
63996
1080
要放棄嗎?
你一定很想
01:05
You should.
21
65076
1122
01:06
It's not possible.
22
66198
1315
這怎麼可能?
01:07
But attempting to explain why led famous mathematician Leonhard Euler
23
67513
5123
但是數學名家萊昂哈德·歐拉 單純為了求證
01:12
to invent a new field of mathematics.
24
72636
3361
發明了全新的數學領域
01:15
Carl wrote to Euler for help with the problem.
25
75997
2651
卡爾寫信請歐拉幫忙解答
01:18
Euler first dismissed the question as having nothing to do with math.
26
78648
4719
歐拉起初認為 這個問題與數學無關
01:23
But the more he wrestled with it,
27
83367
1769
但當他愈投入,卻愈感其中的蹊蹺
01:25
the more it seemed there might be something there after all.
28
85136
3841
01:28
The answer he came up with had to do with a type of geometry
29
88977
3929
他的答案與當時還不存在的
01:32
that did not quite exist yet, what he called the Geometry of Position,
30
92906
5352
某種幾何學有關 歐拉命名為位置幾何學
01:38
now known as Graph Theory.
31
98258
3639
現在稱為圖論
01:41
Euler's first insight
32
101897
1546
歐拉第一個見解是:
01:43
was that the route taken between entering an island or a riverbank and leaving it
33
103443
5064
這跟出入島嶼之間的路線沒有關係
01:48
didn't actually matter.
34
108507
2071
01:50
Thus, the map could be simplified with each of the four landmasses
35
110578
3849
他把地圖簡化成四塊陸地
01:54
represented as a single point,
36
114427
2200
並標示成單點
01:56
what we now call a node,
37
116627
2670
也就是現在的「節點」
01:59
with lines, or edges, between them to represent the bridges.
38
119297
4901
連接它們的「線」或「邊」代表橋
02:04
And this simplified graph allows us to easily count the degrees of each node.
39
124198
5421
這種簡化的圖形 讓我們能輕易計算節點的分支
02:09
That's the number of bridges each land mass touches.
40
129619
3600
也就是是連接每塊陸地的橋樑數
為什麼分支很重要?
02:13
Why do the degrees matter?
41
133219
1379
02:14
Well, according to the rules of the challenge,
42
134598
2230
根據問題的規則
02:16
once travelers arrive onto a landmass by one bridge,
43
136828
3850
一旦行人由橋走上陸地
02:20
they would have to leave it via a different bridge.
44
140678
3122
就必須從另一座橋離開
02:23
In other words, the bridges leading to and from each node on any route
45
143800
4368
換句話說,在節點上來去的橋
02:28
must occur in distinct pairs,
46
148168
2419
都必須成對才行
02:30
meaning that the number of bridges touching each landmass visited
47
150587
3652
意味著連接陸地的橋數
02:34
must be even.
48
154239
2129
必須是偶數
02:36
The only possible exceptions would be the locations of the beginning
49
156368
3661
唯一的例外可能是起點和終點
02:40
and end of the walk.
50
160029
2238
圖表上,四個節點都是奇數
02:42
Looking at the graph, it becomes apparent that all four nodes have an odd degree.
51
162267
4951
所以不論選哪條路
02:47
So no matter which path is chosen,
52
167218
1969
02:49
at some point, a bridge will have to be crossed twice.
53
169187
4253
還是會經過某一座橋兩次
02:53
Euler used this proof to formulate a general theory
54
173440
4269
歐拉用這個證據制定了一個
02:57
that applies to all graphs with two or more nodes.
55
177709
4012
適用所有兩個以上節點的通論
03:01
A Eulerian path that visits each edge only once
56
181721
4069
只行經各邊一次的「一筆畫定理」
03:05
is only possible in one of two scenarios.
57
185790
3369
唯有兩種情況才有可能
03:09
The first is when there are exactly two nodes of odd degree,
58
189159
4610
第一種是有兩個奇數邊的節點
03:13
meaning all the rest are even.
59
193769
2541
意味著其餘節點都有偶數邊
03:16
There, the starting point is one of the odd nodes,
60
196310
3349
其中,起點是奇數節點
03:19
and the end point is the other.
61
199659
2111
終點也是奇數節點
03:21
The second is when all the nodes are of even degree.
62
201770
4321
第二種,所有節點均有偶數邊
03:26
Then, the Eulerian path will start and stop in the same location,
63
206091
5140
一筆畫路線的起點和終點 是同一個節點
稱為歐拉循環
03:31
which also makes it something called a Eulerian circuit.
64
211231
3527
03:34
So how might you create a Eulerian path in Königsberg?
65
214758
3702
所以要怎麼在柯尼斯堡 規劃一筆畫路線呢?
03:38
It's simple.
66
218460
842
很簡單
03:39
Just remove any one bridge.
67
219302
2100
只要拆掉任何一座橋即可
03:41
And it turns out, history created a Eulerian path of its own.
68
221402
4678
結果,歷史竟然 真的創造出一筆畫路線
二戰期間,蘇聯空軍摧毀了兩座橋樑
03:46
During World War II, the Soviet Air Force destroyed two of the city's bridges,
69
226080
4118
03:50
making a Eulerian path easily possible.
70
230198
3333
形成一筆畫路線
03:53
Though, to be fair, that probably wasn't their intention.
71
233531
3760
不過,這應該不是他們的本意
03:57
These bombings pretty much wiped Königsberg off the map,
72
237291
3490
柯尼斯堡幾乎全毀,從地圖上消失
04:00
and it was later rebuilt as the Russian city of Kaliningrad.
73
240781
4129
它隨後重建成俄羅斯的加里寧格勒
04:04
So while Königsberg and her seven bridges may not be around anymore,
74
244910
4173
儘管柯尼斯堡與七橋已不復存在
04:09
they will be remembered throughout history by the seemingly trivial riddle
75
249083
4278
它們仍因這微小的謎題 催生出全新的數學理論
04:13
which led to the emergence of a whole new field of mathematics.
76
253361
4301
永存於歷史之中
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7