The wonderful and terrifying implications of computers that can learn | Jeremy Howard
598,999 views ・ 2014-12-16
請雙擊下方英文字幕播放視頻。
譯者: Sharon Loh
審譯者: Yamei Huang
00:12
It used to be that if you wanted
to get a computer to do something new,
0
12880
4013
過去如果想用電腦來作點新東西,
00:16
you would have to program it.
1
16893
1554
你需要設計程式。
00:18
Now, programming, for those of you here
that haven't done it yourself,
2
18447
3411
而現在,
你們可能沒做過程式設計這件事,
00:21
requires laying out in excruciating detail
3
21858
3502
它需要規劃相當詳細的細節
00:25
every single step that you want
the computer to do
4
25360
3367
那些你想讓電腦執行的每一個步驟
00:28
in order to achieve your goal.
5
28727
2362
以達到你的目的。
00:31
Now, if you want to do something
that you don't know how to do yourself,
6
31089
3496
如果你沒有概念要怎麼做的話
00:34
then this is going
to be a great challenge.
7
34585
2063
那會是個很大的挑戰。
00:36
So this was the challenge faced
by this man, Arthur Samuel.
8
36648
3483
亞瑟·撒姆爾也曾面對這種挑戰。
00:40
In 1956, he wanted to get this computer
9
40131
4077
他在 1956 年便想到用這台電腦
00:44
to be able to beat him at checkers.
10
44208
2340
能夠在西洋跳棋棋賽打敗他。
00:46
How can you write a program,
11
46548
2040
要如何設計這樣的程式?
00:48
lay out in excruciating detail,
how to be better than you at checkers?
12
48588
3806
把細節通通寫出來,
如何讓電腦比你還會下棋?
00:52
So he came up with an idea:
13
52394
1722
於是他想出了一個點子:
00:54
he had the computer play
against itself thousands of times
14
54116
3724
他讓電腦與電腦本身對弈數千次
00:57
and learn how to play checkers.
15
57840
2524
以學習如何玩西洋棋。
01:00
And indeed it worked,
and in fact, by 1962,
16
60364
3180
然而,在 1962 年做到了,
01:03
this computer had beaten
the Connecticut state champion.
17
63544
4017
電腦打敗了康乃狄克州的冠軍。
01:07
So Arthur Samuel was
the father of machine learning,
18
67561
2973
於是亞瑟·撒姆爾
成為了機器學習之父,
01:10
and I have a great debt to him,
19
70534
1717
我尊敬他,
01:12
because I am a machine
learning practitioner.
20
72251
2763
因為我也是個機器學習實踐者,
01:15
I was the president of Kaggle,
21
75014
1465
我曾是 Kaggle 的會長,
01:16
a community of over 200,000
machine learning practictioners.
22
76479
3388
Kaggle 是個超過 20 萬人的
機器學習實踐者的社群。
01:19
Kaggle puts up competitions
23
79867
2058
Kaggle 設立了一些比賽
01:21
to try and get them to solve
previously unsolved problems,
24
81925
3708
讓他們參與解決
過去無法解決的問題,
01:25
and it's been successful
hundreds of times.
25
85633
3837
而有上百的成功個案。
01:29
So from this vantage point,
I was able to find out
26
89470
2470
從這有利的環境中,
我發現
01:31
a lot about what machine learning
can do in the past, can do today,
27
91940
3950
很多機器學習在
過去和現在可以做到的事情,
01:35
and what it could do in the future.
28
95890
2362
還有未來可以做到的事。
01:38
Perhaps the first big success of
machine learning commercially was Google.
29
98252
4423
第一個機器學習的
商業成功案例是谷歌。
01:42
Google showed that it is
possible to find information
30
102675
3109
谷歌展示找尋資料的方法
01:45
by using a computer algorithm,
31
105784
1752
是使用計算機演算法,
01:47
and this algorithm is based
on machine learning.
32
107536
2901
而這演算法是以機器學習為基礎。
01:50
Since that time, there have been many
commercial successes of machine learning.
33
110437
3886
自此,機器學習
有很多的商業成功例子,
01:54
Companies like Amazon and Netflix
34
114323
1837
譬如亞馬遜和奈飛公司
01:56
use machine learning to suggest
products that you might like to buy,
35
116160
3716
用機器學習會向你推薦
你可能想買的商品,
01:59
movies that you might like to watch.
36
119876
2020
你可能想看的影片。
02:01
Sometimes, it's almost creepy.
37
121896
1807
有時,你可能會很訝異。
02:03
Companies like LinkedIn and Facebook
38
123703
1954
像領英和臉書等公司
02:05
sometimes will tell you about
who your friends might be
39
125657
2594
有些時候會告訴你
誰會是你的朋友
02:08
and you have no idea how it did it,
40
128251
1977
而你根本不知道他們是如何做到的,
02:10
and this is because it's using
the power of machine learning.
41
130228
2967
因為他們用了
機器學習這強大的功能。
02:13
These are algorithms that have
learned how to do this from data
42
133195
2957
演算法從資料去學習這類事情
02:16
rather than being programmed by hand.
43
136152
3247
不需要動手去編寫程式。
02:19
This is also how IBM was successful
44
139399
2478
這也是 IBM 過去能成功的原因
02:21
in getting Watson to beat
the two world champions at "Jeopardy,"
45
141877
3862
讓超級電腦「華生」在「危機遊戲」中
打敗兩屆世界冠軍。
02:25
answering incredibly subtle
and complex questions like this one.
46
145739
3225
回答一些細碎和複雜的問題,像是
02:28
["The ancient 'Lion of Nimrud' went missing
from this city's national museum in 2003
(along with a lot of other stuff)"]
47
148964
2835
「2003年,古獅像在這城市的
國家博物館消失了(連同其他物品)」
02:31
This is also why we are now able
to see the first self-driving cars.
48
151799
3235
這也是我們現在能看到第一部
自行駕駛汽車的原因。
02:35
If you want to be able to tell
the difference between, say,
49
155034
2822
如果你能說出不同點,像是
02:37
a tree and a pedestrian,
well, that's pretty important.
50
157856
2632
一棵樹和一條行人道,
那顯得非常重要。
02:40
We don't know how to write
those programs by hand,
51
160488
2587
我們不知道如何設計這樣的程式,
02:43
but with machine learning,
this is now possible.
52
163075
2997
不過通過機器,這就成為可能。
02:46
And in fact, this car has driven
over a million miles
53
166072
2608
事實上,
這部汽車已經行駛一百萬英哩
02:48
without any accidents on regular roads.
54
168680
3506
在正常路面沒有發生事故。
02:52
So we now know that computers can learn,
55
172196
3914
我們現在都知道電腦能夠學習,
02:56
and computers can learn to do things
56
176110
1900
學習做一些
02:58
that we actually sometimes
don't know how to do ourselves,
57
178010
2838
有時我們自己也不知道怎麼做的事,
03:00
or maybe can do them better than us.
58
180848
2885
還可能比我們做得更好。
03:03
One of the most amazing examples
I've seen of machine learning
59
183733
4195
其中一個機器學習的經典例子
03:07
happened on a project that I ran at Kaggle
60
187928
2392
是我在 Kaggle 所做的一個專案
03:10
where a team run by a guy
called Geoffrey Hinton
61
190320
3591
由傑佛里·辛頓帶領的團隊
03:13
from the University of Toronto
62
193911
1552
他是多倫多大學的教授
03:15
won a competition for
automatic drug discovery.
63
195463
2677
他們贏了新藥研發的比賽。
03:18
Now, what was extraordinary here
is not just that they beat
64
198140
2847
他們出色地方
不只打敗了
03:20
all of the algorithms developed by Merck
or the international academic community,
65
200987
4013
默克藥廠或國際學術社群
所研發的演算法,
03:25
but nobody on the team had any background
in chemistry or biology or life sciences,
66
205000
5061
他們的團隊沒有化學
生物或生命科學的背景,
03:30
and they did it in two weeks.
67
210061
2169
而且只花了兩個星期就完成。
03:32
How did they do this?
68
212230
1381
他們怎麼做到的?
03:34
They used an extraordinary algorithm
called deep learning.
69
214421
2921
他們用了一個很出色的演算法
叫做「深度學習」。
03:37
So important was this that in fact
the success was covered
70
217342
2949
這是重要且成功的事情
03:40
in The New York Times in a front page
article a few weeks later.
71
220291
3121
在數星期後
被刊登在紐約時報頭版。
03:43
This is Geoffrey Hinton
here on the left-hand side.
72
223412
2735
左手邊那位是傑佛里·辛頓。
03:46
Deep learning is an algorithm
inspired by how the human brain works,
73
226147
4341
深度學習是一種
受到人類大腦啟發的演算法,
03:50
and as a result it's an algorithm
74
230488
1812
它是一種演算法
03:52
which has no theoretical limitations
on what it can do.
75
232300
3841
做法不受理論限制的演算法。
03:56
The more data you give it and the more
computation time you give it,
76
236141
2823
你給它越多的資料和
運算時間,
03:58
the better it gets.
77
238964
1312
會得到更好的結果。
04:00
The New York Times also
showed in this article
78
240276
2339
紐約時報的文章裡
04:02
another extraordinary
result of deep learning
79
242615
2242
也介紹到深度學習的非凡成就
04:04
which I'm going to show you now.
80
244857
2712
我現在要展示給你們看。
04:07
It shows that computers
can listen and understand.
81
247569
4941
它顯示電腦能聽懂和理解資料的能力。
04:12
(Video) Richard Rashid: Now, the last step
82
252510
2711
(影片)理察·拉希德:
現在,最後一步是
04:15
that I want to be able
to take in this process
83
255221
3025
我能夠理解這個程序
04:18
is to actually speak to you in Chinese.
84
258246
4715
我能夠跟你說中文。
04:22
Now the key thing there is,
85
262961
2635
現在關鍵的是,
04:25
we've been able to take a large amount
of information from many Chinese speakers
86
265596
5002
我們從很多講中文的人士中
收集大量的資訊
04:30
and produce a text-to-speech system
87
270598
2530
然後產生文字轉化語言的系統
04:33
that takes Chinese text
and converts it into Chinese language,
88
273128
4673
將中文文字轉化成中文語言,
04:37
and then we've taken
an hour or so of my own voice
89
277801
4128
然後錄一個小時我自己的聲音
04:41
and we've used that to modulate
90
281929
1891
我們使用它去調變
04:43
the standard text-to-speech system
so that it would sound like me.
91
283820
4544
使標準文字轉化語音系統的聲音
聽起來像我的聲音。
04:48
Again, the result's not perfect.
92
288364
2540
再一次,雖然結果沒有很完美,
04:50
There are in fact quite a few errors.
93
290904
2648
裡面還有一些錯誤。
04:53
(In Chinese)
94
293552
2484
(中文)
04:56
(Applause)
95
296036
3367
(掌聲)
05:01
There's much work to be done in this area.
96
301446
3576
在這個領域還有很多工作要做。
05:05
(In Chinese)
97
305022
3645
(中文)
05:08
(Applause)
98
308667
3433
(掌聲)
05:13
Jeremy Howard: Well, that was at
a machine learning conference in China.
99
313345
3399
傑里米·霍華德:那是在中國舉行的
機器學習研討會。
05:16
It's not often, actually,
at academic conferences
100
316744
2370
那不常有,事實上,
在學術會議上
05:19
that you do hear spontaneous applause,
101
319114
1897
聽到熱烈的掌聲,
05:21
although of course sometimes
at TEDx conferences, feel free.
102
321011
3676
雖然有些時候
TEDx 講座不拘泥形式。
05:24
Everything you saw there
was happening with deep learning.
103
324687
2795
你所看到的都是出於深度學習
05:27
(Applause) Thank you.
104
327482
1525
(掌聲)謝謝。
05:29
The transcription in English
was deep learning.
105
329007
2282
英文文字翻譯由深度學習完成的。
05:31
The translation to Chinese and the text
in the top right, deep learning,
106
331289
3412
翻譯成中文和右上角的文稿
也是出於深度學習,
05:34
and the construction of the voice
was deep learning as well.
107
334701
3307
連創建聲音也都是深度學習。
05:38
So deep learning is
this extraordinary thing.
108
338008
3234
深度學習是如此的神奇。
05:41
It's a single algorithm that
can seem to do almost anything,
109
341242
3099
它是個單一的演算法
似乎可以完成任何事情,
05:44
and I discovered that a year earlier,
it had also learned to see.
110
344341
3111
我一年前還發現它可以學會看
05:47
In this obscure competition from Germany
111
347452
2176
這個德國遊戲的比賽
05:49
called the German Traffic Sign
Recognition Benchmark,
112
349628
2597
叫德國交通標誌確認基準,
05:52
deep learning had learned
to recognize traffic signs like this one.
113
352225
3393
深度學習能認出這個交通標誌。
05:55
Not only could it
recognize the traffic signs
114
355618
2094
它不只確認交通標誌的能力
05:57
better than any other algorithm,
115
357712
1758
比其他的演算法好,
05:59
the leaderboard actually showed
it was better than people,
116
359470
2719
在排行榜上更顯示它做得比人類好,
06:02
about twice as good as people.
117
362189
1852
正確性是人類的兩倍。
06:04
So by 2011, we had the first example
118
364041
1996
2011 以前,我們有了第一個例子
06:06
of computers that can see
better than people.
119
366037
3405
視力高於人類的電腦。
06:09
Since that time, a lot has happened.
120
369442
2049
從那時開始,許多電腦也可以做到。
06:11
In 2012, Google announced that
they had a deep learning algorithm
121
371491
3514
2012 年谷歌宣佈
使用深度學習演算法
06:15
watch YouTube videos
122
375005
1415
來監看 Youtube 影片
06:16
and crunched the data
on 16,000 computers for a month,
123
376420
3437
收集一個月 1,600 台電電腦的資料,
06:19
and the computer independently learned
about concepts such as people and cats
124
379857
4361
電腦獨立識別
人或貓的概念
06:24
just by watching the videos.
125
384218
1809
僅透過觀看影片。
06:26
This is much like the way
that humans learn.
126
386027
2352
這樣更像人類的學習方式。
06:28
Humans don't learn
by being told what they see,
127
388379
2740
人類並非通過別人的指示來學習,
06:31
but by learning for themselves
what these things are.
128
391119
3331
而是從自己搞懂事情來學習。
06:34
Also in 2012, Geoffrey Hinton,
who we saw earlier,
129
394450
3369
在 2012 年傑佛里·辛頓
我們之前看到的人,
06:37
won the very popular ImageNet competition,
130
397819
2858
贏了很有名的映像網路比賽,
06:40
looking to try to figure out
from one and a half million images
131
400677
4141
嘗試從 150 萬的圖像中找出
06:44
what they're pictures of.
132
404818
1438
想要的圖像。
06:46
As of 2014, we're now down
to a six percent error rate
133
406256
3533
2014 年, 我們現在
圖像辨識的錯誤率
06:49
in image recognition.
134
409789
1453
降到 6% 以下。
06:51
This is better than people, again.
135
411242
2026
這再次證明它比人類優秀。
06:53
So machines really are doing
an extraordinarily good job of this,
136
413268
3769
可見機器
真可以做到如此非凡的成就,
06:57
and it is now being used in industry.
137
417037
2269
它現在已經用在產業上了。
06:59
For example, Google announced last year
138
419306
3042
比如說,谷歌去年宣佈
07:02
that they had mapped every single
location in France in two hours,
139
422348
4585
他們可以在兩小時内把
法國每一個位置繪成地圖,
07:06
and the way they did it was
that they fed street view images
140
426933
3447
他們用的方式是
把街景圖像
07:10
into a deep learning algorithm
to recognize and read street numbers.
141
430380
4319
輸入深度學習演算法
來辨認和讀取街道號碼。
07:14
Imagine how long
it would have taken before:
142
434699
2220
想想我們以前需要花多少時間?
07:16
dozens of people, many years.
143
436919
3355
至少好幾十人加上好幾年呢。
07:20
This is also happening in China.
144
440274
1911
同樣的情況也發生在中國。
07:22
Baidu is kind of
the Chinese Google, I guess,
145
442185
4036
我想「百度」類似中國的谷歌,
07:26
and what you see here in the top left
146
446221
2283
在左上角你會看見
07:28
is an example of a picture that I uploaded
to Baidu's deep learning system,
147
448504
3974
一張我上傳到
百度深度學習系統的圖片,
07:32
and underneath you can see that the system
has understood what that picture is
148
452478
3769
下方你可以看到
系統可以理解這張圖片
07:36
and found similar images.
149
456247
2236
而且能找到相似的圖像。
07:38
The similar images actually
have similar backgrounds,
150
458483
2736
類似的圖像
也就是有相似的背景,
07:41
similar directions of the faces,
151
461219
1658
相似面孔的角度,
07:42
even some with their tongue out.
152
462877
1788
有的圖像甚至有伸出舌頭。
07:44
This is not clearly looking
at the text of a web page.
153
464665
3030
這個網頁的文字看不大清楚,
07:47
All I uploaded was an image.
154
467695
1412
因為我上傳的都是圖像。
07:49
So we now have computers which
really understand what they see
155
469107
4021
這顯示了電腦能明白他們所看到的
07:53
and can therefore search databases
156
473128
1624
電腦能夠搜尋資料庫
07:54
of hundreds of millions
of images in real time.
157
474752
3554
以即時的方式從億萬張圖片中搜尋。
07:58
So what does it mean
now that computers can see?
158
478306
3230
現在的電腦能夠去看
是表示什麼意思呢?
08:01
Well, it's not just
that computers can see.
159
481536
2017
其實電腦不只能看見。
08:03
In fact, deep learning
has done more than that.
160
483553
2069
事實上深度學習可以做得更多。
08:05
Complex, nuanced sentences like this one
161
485622
2948
像這個樣複雜,僅有小小差別的句子
08:08
are now understandable
with deep learning algorithms.
162
488570
2824
現在的深度學習演算法能夠理解。
08:11
As you can see here,
163
491394
1303
你可以看到,
08:12
this Stanford-based system
showing the red dot at the top
164
492697
2768
這以史丹福為基礎的系統
顯示上面的紅點
08:15
has figured out that this sentence
is expressing negative sentiment.
165
495465
3919
指這句子是在表達負面的情緒。
08:19
Deep learning now in fact
is near human performance
166
499384
3406
深度學習現在已經接近人類的行為
08:22
at understanding what sentences are about
and what it is saying about those things.
167
502802
5121
能理解句子是要表達什麼。
08:27
Also, deep learning has
been used to read Chinese,
168
507923
2728
同時,深度學習也能用以閱讀中文,
08:30
again at about native
Chinese speaker level.
169
510651
3156
程度相當於以中文為母語的水平。
08:33
This algorithm developed
out of Switzerland
170
513807
2168
這演算法發展於瑞士
08:35
by people, none of whom speak
or understand any Chinese.
171
515975
3356
沒有一個會說中文的團隊。
08:39
As I say, using deep learning
172
519331
2051
像我說的,深度學習
08:41
is about the best system
in the world for this,
173
521382
2219
是一個最好的系統
對完成這任務來說,
08:43
even compared to native
human understanding.
174
523601
5117
甚至比人類還要好。
08:48
This is a system that we
put together at my company
175
528718
2964
這個系統是我公司建立的
08:51
which shows putting
all this stuff together.
176
531682
2046
要把這些東西都集中在一起。
08:53
These are pictures which
have no text attached,
177
533728
2461
這是一些沒有文字描述的圖片,
08:56
and as I'm typing in here sentences,
178
536189
2352
我在這裡輸入句子,
08:58
in real time it's understanding
these pictures
179
538541
2969
它在同步理解這些照片
09:01
and figuring out what they're about
180
541510
1679
找出它們是有關什麼的照片
09:03
and finding pictures that are similar
to the text that I'm writing.
181
543189
3163
也找出跟我句子相關類似的圖片。
09:06
So you can see, it's actually
understanding my sentences
182
546352
2756
所以你看,
它真的能理解我的句子。
09:09
and actually understanding these pictures.
183
549108
2224
也完全的理解這些圖片。
09:11
I know that you've seen
something like this on Google,
184
551332
2559
你在谷歌上也看過類似的,
09:13
where you can type in things
and it will show you pictures,
185
553891
2775
你可以輸入文字
而它會顯示圖片,
09:16
but actually what it's doing is it's
searching the webpage for the text.
186
556666
3424
但事實上,它在尋索網頁上的文字。
09:20
This is very different from actually
understanding the images.
187
560090
3001
這跟理解圖片有很大的不同。
09:23
This is something that computers
have only been able to do
188
563091
2752
理解圖片只有電腦可以做
09:25
for the first time in the last few months.
189
565843
3248
電腦在過去幾個月才會做的事。
09:29
So we can see now that computers
can not only see but they can also read,
190
569091
4091
電腦不單能看見
也能閱讀,
09:33
and, of course, we've shown that they
can understand what they hear.
191
573182
3765
而且我們顯示了電腦能理解所聽到的。
09:36
Perhaps not surprising now that
I'm going to tell you they can write.
192
576947
3442
或許不意外地,
我要告訴你們電腦也能書寫。
09:40
Here is some text that I generated
using a deep learning algorithm yesterday.
193
580389
4783
這是我昨天用深度學習演算法
所產生的文字。
09:45
And here is some text that an algorithm
out of Stanford generated.
194
585172
3924
這裡有一些非史丹佛演算法
所產生的文字。
09:49
Each of these sentences was generated
195
589096
1764
這些句子的產生
09:50
by a deep learning algorithm
to describe each of those pictures.
196
590860
4249
是透過深度學習演算法
對圖片進行描述。
09:55
This algorithm before has never seen
a man in a black shirt playing a guitar.
197
595109
4472
這演算法是電腦從來沒有看見過
一個穿黑襯衫的男子彈吉他。
09:59
It's seen a man before,
it's seen black before,
198
599581
2220
電腦見過男人,
看過黑色,
10:01
it's seen a guitar before,
199
601801
1599
見過吉他,
10:03
but it has independently generated
this novel description of this picture.
200
603400
4294
它自己便對圖片做出描述。
10:07
We're still not quite at human
performance here, but we're close.
201
607694
3502
雖然還沒有超越人類,
不過很接近了。
10:11
In tests, humans prefer
the computer-generated caption
202
611196
4068
依據統計,人們較喜歡
電腦的圖片說明
10:15
one out of four times.
203
615264
1527
有四分之一的人會做這樣的選擇。
10:16
Now this system is now only two weeks old,
204
616791
2064
這系統在兩個星期前開發完成,
10:18
so probably within the next year,
205
618855
1846
估計在明年,
10:20
the computer algorithm will be
well past human performance
206
620701
2801
電腦演算法將會超越人類
10:23
at the rate things are going.
207
623502
1862
如果依照這樣的速度發展下的話。
10:25
So computers can also write.
208
625364
3049
到時候電腦也會書寫了。
10:28
So we put all this together and it leads
to very exciting opportunities.
209
628413
3475
我們把這些都放在一起,
讓它來引導到一個令人振奮的時機。
10:31
For example, in medicine,
210
631888
1492
像在藥物方面,
10:33
a team in Boston announced
that they had discovered
211
633380
2525
一個波士頓的團隊
宣佈他們發現了
10:35
dozens of new clinically relevant features
212
635905
2949
數十種腫瘤的臨床特徵
10:38
of tumors which help doctors
make a prognosis of a cancer.
213
638854
4266
幫助醫生預測癌症。
10:44
Very similarly, in Stanford,
214
644220
2296
同樣的,在史丹佛,
10:46
a group there announced that,
looking at tissues under magnification,
215
646516
3663
一個組織宣佈
在放大鏡下觀察組織,
10:50
they've developed
a machine learning-based system
216
650179
2381
他們開發
一個以機器學習為基礎的系統
10:52
which in fact is better
than human pathologists
217
652560
2582
比人類病理學家更有效地
10:55
at predicting survival rates
for cancer sufferers.
218
655142
4377
預測癌症病患的生存率。
10:59
In both of these cases, not only
were the predictions more accurate,
219
659519
3245
這些例子,
不但能更準確地預測,
11:02
but they generated new insightful science.
220
662764
2502
而且也能帶來更多科技上的洞見。
11:05
In the radiology case,
221
665276
1505
在放射學的個案中,
11:06
they were new clinical indicators
that humans can understand.
222
666781
3095
他們是人類所能理解的新臨床指標。
11:09
In this pathology case,
223
669876
1792
在這病理學個案,
11:11
the computer system actually discovered
that the cells around the cancer
224
671668
4500
電腦系統發現癌症周圍的細胞
11:16
are as important as
the cancer cells themselves
225
676168
3340
在診斷的時候
11:19
in making a diagnosis.
226
679508
1752
是跟癌細胞一樣重要。
11:21
This is the opposite of what pathologists
had been taught for decades.
227
681260
5361
這跟病理學家
10 年來的說法相反。
11:26
In each of those two cases,
they were systems developed
228
686621
3292
在這兩個個案,
系統的開發人員
11:29
by a combination of medical experts
and machine learning experts,
229
689913
3621
是由醫學專家
和機器學習專家所組成,
11:33
but as of last year,
we're now beyond that too.
230
693534
2741
但自去年開始,
我們也超越了這些。
11:36
This is an example of
identifying cancerous areas
231
696275
3549
這是確認癌症範圍的例子
11:39
of human tissue under a microscope.
232
699824
2530
是在顯微鏡下的人類組織。
11:42
The system being shown here
can identify those areas more accurately,
233
702354
4613
系統顯示可以更準確地確認範圍,
11:46
or about as accurately,
as human pathologists,
234
706967
2775
如病理學家般準確,
11:49
but was built entirely with deep learning
using no medical expertise
235
709742
3392
不過沒有藥物專家
來建構整套深度學習系統
11:53
by people who have
no background in the field.
236
713134
2526
系統是由一些
沒有專業背景的人完成。
11:56
Similarly, here, this neuron segmentation.
237
716730
2555
同樣地,從是細胞分裂。
11:59
We can now segment neurons
about as accurately as humans can,
238
719285
3668
我們的系統可以像人類般
精確地分裂神經細胞,
12:02
but this system was developed
with deep learning
239
722953
2717
不過開發這套深度學習系統
12:05
using people with no previous
background in medicine.
240
725670
3251
沒有一個人來自醫學背景。
12:08
So myself, as somebody with
no previous background in medicine,
241
728921
3227
就是我和一些沒有醫學背景的人,
12:12
I seem to be entirely well qualified
to start a new medical company,
242
732148
3727
看來我頗有資格開一家醫藥公司。
12:15
which I did.
243
735875
2146
我確實這麼做了。
12:18
I was kind of terrified of doing it,
244
738021
1740
我是以戒慎恐懼的心情開始做,
12:19
but the theory seemed to suggest
that it ought to be possible
245
739761
2889
不過理論顯示
這是可行的
12:22
to do very useful medicine
using just these data analytic techniques.
246
742650
5492
用這些資料分析技術來
製作有效的藥物。
12:28
And thankfully, the feedback
has been fantastic,
247
748142
2480
感恩的是
回應也挺不錯,
12:30
not just from the media
but from the medical community,
248
750622
2356
這回應不只是來自媒體,
而且還有醫藥社群,
12:32
who have been very supportive.
249
752978
2344
他們都很支持。
12:35
The theory is that we can take
the middle part of the medical process
250
755322
4149
理論上我們能在醫務過程中
12:39
and turn that into data analysis
as much as possible,
251
759471
2893
盡量轉換成資料分析,
12:42
leaving doctors to do
what they're best at.
252
762364
3065
讓醫生去做他們擅長的。
12:45
I want to give you an example.
253
765429
1602
我舉一個例子。
12:47
It now takes us about 15 minutes
to generate a new medical diagnostic test
254
767031
4944
我們現在花 15 分鐘
來創造一項新的醫學診斷測試
12:51
and I'll show you that in real time now,
255
771975
1954
我會讓你同步看到過程,
12:53
but I've compressed it down to
three minutes by cutting some pieces out.
256
773929
3487
不過我已刪除部分資料
壓縮成三分鐘。
12:57
Rather than showing you
creating a medical diagnostic test,
257
777416
3061
我不會向你們展示
創造出來的醫學診斷測試,
13:00
I'm going to show you
a diagnostic test of car images,
258
780477
3369
我要向你們展示
一項汽車圖片的診斷測試,
13:03
because that's something
we can all understand.
259
783846
2222
因為這個我們都能理解。
13:06
So here we're starting with
about 1.5 million car images,
260
786068
3201
我們從 150 萬張
的汽車圖片開始,
13:09
and I want to create something
that can split them into the angle
261
789269
3206
我希望創造一些東西
把圖片分類
13:12
of the photo that's being taken.
262
792475
2223
而且依圖片拍攝的角度來分類。
13:14
So these images are entirely unlabeled,
so I have to start from scratch.
263
794698
3888
這些圖片完全沒有標題,
我必需從零開始。
13:18
With our deep learning algorithm,
264
798586
1865
深度學習演算法,
13:20
it can automatically identify
areas of structure in these images.
265
800451
3707
它能自動確認
這些圖片的結構。
13:24
So the nice thing is that the human
and the computer can now work together.
266
804158
3620
美好的是
人和電腦可以合作
13:27
So the human, as you can see here,
267
807778
2178
看看這裡,這個人,
13:29
is telling the computer
about areas of interest
268
809956
2675
正在告訴電腦
關於感興趣的範圍
13:32
which it wants the computer then
to try and use to improve its algorithm.
269
812631
4650
而電腦會嘗試用它
來改善電腦的演算法。
13:37
Now, these deep learning systems actually
are in 16,000-dimensional space,
270
817281
4296
這些深度學習系統
有 16,000 個立體空間,
13:41
so you can see here the computer
rotating this through that space,
271
821577
3432
你可以看見電腦
讓他們在這空間旋轉,
13:45
trying to find new areas of structure.
272
825009
1992
嘗試找出新的區域結構。
13:47
And when it does so successfully,
273
827001
1781
當它成功時,
13:48
the human who is driving it can then
point out the areas that are interesting.
274
828782
4004
在開車的人能夠
指出有興趣的地方。
13:52
So here, the computer has
successfully found areas,
275
832786
2422
這裡,電腦成功的找到了那地區,
13:55
for example, angles.
276
835208
2562
再舉例,角度,
13:57
So as we go through this process,
277
837770
1606
通過這個過程,
13:59
we're gradually telling
the computer more and more
278
839376
2340
我們漸漸地告訴電腦更多
14:01
about the kinds of structures
we're looking for.
279
841716
2428
關於我們在找的結構類型。
14:04
You can imagine in a diagnostic test
280
844144
1772
你可以想像一個診斷測試
14:05
this would be a pathologist identifying
areas of pathosis, for example,
281
845916
3350
像是一個病理學家辨認
病症的範圍,
14:09
or a radiologist indicating
potentially troublesome nodules.
282
849266
5026
或是放射治療師界定
潛在的腫瘤。
14:14
And sometimes it can be
difficult for the algorithm.
283
854292
2559
有些時候對演算法來說
是有些困難。
14:16
In this case, it got kind of confused.
284
856851
1964
在我們這個例子,它會出現混亂。
14:18
The fronts and the backs
of the cars are all mixed up.
285
858815
2550
汽車的正面和背面
都混淆不清了。
14:21
So here we have to be a bit more careful,
286
861365
2072
我們需要更小心,
14:23
manually selecting these fronts
as opposed to the backs,
287
863437
3232
手動選出正面
跟背面有相反效果的文字,
14:26
then telling the computer
that this is a type of group
288
866669
5506
然後告知電腦
這是一種
14:32
that we're interested in.
289
872175
1348
我們有興趣的一類。
14:33
So we do that for a while,
we skip over a little bit,
290
873523
2677
這要花了一些時間來做,
所以我們跳過,
14:36
and then we train the
machine learning algorithm
291
876200
2246
然後我們訓練
機器學習演算法
14:38
based on these couple of hundred things,
292
878446
1974
以好幾百張圖片去訓練它,
14:40
and we hope that it's gotten a lot better.
293
880420
2025
我們希望它會做得更好。
14:42
You can see, it's now started to fade
some of these pictures out,
294
882445
3073
你可以看見,它開始
刪除一些圖片,
14:45
showing us that it already is recognizing
how to understand some of these itself.
295
885518
4708
顯示它已經知道
可以自己理解這些圖片。
14:50
We can then use this concept
of similar images,
296
890226
2902
我們運用相似圖片的概念,
14:53
and using similar images, you can now see,
297
893128
2094
用類似的圖片,你可以看到,
14:55
the computer at this point is able to
entirely find just the fronts of cars.
298
895222
4019
電腦現在可以
完全找到正面的汽車。
14:59
So at this point, the human
can tell the computer,
299
899241
2948
這時,
人類可以告訴電腦,
15:02
okay, yes, you've done
a good job of that.
300
902189
2293
對,你做的很好。
15:05
Sometimes, of course, even at this point
301
905652
2185
當然,有些時候,即使在這個階段
15:07
it's still difficult
to separate out groups.
302
907837
3674
分組仍然是困難的。
15:11
In this case, even after we let the
computer try to rotate this for a while,
303
911511
3884
在這情況,儘管我們讓
電腦嘗試旋轉圖片一陣子,
15:15
we still find that the left sides
and the right sides pictures
304
915399
3345
我們還是發現左邊
和右邊的圖片
15:18
are all mixed up together.
305
918744
1478
是混淆在一起的。
15:20
So we can again give
the computer some hints,
306
920222
2140
於是我們再次
給電腦一些提示,
15:22
and we say, okay, try and find
a projection that separates out
307
922362
2976
像是嘗試去發現一個計畫可以
15:25
the left sides and the right sides
as much as possible
308
925338
2607
儘量區分出左邊和右邊的圖片
15:27
using this deep learning algorithm.
309
927945
2122
是透過使用深度學習演算法。
15:30
And giving it that hint --
ah, okay, it's been successful.
310
930067
2942
給予提示後,
好,它已經完成了。
15:33
It's managed to find a way
of thinking about these objects
311
933009
2882
它找到一個方法
想像這些目標
15:35
that's separated out these together.
312
935891
2380
來分別這些分類。
15:38
So you get the idea here.
313
938271
2438
你現在知道了。
15:40
This is a case not where the human
is being replaced by a computer,
314
940709
8197
這並不是電腦取代人類,
15:48
but where they're working together.
315
948906
2640
而是兩者一起合作。
15:51
What we're doing here is we're replacing
something that used to take a team
316
951546
3550
我們在做的事情是
在過去需要
15:55
of five or six people about seven years
317
955096
2002
5 或 6 個人
花 7 年時間完成的事情
15:57
and replacing it with something
that takes 15 minutes
318
957098
2605
現在只需一個人
15:59
for one person acting alone.
319
959703
2505
15 分鐘來完成。
16:02
So this process takes about
four or five iterations.
320
962208
3950
這個過程需要重覆 4 或 5 次。
16:06
You can see we now have 62 percent
321
966158
1859
你現在可以看到
16:08
of our 1.5 million images
classified correctly.
322
968017
2959
我們在 150 萬的圖片中
有 62% 是正確分類。
16:10
And at this point, we
can start to quite quickly
323
970976
2472
現在,可見我們可以迅速地
16:13
grab whole big sections,
324
973448
1297
掌握整個大部分資料,
16:14
check through them to make sure
that there's no mistakes.
325
974745
2919
再檢查以確定沒有錯誤。
16:17
Where there are mistakes, we can
let the computer know about them.
326
977664
3952
有錯誤,我們可以
讓電腦知道錯誤的地方。
16:21
And using this kind of process
for each of the different groups,
327
981616
3045
每一個不同的分類
我們都使用這種程序來做,
16:24
we are now up to
an 80 percent success rate
328
984661
2487
我們現在
在分辨 150 萬張的圖片時
16:27
in classifying the 1.5 million images.
329
987148
2415
有超過 80% 的成功率,
16:29
And at this point, it's just a case
330
989563
2078
現在,在這個案例
16:31
of finding the small number
that aren't classified correctly,
331
991641
3579
找到少數幾個不正確的分類,
16:35
and trying to understand why.
332
995220
2888
讓電腦了解原因。
16:38
And using that approach,
333
998108
1743
用這種方法,
16:39
by 15 minutes we get
to 97 percent classification rates.
334
999851
4121
15 分鐘就有 97% 的分辨率。
16:43
So this kind of technique
could allow us to fix a major problem,
335
1003972
4600
這種技術可以幫助
解決一個重要的問題,
16:48
which is that there's a lack
of medical expertise in the world.
336
1008578
3036
醫療專家不足的問題。
16:51
The World Economic Forum says
that there's between a 10x and a 20x
337
1011614
3489
世界經濟論壇表示
16:55
shortage of physicians
in the developing world,
338
1015103
2624
在發展中國家,內科醫生
有 10 倍到 20 倍的短缺。
16:57
and it would take about 300 years
339
1017727
2113
這要三百年的時間
16:59
to train enough people
to fix that problem.
340
1019840
2894
才能訓練足夠的人
來處理這個問題。
17:02
So imagine if we can help
enhance their efficiency
341
1022734
2885
想像一下,
我們是否可以幫助提高效率
17:05
using these deep learning approaches?
342
1025619
2839
是使用深度學習這個方法來提升?
17:08
So I'm very excited
about the opportunities.
343
1028458
2232
我對這個機會感到很興奮。
17:10
I'm also concerned about the problems.
344
1030690
2589
我也關注這些問題。
17:13
The problem here is that
every area in blue on this map
345
1033279
3124
問題是在這地圖上每個藍色的地方
17:16
is somewhere where services
are over 80 percent of employment.
346
1036403
3769
那裡都有 80% 的服務人員。
17:20
What are services?
347
1040172
1787
什麼是服務?
17:21
These are services.
348
1041959
1514
這些就是服務。
17:23
These are also the exact things that
computers have just learned how to do.
349
1043473
4154
電腦剛學會如何去做是確實的事。
17:27
So 80 percent of the world's employment
in the developed world
350
1047627
3804
發展中國家 80% 的僱員工作
17:31
is stuff that computers
have just learned how to do.
351
1051431
2532
電腦已開始學習如何做。
17:33
What does that mean?
352
1053963
1440
這意味什麼?
17:35
Well, it'll be fine.
They'll be replaced by other jobs.
353
1055403
2583
那可好。
他們將會被其他的職業取代。
17:37
For example, there will be
more jobs for data scientists.
354
1057986
2707
舉例:需要更多科學家來工作。
17:40
Well, not really.
355
1060693
817
不過,這不完全正確。
17:41
It doesn't take data scientists
very long to build these things.
356
1061510
3118
數據科學家
不需要花很久的時間去做這些事情。
17:44
For example, these four algorithms
were all built by the same guy.
357
1064628
3252
例如,這四個演算法是同一個人設計的。
17:47
So if you think, oh,
it's all happened before,
358
1067880
2438
若你認為這些
以前都發生過,
17:50
we've seen the results in the past
of when new things come along
359
1070318
3808
過去我們看過
新事物出現的結果
17:54
and they get replaced by new jobs,
360
1074126
2252
他們被新的職務所取替,
17:56
what are these new jobs going to be?
361
1076378
2116
那些新的職業會是什麼呢?
17:58
It's very hard for us to estimate this,
362
1078494
1871
我們很難去判斷,
18:00
because human performance
grows at this gradual rate,
363
1080365
2739
因為人類的能力
以這個速度逐漸成長,
18:03
but we now have a system, deep learning,
364
1083104
2562
我們現在有了深度學習系統,
18:05
that we know actually grows
in capability exponentially.
365
1085666
3227
我們知道
以指數的方式增長。
18:08
And we're here.
366
1088893
1605
我們在這裡。
18:10
So currently, we see the things around us
367
1090498
2061
最近,我們看周圍的事物
18:12
and we say, "Oh, computers
are still pretty dumb." Right?
368
1092559
2676
會說:電腦還是很笨,不是嗎?
18:15
But in five years' time,
computers will be off this chart.
369
1095235
3429
但是在五年內,
電腦將會超越這張圖表。
18:18
So we need to be starting to think
about this capability right now.
370
1098664
3865
我們需要開始思考這個能力。
18:22
We have seen this once before, of course.
371
1102529
2050
當然,我們曾經看過這個。
18:24
In the Industrial Revolution,
372
1104579
1387
在工業革命時期,
18:25
we saw a step change
in capability thanks to engines.
373
1105966
2851
發動機讓生產力往前跨一大步。
18:29
The thing is, though,
that after a while, things flattened out.
374
1109667
3138
雖然,一段時間之後,
事情轉為平靜。
18:32
There was social disruption,
375
1112805
1702
那時社會混亂,
18:34
but once engines were used
to generate power in all the situations,
376
1114507
3439
發動機被普遍使用
產生動力,
18:37
things really settled down.
377
1117946
2354
事情就能真正得到解決。
18:40
The Machine Learning Revolution
378
1120300
1473
機器學習革命
18:41
is going to be very different
from the Industrial Revolution,
379
1121773
2909
與工業革命大不相同,
18:44
because the Machine Learning Revolution,
it never settles down.
380
1124682
2950
因為機器學習革命,
永遠不會停下來。
18:47
The better computers get
at intellectual activities,
381
1127632
2982
電腦更具智力活動,
18:50
the more they can build better computers
to be better at intellectual capabilities,
382
1130614
4248
他們能製造更好的電腦
去運作更好的智能活動,
18:54
so this is going to be a kind of change
383
1134862
1908
這是一種改變
18:56
that the world has actually
never experienced before,
384
1136770
2478
從未經歷過的改變,
18:59
so your previous understanding
of what's possible is different.
385
1139248
3306
你之前的理解的可能性是不同的。
19:02
This is already impacting us.
386
1142974
1780
這已經影響我們。
19:04
In the last 25 years,
as capital productivity has increased,
387
1144754
3630
過去 25 年,
資本生產力一直在增長,
19:08
labor productivity has been flat,
in fact even a little bit down.
388
1148400
4188
勞動生產力已經放緩,
事實上已有一點點下降。
19:13
So I want us to start
having this discussion now.
389
1153408
2741
我想我們開始討論這個議題。
19:16
I know that when I often tell people
about this situation,
390
1156149
3027
我知道當我告訴別人這種情況時,
19:19
people can be quite dismissive.
391
1159176
1490
人們可以不以為然。
19:20
Well, computers can't really think,
392
1160666
1673
電腦不會思考,
19:22
they don't emote,
they don't understand poetry,
393
1162339
3028
它們沒有感情,
也不了解詩,
19:25
we don't really understand how they work.
394
1165367
2521
我們不真正理解它們怎麼運作。
19:27
So what?
395
1167888
1486
可是,哪又如何?
19:29
Computers right now can do the things
396
1169374
1804
電腦現在可以作
19:31
that humans spend most
of their time being paid to do,
397
1171178
2719
人們花大部分時間
得到報酬所做的事情,
19:33
so now's the time to start thinking
398
1173897
1731
所以我們該是思考的時候
19:35
about how we're going to adjust our
social structures and economic structures
399
1175628
4387
我們如何調整我們的社會和經濟結構
19:40
to be aware of this new reality.
400
1180015
1840
請關注這些新的改變。
19:41
Thank you.
401
1181855
1533
謝謝
19:43
(Applause)
402
1183388
802
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。