Can you solve the Mondrian squares riddle? - Gordon Hamilton

1,191,750 views ใƒป 2018-06-28

TED-Ed


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Chan-Hong Park ๊ฒ€ํ† : Won Jang
00:06
Dutch artist Piet Mondrianโ€™s abstract, rectangular paintings
0
6832
4044
๋„ค๋œ๋ž€๋“œ ํ™”๊ฐ€ ํ”ผ์—ํŠธ ๋ชฌ๋“œ๋ฆฌ์•ˆ์ด ๊ทธ๋ฆฐ ์ง์‚ฌ๊ฐํ˜•์˜ ์ถ”์ƒํ™”๋ฅผ ๋ณด๊ณ 
00:10
inspired mathematicians to create a two-fold challenge.
1
10876
4670
์ˆ˜ํ•™์ž๋“ค์€ ์ด์ค‘ ์š”์ธ ๋ฌธ์ œ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด์—ˆ์Šต๋‹ˆ๋‹ค.
00:15
First, we must completely cover a square canvas with non-overlapping rectangles.
2
15546
5952
์‚ฌ๊ฐํ˜•์˜ ์บ”๋ฒ„์Šค๋ฅผ ์„œ๋กœ ๊ฒน์น˜์ง€ ์•Š๋Š” ์‚ฌ๊ฐํ˜•๋“ค๋กœ ์™„์ „ํžˆ ๋ฎ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
00:21
All must be unique, so if we use a 1x4, we canโ€™t use a 4x1 in another spot,
3
21498
6434
์‚ฌ๊ฐํ˜•์€ ๋ชจ๋‘ ๋‹ฌ๋ผ์•ผ ํ•˜๋ฉฐ, ๋”ฐ๋ผ์„œ 1x4์™€ 4x1์€ ๊ฐ™์ด ์“ธ ์ˆ˜ ์—†์ง€์š”.
00:27
but a 2x2 rectangle would be fine.
4
27932
3825
ํ•˜์ง€๋งŒ 2x2 ์‚ฌ๊ฐํ˜•์€ ๊ดœ์ฐฎ๊ฒ ์ง€์š”.
00:31
Letโ€™s try that.
5
31757
1349
ํ•œ ๋ฒˆ ํ•ด๋ณผ๊นŒ์š”.
00:33
Say we have a canvas measuring 4x4.
6
33106
2721
4x4 ์‚ฌ์ด์ฆˆ์˜ ์บ”๋ฒ„์Šค๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ณด์ฃ .
00:35
We canโ€™t chop it directly in half,
7
35827
2131
์ด๊ฑธ ์ •ํ™•ํžˆ ๋ฐ˜์œผ๋กœ ์ž๋ฅด๋ฉด ์•ˆ ๋˜๊ฒ ์ฃ .
00:37
since that would give us identical rectangles of 2x4.
8
37958
3613
์™œ๋ƒํ•˜๋ฉด ๋˜‘๊ฐ™์€ 2x4 ์‚ฌ๊ฐํ˜• ๋‘ ๊ฐœ๊ฐ€ ์ƒ๊ธฐ๋‹ˆ๊นŒ์š”.
00:41
But the next closest option - 3x4 and 1x4 - works.
9
41571
5436
ํ•˜์ง€๋งŒ ์‚ฌ์ด์ฆˆ๋ฅผ ์กฐ๊ธˆ ๋ฐ”๊พผ 3x4์™€ 1x4๋Š” ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
์—ฌ๊ธฐ ๊นŒ์ง€๋Š” ์‰ฌ์› ์ง€๋งŒ ์•„์ง ๋์ด ์•„๋‹™๋‹ˆ๋‹ค.
00:47
That was easy, but weโ€™re not done yet.
10
47007
2434
00:49
Now take the area of the largest rectangle,
11
49441
2668
์ œ์ผ ํฐ ์‚ฌ๊ฐํ˜•์˜ ๋ฉด์ ์—์„œ
00:52
and subtract the area of the smallest.
12
52109
3063
์ œ์ผ ์ž‘์€ ์‚ฌ๊ฐํ˜•์˜ ๋ฉด์ ์„ ๋บ๋‹ˆ๋‹ค.
00:55
The result is our score,
13
55172
1989
๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ์ ์ˆ˜๊ฐ€ ๋˜์ง€์š”.
00:57
and the goal is to get as low a score as possible.
14
57161
4014
์ตœ๋Œ€ํ•œ ๋‚ฎ์€ ์ ์ˆ˜๋ฅผ ๋‚ด๋Š” ๊ฒŒ ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค.
01:01
Here, the largest area is 12 and the smallest is 4,
15
61175
4258
์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํฐ ์‚ฌ๊ฐํ˜•์˜ ๋ฉด์ ์€ 12์ด๊ณ  ์ œ์ผ ์ž‘์€ ๊ฒƒ์€ 4์ด๋‹ˆ
01:05
giving us a score of 8.
16
65433
1868
์šฐ๋ฆฌ์˜ ์ ์ˆ˜๋Š” 8์ ์ด ๋ฉ๋‹ˆ๋‹ค.
01:07
Since we didnโ€™t try to go for a low score that time,
17
67301
3036
์ด์ œ ๋‚ฎ์€ ์ ์ˆ˜๊ฐ€ ๋‚˜์˜ค๋„๋ก ๋จธ๋ฆฌ๋ฅผ ์จ๋ณผ๊นŒ์š”?
01:10
we can probably do better.
18
70337
1871
์ž˜ ํ•  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”.
01:12
Letโ€™s keep our 1x4
19
72208
1784
1x4๋Š” ๊ทธ๋Œ€๋กœ ๋‘๊ณ 
01:13
while breaking the 3x4 into a 3x3 and a 3x1.
20
73992
5039
3x4๋ฅผ 3x3๊ณผ 3x1๋กœ ์ž˜๋ผ๋ณด์ฃ .
01:19
Now our score is 9 minus 3, or 6.
21
79031
3785
์ด์ œ๋Š” 9์—์„œ 3์„ ๋บ€ 6์ด ์šฐ๋ฆฌ์˜ ์ ์ˆ˜๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
01:22
Still not optimal, but better.
22
82816
2543
๋งŒ์กฑํ•  ๋งŒํ•œ ์ ์ˆ˜๋Š” ์•„๋‹ˆ์ง€๋งŒ ์ „๋ณด๋‹ค๋Š” ๋‚˜์•„์กŒ๋„ค์š”.
01:25
With such a small canvas, there are only a few options.
23
85359
4093
์ด๋Ÿฐ ์ž‘์€ ์บ”๋ฒ„์Šค์—๋Š” ๊ฒฝ์šฐ์˜ ์ˆ˜๊ฐ€ ๋งŽ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
01:29
But letโ€™s see what happens when the canvas gets bigger.
24
89452
2798
ํ•˜์ง€๋งŒ ๋” ํฐ ์บ”๋ฒ„์Šค๋กœ๋Š” ์–ด๋–จ์ง€ ๋ณผ๊นŒ์š”?
01:32
Try out an 8x8; whatโ€™s the lowest score you can get?
25
92250
4877
8x8 ์บ”๋ฒ„์Šค์ž…๋‹ˆ๋‹ค. ์–ผ๋งˆ๋‚˜ ๋‚ฎ์€ ์ ์ˆ˜๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋‚˜์š”?
01:37
Pause here if you want to figure it out yourself.
26
97127
4567
(์—ฌ๋Ÿฌ๋ถ„์ด ์ง์ ‘ ํ•ด๋ณด๊ณ  ์‹ถ๋‹ค๋ฉด ์—ฌ๊ธฐ์„œ ์ž ๊น ๋ฉˆ์ถ”์„ธ์š”)
01:41
Answer in: 3
27
101694
1085
3์ดˆ ํ›„ ์ •๋‹ต ๊ณต๊ฐœ
01:42
Answer in: 2
28
102779
1061
2์ดˆ ํ›„ ์ •๋‹ต ๊ณต๊ฐœ
01:43
Answer in: 1
29
103840
1383
1์ดˆ ํ›„ ์ •๋‹ต ๊ณต๊ฐœ
01:45
To get our bearings, we can start as before:
30
105223
2362
๋ฐฐ์šด ๋Œ€๋กœ ์‹œ์ž‘ํ•ด๋ณผ๊นŒ์š”?
01:47
dividing the canvas roughly in two.
31
107585
2318
์บ”๋ฒ„์Šค๋ฅผ ๋Œ€๋žต ๋‘˜๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.
01:49
That gives us a 5x8 rectangle with area 40
32
109903
3966
๋ฉด์  40์ธ 5X8 ์‚ฌ๊ฐํ˜•๊ณผ
01:53
and a 3x8 with area 24,
33
113869
2614
๋ฉด์  24์ธ 3X8 ์‚ฌ๊ฐํ˜•์ด ๋‚˜์™”์œผ๋‹ˆ
01:56
for a score of 16.
34
116483
1838
์ ์ˆ˜๋Š” 16์ ์ž…๋‹ˆ๋‹ค.
01:58
Thatโ€™s pretty bad.
35
118321
1207
ํ˜•ํŽธ์—†๋Š” ์ ์ˆ˜๋„ค์š”.
01:59
Dividing that 5x8 into a 5x5 and a 5x3 leaves us with a score of 10.
36
119528
6925
5X8์„ 5X5์™€ 5X3์œผ๋กœ ๋‚˜๋ˆ„๋ฉด 10์ ์ด ๋˜๋Š” ๊ตฐ์š”.
02:06
Better, but still not great.
37
126453
2482
์กฐ๊ธˆ ๋‚˜์•„์กŒ์ง€๋งŒ ์•„์ง ๋ฉ€์—ˆ์–ด์š”.
02:08
We could just keep dividing the biggest rectangle.
38
128935
3264
๊ฐ€์žฅ ํฐ ์‚ฌ๊ฐํ˜•์„ ๊ณ„์† ์ž๋ฅผ ์ˆ˜๋Š” ์žˆ์Šต๋‹ˆ๋‹ค.
02:12
But that would leave us with increasingly tiny rectangles,
39
132199
3009
ํ•˜์ง€๋งŒ ์ด๋Ÿฌ๋ฉด ์ ์  ๋” ์ž‘์€ ์‚ฌ๊ฐํ˜•๋“ค์ด ๋งŒ๋“ค์–ด์ง€๊ณ 
02:15
which would increase the range between the largest and smallest.
40
135208
3810
๊ฐ€์žฅ ํฐ ์‚ฌ๊ฐํ˜•๊ณผ ๊ฐ€์žฅ ์ž‘์€ ์‚ฌ๊ฐํ˜•์˜ ๋ฉด์  ์ฐจ์ด๋„ ๋Š˜์–ด๋งŒ ๊ฐ‘๋‹ˆ๋‹ค.
02:19
What we really want
41
139018
1716
์šฐ๋ฆฌ๊ฐ€ ์ง„์งœ ์›ํ•˜๋Š” ๊ฒƒ์€
02:20
is for all our rectangles to fall within a small range of area values.
42
140734
5207
๋ชจ๋“  ์‚ฌ๊ฐํ˜•์ด ๋น„์Šทํ•œ ๋ฉด์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:25
And since the total area of the canvas is 64,
43
145941
3338
์บ”๋ฒ„์Šค์˜ ์ด๋ฉด์ ์ด 64์ด๊ธฐ ๋•Œ๋ฌธ์—
02:29
the areas need to add up to that.
44
149279
2336
๋ฉด์ ๋“ค์˜ ํ•ฉ๊ณ„๋Š” 64๊ฐ€ ๋ผ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
02:31
Letโ€™s make a list of possible rectangles and areas.
45
151615
3811
๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋Š” ์‚ฌ๊ฐํ˜•๊ณผ ๋ฉด์ ์„ ๋ฆฌ์ŠคํŠธ๋กœ ๋งŒ๋“ค์–ด ๋ณด์ฃ .
02:35
To improve on our previous score,
46
155426
2211
์กฐ๊ธˆ ์ „ ์ ์ˆ˜๋ณด๋‹ค ๋‚˜์•„์ง€๋ ค๋ฉด
02:37
we can try to pick a range of values spanning 9 or less
47
157637
3767
์šฐ๋ฆฐ 9 ํ˜น์€ ๊ทธ ์ดํ•˜์˜ ์ ์ˆ˜๊ฐ€ ๋‚˜์˜ค๋Š” ์ˆ˜๋“ค์„ ๊ณจ๋ผ์„œ
02:41
and adding up to 64.
48
161404
2331
์ด ์ˆ˜๋“ค์˜ ํ•ฉ์ด 64๊ฐ€ ๋˜๊ฒŒ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
02:43
Youโ€™ll notice that some values are left out
49
163735
2919
์šฐ๋ฆฌ๋Š” ์—ฌ๊ธฐ์—์„œ ๋ช‡ ๋ช‡ ๊ฐ’๋“ค์ด ๋น ์ ธ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:46
because rectangles like 1x13 or 2x9 wonโ€™t fit on the canvas.
50
166654
5599
1x13์ด๋‚˜ 2x9 ๊ฐ™์€ ์‚ฌ๊ฐํ˜•์€ ์บ”๋ฒ„์Šค์— ๋งž์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:52
You might also realize
51
172253
1212
๋˜ ๋ˆˆ์น˜ ์ฑ„์…จ๋Š”์ง€ ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ
02:53
that if you use one of the rectangles with an odd area like 5, 9, or 15,
52
173465
5329
5, 9, 15 ๊ฐ™์€ ํ™€์ˆ˜์˜ ๋ฉด์ ์„ ์‚ฌ์šฉํ•˜๋ฉด
02:58
you need to use another odd-value rectangle to get an even sum.
53
178794
4423
์ „์ฒด ํ•ฉ์„ ์ง์ˆ˜๋กœ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๋˜ ๋‹ค๋ฅธ ํ™€์ˆ˜ ๊ฐ’์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
03:03
With all that in mind, letโ€™s see what works.
54
183217
3416
์ด ๋ชจ๋“  ๊ฑธ ์—ผ๋‘์— ๋‘๊ณ  ์–ด๋–ป๊ฒŒ ๋˜๋Š” ์ง€ ์ง€์ผœ๋ณด์ฃ .
03:06
Starting with area 20 or more puts us over the limit too quickly.
55
186633
5018
๋ฉด์  20 ์ด์ƒ์œผ๋กœ ์‹œ์ž‘ํ•˜๋ฉด ๊ธˆ์„ธ ํ•œ๊ณ„์— ๋„๋‹ฌํ•ฉ๋‹ˆ๋‹ค.
03:11
But we can get to 64 using rectangles in the 14-18 range,
56
191651
4982
ํ•˜์ง€๋งŒ ๋ฉด์  14์™€ 18 ์‚ฌ์ด๋ฅผ ์ด์šฉํ•˜๋ฉด ํ•ฉ 64๋ฅผ ๋งž์ถœ ์ˆ˜๋Š” ์žˆ์–ด์š”.
03:16
leaving out 15.
57
196633
2171
๋ฉด์  15๋งŒ ์ œ์™ธํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
03:18
Unfortunately, thereโ€™s no way to make them fit.
58
198804
2918
ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ ์‚ฌ๊ฐํ˜•๋“ค์„ ์บ”๋ฒ„์Šค์— ๋งž์ถ”์–ด ๋„ฃ์„ ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
03:21
Using the 2x7 leaves a gap
59
201722
2569
2x7์„ ์‚ฌ์šฉํ•˜๋ฉด ๋นˆํ‹ˆ์ด ์ƒ๊น๋‹ˆ๋‹ค.
03:24
that can only be filled by a rectangle with a width of 1.
60
204291
3911
์ด ํ‹ˆ์€ ํ•œ ๋ฉด์ด 1์ธ ์‚ฌ๊ฐํ˜•์œผ๋กœ๋งŒ ๋ฉ”๊ฟ€ ์ˆ˜ ์žˆ์ง€์š”.
03:28
Going lower, the next range that works is 8 to 14,
61
208202
4075
์ˆซ์ž๋ฅผ ๋‚ฎ์ถ”๋ฉด ๋‹ค์Œ์œผ๋กœ ์œ ํšจํ•œ ๋ฒ”์œ„๋Š” 8-14์ž…๋‹ˆ๋‹ค
03:32
leaving out the 3x3 square.
62
212277
2520
3x3์€ ์ œ์™ธํ•ด์•ผ ๊ฒ ์ง€์š”.
03:34
This time, the pieces fit.
63
214797
2149
์ด๋ฒˆ์—” ์กฐ๊ฐ๋“ค์ด ์ž˜ ๋งž๋Š” ๊ตฐ์š”.
03:36
Thatโ€™s a score of 6.
64
216946
1877
์ ์ˆ˜๋Š” 6์ ์ž…๋‹ˆ๋‹ค.
03:38
Can we do even better?
65
218823
1421
๋” ๋‚˜์€ ์ ์ˆ˜๊ฐ€ ๊ฐ€๋Šฅํ• ๊นŒ์š”?
03:40
No.
66
220244
1095
์•„๋‹ˆ์˜ค.
03:41
We can get the same score by throwing out the 2x7 and 1x8
67
221339
4248
2x7๊ณผ 1x8์„ ๋ฒ„๋ฆฌ๋ฉด ๊ฐ™์€ ์ ์ˆ˜๋ฅผ ๋ฐ›์„ ์ˆ˜๋Š” ์žˆ์Šต๋‹ˆ๋‹ค.
03:45
and replacing them with a 3x3, 1x7, and 1x6.
68
225587
4463
๊ทธ ๋‘˜์„ 3x3๊ณผ 1x7, 1x6์œผ๋กœ ๋Œ€์ฒด ํ•  ์ˆ˜ ์žˆ๊ฒ ์ง€์š”.
03:50
But if we go any lower down the list,
69
230050
2689
๋ฆฌ์ŠคํŠธ์˜ ๋” ๋‚ฎ์€ ๊ฐ’์œผ๋กœ ๋‚ด๋ ค๊ฐ€๋ฉด
03:52
the numbers become so small
70
232739
1778
์ˆซ์ž๊ฐ€ ๋„ˆ๋ฌด ์ž‘์•„์ ธ
03:54
that weโ€™d need a wider range of sizes to cover the canvas,
71
234517
3313
์บ”๋ฒ„์Šค๋ฅผ ์ฑ„์šฐ๊ธฐ ์œ„ํ•ด ๋” ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ์‚ฌ๊ฐํ˜•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
03:57
which would increase the score.
72
237830
2306
๊ทธ๋Ÿฌ๋ฉด ์ ์ˆ˜๊ฐ€ ๋†’์•„์ง€๊ฒ ์ง€์š”.
04:00
Thereโ€™s no trick or formula here โ€“ just a bit of intuition.
73
240136
3676
์–ด๋–ค ์†์ž„์ˆ˜๋‚˜ ๊ณต์‹๋„ ์—†์–ด์š”. ์•ฝ๊ฐ„์˜ ์ง๊ด€๋งŒ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
04:03
It's more art than science.
74
243812
2075
์ด๊ฑด ๊ณผํ•™์ด๋ผ๊ธฐ ๋ณด๋‹จ ์˜ˆ์ˆ ์— ๊ฐ€๊น์Šต๋‹ˆ๋‹ค.
04:05
And for larger grids,
75
245887
1457
๋” ํฐ ์‚ฌ๊ฐํ˜•์˜ ๊ฒฝ์šฐ
04:07
expert mathematicians arenโ€™t sure whether theyโ€™ve found the lowest possible scores.
76
247344
5393
์ˆ˜ํ•™์ „๋ฌธ๊ฐ€๋“ค๋„ ์ž์‹ ๋“ค์ด ๋ฐ›์€ ์ ์ˆ˜๊ฐ€ ๊ฐ€์žฅ ์ž‘์€ ์ ์ˆ˜์ธ์ง€ ์žฅ๋‹ดํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
04:12
So how would you divide a 4x4,
77
252737
2184
์—ฌ๋Ÿฌ๋ถ„์€ 4x4๋ฅผ ์–ด๋–ป๊ฒŒ ๋‚˜๋ˆ„์‹ค ๊ฑด๊ฐ€์š”?
04:14
10x10,
78
254921
1087
10x10์ด๋‚˜
04:16
or 32x32 canvas?
79
256008
3148
32x32 ์บ”๋ฒ„์Šค๋Š”์š”?
04:19
Give it a try and post your results in the comments.
80
259156
2760
ํ•œ ๋ฒˆ ์‹œ๋„ํ•ด๋ณด์„ธ์š”. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋Œ“๊ธ€๋กœ ์•Œ๋ ค์ฃผ์„ธ์š”.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7