Can you solve the Mondrian squares riddle? - Gordon Hamilton

1,185,840 views ใƒป 2018-06-28

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Allon Sasson
00:06
Dutch artist Piet Mondrianโ€™s abstract, rectangular paintings
0
6832
4044
ืฆื™ื•ืจื™ ื”ืจื™ื‘ื•ืขื™ื ื”ืื‘ืกื˜ืจืงื˜ื™ื™ื ืฉืœ ื”ืืžืŸ ื”ื”ื•ืœื ื“ื™ ืคื™ื˜ ืžื•ื ื“ืจื™ืืŸ
00:10
inspired mathematicians to create a two-fold challenge.
1
10876
4670
ื ืชื ื• ื”ืฉืจืื” ืœืžืชืžื˜ื™ืงืื™ื ืœื™ืฆื•ืจ ืืชื’ืจ ื›ืคื•ืœ.
00:15
First, we must completely cover a square canvas with non-overlapping rectangles.
2
15546
5952
ืจืืฉื™ืช, ืืชื ื—ื™ื™ื‘ื™ื ืœื›ืกื•ืช ืœื’ืžืจื™ ืจื™ื‘ื•ืข ืงื ื•ื•ืก ืขื ืžืจื•ื‘ืขื™ื ืœื ื—ื•ืคืคื™ื.
00:21
All must be unique, so if we use a 1x4, we canโ€™t use a 4x1 in another spot,
3
21498
6434
ื›ื•ืœื ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื™ื—ื•ื“ื™ื™ื, ืื– ืื ื”ืฉืชืžืฉืชื ื‘ 1X4 ืื™ ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ 4X1 ื‘ื ืงื•ื“ื” ืื—ืจืช.
00:27
but a 2x2 rectangle would be fine.
4
27932
3825
ืื‘ืœ ืจื™ื‘ื•ืข ืฉืœ 2X2 ื™ื”ื™ื” ื‘ืกื“ืจ.
00:31
Letโ€™s try that.
5
31757
1349
ื‘ื•ืื• ื ื ืกื” ืืช ื–ื”.
00:33
Say we have a canvas measuring 4x4.
6
33106
2721
ื ื’ื™ื“ ืฉื™ืฉ ืœื ื• ืงื ื•ื•ืก ื‘ื’ื•ื“ืœ 4X4.
00:35
We canโ€™t chop it directly in half,
7
35827
2131
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื—ืชื•ืš ืื•ืชื• ื‘ื“ื™ื•ืง ืœื—ืฆื™,
00:37
since that would give us identical rectangles of 2x4.
8
37958
3613
ืžืื—ืจ ืฉื–ื” ื™ืชืŸ ืœื ื• ืžืจื•ื‘ืขื™ื ื–ื”ื™ื ืฉืœ 2X4.
00:41
But the next closest option - 3x4 and 1x4 - works.
9
41571
5436
ืื‘ืœ ื”ืื•ืคืฆื™ื” ื”ื›ื™ ืงืจื•ื‘ื” 3X4 ื• 1X4 ืขื•ื‘ื“ืช.
00:47
That was easy, but weโ€™re not done yet.
10
47007
2434
ื–ื” ื”ื™ื” ืงืœ, ืื‘ืœ ืขื“ื™ื™ืŸ ืœื ืกื™ื™ืžื ื•.
00:49
Now take the area of the largest rectangle,
11
49441
2668
ืขื›ืฉื™ื• ืงื—ื• ืืช ื”ืื™ื–ื•ืจ ืฉืœ ื”ืžืจื•ื‘ืข ื”ื’ื“ื•ืœ ื™ื•ืชืจ,
00:52
and subtract the area of the smallest.
12
52109
3063
ื•ื”ืคื—ื™ืชื• ืืช ื”ืฉื˜ื— ืฉืœ ื”ืงื˜ืŸ ื™ื•ืชืจ.
00:55
The result is our score,
13
55172
1989
ื”ืชื•ืฆืื” ื”ื™ื ื”ื ื™ืงื•ื“.
00:57
and the goal is to get as low a score as possible.
14
57161
4014
ื•ื”ืžื˜ืจื” ื”ื™ื ืœืงื‘ืœ ืืช ื”ื ื™ืงื•ื“ ื”ื ืžื•ืš ื‘ื™ื•ืชืจ.
01:01
Here, the largest area is 12 and the smallest is 4,
15
61175
4258
ืคื”, ื”ืื™ื–ื•ืจ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื”ื•ื 12 ื•ื”ืงื˜ืŸ ื”ื•ื 4,
01:05
giving us a score of 8.
16
65433
1868
ืžื” ืฉื ื•ืชืŸ ืœื ื• ืชื•ืฆืื” ืฉืœ 8.
01:07
Since we didnโ€™t try to go for a low score that time,
17
67301
3036
ืžืื—ืจ ื•ืœื ื ื™ืกื™ื ื• ืœืœื›ืช ืขืœ ื”ืชื•ืฆืื” ื”ื ืžื•ื›ื” ื‘ื™ื•ืชืจ ื”ืคืขื,
01:10
we can probably do better.
18
70337
1871
ืื ื—ื ื• ื›ื ืจืื” ื™ื›ื•ืœื™ื ืœื”ืฆืœื™ื— ื™ื•ืชืจ.
01:12
Letโ€™s keep our 1x4
19
72208
1784
ื‘ื•ืื• ื ืฉืžื•ืจ ืขืœ ื” 1X4
01:13
while breaking the 3x4 into a 3x3 and a 3x1.
20
73992
5039
ื‘ืขื•ื“ื ื• ืžืคืจืงื™ื ืืช ื” 3X4 ืœ 3X3 ื• 3X1.
01:19
Now our score is 9 minus 3, or 6.
21
79031
3785
ืขื›ืฉื™ื• ื”ืชื•ืฆืื” ื”ื™ื 9 ืคื—ื•ืช 3, ืื• 6.
01:22
Still not optimal, but better.
22
82816
2543
ืขื“ื™ื™ืŸ ืœื ืื•ืคื˜ื™ืžืœื™, ืื‘ืœ ื˜ื•ื‘ ื™ื•ืชืจ.
01:25
With such a small canvas, there are only a few options.
23
85359
4093
ืขื ืงื ื•ื•ืก ื›ื–ื” ืงื˜ืŸ, ื™ืฉ ืจืง ืžืขื˜ ืืคืฉืจื•ื™ื•ืช.
01:29
But letโ€™s see what happens when the canvas gets bigger.
24
89452
2798
ืื‘ืœ ื‘ื•ืื• ื ืจืื” ืžื” ืงื•ืจื” ื›ืฉื”ืงื ื•ื•ืก ื’ื“ืœ.
01:32
Try out an 8x8; whatโ€™s the lowest score you can get?
25
92250
4877
ื ืกื• ืื—ื“ ืฉืœ 8X8: ืžื” ื”ืชื•ืฆืื” ื”ื ืžื•ื›ื” ื‘ื™ื•ืชืจ ืืœื™ื” ืืชื ืžื’ื™ืขื™ื?
01:37
Pause here if you want to figure it out yourself.
26
97127
4567
ืขืฆืจื• ืืช ื”ืกืจื˜ื•ืŸ ืคื” ืื ืืชื ืจื•ืฆื™ื ืœื ืกื•ืช ืœื’ืœื•ืช ื‘ืขืฆืžื›ื.
01:41
Answer in: 3
27
101694
1085
ืชืฉื•ื‘ื” ืขื•ื“: 3
01:42
Answer in: 2
28
102779
1061
ืชืฉื•ื‘ื” ืขื•ื“: 2
01:43
Answer in: 1
29
103840
1383
ืชืฉื•ื‘ื” ืขื•ื“: 1
01:45
To get our bearings, we can start as before:
30
105223
2362
ื›ื“ื™ ืœืงื‘ืœ ื›ื™ื•ื•ืŸ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ื›ืžื• ืžืงื•ื“ื:
01:47
dividing the canvas roughly in two.
31
107585
2318
ืœื—ืœืง ืืช ื”ืงื ื•ื•ืก ื‘ืขืจืš ืœืฉืชื™ื.
01:49
That gives us a 5x8 rectangle with area 40
32
109903
3966
ื–ื” ื ื•ืชืŸ ืœื ื• ืžืจื•ื‘ืขื™ื ืฉืœ 5X8 ืขื ืฉื˜ื— 40
01:53
and a 3x8 with area 24,
33
113869
2614
ื• 3X8 ืขื ืฉื˜ื— 24,
01:56
for a score of 16.
34
116483
1838
ืœืชื•ืฆืื” ืฉืœ 16.
01:58
Thatโ€™s pretty bad.
35
118321
1207
ื–ื” ื“ื™ ื’ืจื•ืข.
01:59
Dividing that 5x8 into a 5x5 and a 5x3 leaves us with a score of 10.
36
119528
6925
ืœื—ืœืง ืืช ื” 5X8 ืœ 5X5 ื• 5X3 ืžืฉืื™ืจ ืื•ืชื ื• ืขื ืชื•ืฆืื” 10.
02:06
Better, but still not great.
37
126453
2482
ื™ื•ืชืจ ื˜ื•ื‘, ืื‘ืœ ืขื“ื™ื™ืŸ ืœื ืžืขื•ืœื”.
02:08
We could just keep dividing the biggest rectangle.
38
128935
3264
ื ื•ื›ืœ ืคืฉื•ื˜ ืœื”ืžืฉื™ืš ืœื—ืœืง ืืช ื”ืžืจื•ื‘ืข ื”ื’ื“ื•ืœ .
02:12
But that would leave us with increasingly tiny rectangles,
39
132199
3009
ืื‘ืœ ื–ื” ื™ืฉืื™ืจ ืื•ืชื ื• ืขื ืžืจื•ื‘ืขื™ื ืงื˜ื ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ,
02:15
which would increase the range between the largest and smallest.
40
135208
3810
ืžื” ืฉื™ื’ื“ื™ืœ ืืช ื”ื˜ื•ื•ื— ื‘ื™ืŸ ื”ื›ื™ ื’ื“ื•ืœ ืœื”ื›ื™ ืงื˜ืŸ.
02:19
What we really want
41
139018
1716
ืžื” ืฉืื ื—ื ื•ื• ื‘ืืžืช ืจื•ืฆื™ื
02:20
is for all our rectangles to fall within a small range of area values.
42
140734
5207
ื–ื” ืฉื›ืœ ื”ืžืจื•ื‘ืขื™ื ืฉืœื ื• ื™ื›ื ืกื• ืœื˜ื•ื•ื— ืฆืจ ืฉืœ ืขืจื›ื™ ืฉื˜ื—.
02:25
And since the total area of the canvas is 64,
43
145941
3338
ื•ืžืื—ืจ ื•ื”ืฉื˜ื— ื”ื›ื•ืœืœ ืฉืœ ื”ืงื ื•ื•ืก ื”ื•ื 64,
02:29
the areas need to add up to that.
44
149279
2336
ื”ืฉื˜ื— ืฆืจื™ืš ืœื”ืกืชื›ื ื‘ื–ื”.
02:31
Letโ€™s make a list of possible rectangles and areas.
45
151615
3811
ื‘ื•ืื• ื ืขืฉื” ืจืฉื™ืžื” ืฉืœ ืžืจื•ื‘ืขื™ื ืืคืฉืจื™ื™ื ื•ืฉื˜ื—ื.
02:35
To improve on our previous score,
46
155426
2211
ื›ื“ื™ ืœืฉืคืจ ืืช ื”ืชื•ืฆืื” ื”ืงื•ื“ืžืช ืฉืœื ื•,
02:37
we can try to pick a range of values spanning 9 or less
47
157637
3767
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ืกื•ืช ืœื‘ื—ื•ืจ ื˜ื•ื•ื— ืฉืœ ืขืจื›ื™ื ืฉื ืขื™ื ืž 9 ืื• ืคื—ื•ืช
02:41
and adding up to 64.
48
161404
2331
ื•ืœื”ื•ืกื™ืฃ ืื•ืชื ืœ 64.
02:43
Youโ€™ll notice that some values are left out
49
163735
2919
ืืชื ืชืฉื™ืžื• ืœื‘ ืฉื›ืžื” ืขืจื›ื™ื ื ืฉืืจื™ื ื‘ื—ื•ืฅ
02:46
because rectangles like 1x13 or 2x9 wonโ€™t fit on the canvas.
50
166654
5599
ื‘ื’ืœืœ ืฉืžืจื•ื‘ืขื™ื ืฉืœ 1X13 ืื• 2X9 ืœื ืžืชืื™ืžื™ื ืขืœ ื”ืงื ื•ื•ืก.
02:52
You might also realize
51
172253
1212
ืื•ืœื™ ื’ื ืชื‘ื™ื ื•
02:53
that if you use one of the rectangles with an odd area like 5, 9, or 15,
52
173465
5329
ืฉืื ืืชื ืžืฉืชืžืฉื™ื ื‘ืื—ื“ ื”ืžืจื•ื‘ืขื™ื ืขื ืฉื˜ื— ืื™ ื–ื•ื’ื™ ื›ืžื• 5,9, ืื• 15,
02:58
you need to use another odd-value rectangle to get an even sum.
53
178794
4423
ืืชื ืฆืจื™ื›ื™ื ืฉื˜ื— ืื™ ื–ื•ื’ื™ ืื—ืจ ื›ื“ื™ ืœื”ื’ื™ืข ืœืกื›ื•ื ื–ื•ื’ื™.
03:03
With all that in mind, letโ€™s see what works.
54
183217
3416
ืขื ื›ืœ ื–ื”, ื‘ื•ืื• ื ืจืื” ืžื” ืขื•ื‘ื“.
03:06
Starting with area 20 or more puts us over the limit too quickly.
55
186633
5018
ื”ืชื—ืœื” ืขื ืฉื˜ื— ืฉืœ 20 ืื• ื™ื•ืชืจ ืฉืžื” ืื•ืชื ื• ืžืขืœ ื”ืจืฃ ื‘ืžื”ื™ืจื•ืช.
03:11
But we can get to 64 using rectangles in the 14-18 range,
56
191651
4982
ืื‘ืœ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœ 64 ื‘ืฉื™ืžื•ืฉ ื‘ืžืจื•ื‘ืขื™ื ื‘ืชื—ื•ื ืฉืœ 14-18,
03:16
leaving out 15.
57
196633
2171
ืื ืžืฉืื™ืจื™ื ืืช 15 ื‘ื—ื•ืฅ.
03:18
Unfortunately, thereโ€™s no way to make them fit.
58
198804
2918
ืœืฆืขืจื ื•, ืื™ืŸ ื“ืจืš ืœื’ืจื•ื ืœื”ื ืœื”ืชืื™ื.
03:21
Using the 2x7 leaves a gap
59
201722
2569
ืฉื™ืžื•ืฉ ื‘ 2X7 ืžืฉืื™ืจ ืจื•ื•ื—
03:24
that can only be filled by a rectangle with a width of 1.
60
204291
3911
ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืžื•ืœื ืจืง ืขื ืžืจื•ื‘ืข ืขื ืจื•ื—ื‘ 1.
03:28
Going lower, the next range that works is 8 to 14,
61
208202
4075
ืื ื™ื•ืจื“ื™ื ืœืžื˜ื” ื™ื•ืชืจ, ื”ื˜ื•ื— ื”ื‘ื ืฉืขื•ื‘ื“ ื”ื•ื 8 ืขื“ 14,
03:32
leaving out the 3x3 square.
62
212277
2520
ืื ืžืฉืื™ืจื™ื ื‘ื—ื•ืฅ ืจื™ื‘ื•ืข ืฉืœ 3X3.
03:34
This time, the pieces fit.
63
214797
2149
ื”ืคืขื, ื”ื—ืชื™ื›ื•ืช ืžืชืื™ืžื•ืช.
03:36
Thatโ€™s a score of 6.
64
216946
1877
ื–ื• ืชื•ืฆืื” ืฉืœ 6.
03:38
Can we do even better?
65
218823
1421
ื”ืื ืืคืฉืจ ืœื”ืฆืœื™ื— ื™ื•ืชืจ?
03:40
No.
66
220244
1095
ืœื.
03:41
We can get the same score by throwing out the 2x7 and 1x8
67
221339
4248
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœืื•ืชื” ืชื•ืฆืื” ืขืœ ื™ื“ื™ ื”ืฉืœื›ืช ื” 2X7 ื•ื” 1X8
03:45
and replacing them with a 3x3, 1x7, and 1x6.
68
225587
4463
ื•ื”ื—ืœืคืชื ื‘ 3X3, 1X7 ื• 1X6.
03:50
But if we go any lower down the list,
69
230050
2689
ืื‘ืœ ืื ืื ื—ื ื• ื™ื•ืจื“ื™ื ื™ื•ืชืจ ื‘ืจืฉื™ืžื”,
03:52
the numbers become so small
70
232739
1778
ื”ืžืกืคืจื™ื ื”ื•ืคื›ื™ื ืœื›ืœ ื›ืš ืงื˜ื ื™ื
03:54
that weโ€™d need a wider range of sizes to cover the canvas,
71
234517
3313
ืฉื ืฆื˜ืจืš ื˜ื•ื•ื— ืจื—ื‘ ื™ื•ืชืจ ืฉืœ ื’ื“ืœื™ื ื›ื“ื™ ืœื›ืกื•ืช ืืช ื›ืœ ื”ืงื ื•ื•ืก,
03:57
which would increase the score.
72
237830
2306
ืžื” ืฉื™ื’ื“ื™ืœ ืืช ื”ืชื•ืฆืื”.
04:00
Thereโ€™s no trick or formula here โ€“ just a bit of intuition.
73
240136
3676
ืื™ืŸ ื˜ืจื™ืง ืื• ื ื•ืกื—ื” ืคื” - ืคืฉื•ื˜ ืงืฆืช ืื™ื˜ื•ืื™ืฆื™ื”.
04:03
It's more art than science.
74
243812
2075
ื–ื” ื™ื•ืชืจ ืืžื ื•ืช ืžืžื“ืข.
04:05
And for larger grids,
75
245887
1457
ื•ืœื’ืจื™ื“ื™ื ื’ื“ื•ืœื™ื ื™ื•ืชืจ,
04:07
expert mathematicians arenโ€™t sure whether theyโ€™ve found the lowest possible scores.
76
247344
5393
ืžืชืžื˜ื™ืงืื™ื ืžื•ืžื—ื™ื ืœื ื‘ื˜ื•ื—ื™ื ืื ื”ื ืžืฆืื• ืืช ื”ืชื•ืฆืื” ื”ื ืžื•ื›ื” ื‘ื™ื•ืชืจ ื”ืืคืฉืจื™ืช.
04:12
So how would you divide a 4x4,
77
252737
2184
ืื– ืื™ืš ืชื—ืœืงื• ืงื ื•ื•ืก ืฉืœ 4X4,
04:14
10x10,
78
254921
1087
10X10,
04:16
or 32x32 canvas?
79
256008
3148
ืื• 32X32?
04:19
Give it a try and post your results in the comments.
80
259156
2760
ื ืกื• ื•ื”ืขืœื• ืืช ื”ืชืฉื•ื‘ื” ืฉืœื›ื ื‘ืชื’ื•ื‘ื•ืช.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7