How we'll earn money in a future without jobs | Martin Ford

1,605,571 views ・ 2017-11-16

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
I'm going to begin with a scary question:
0
12787
2848
一開始,我想先 提出一個駭人的問題:
00:15
Are we headed toward a future without jobs?
1
15659
2750
我們是否正在邁向 一個沒有工作的未來?
00:18
The remarkable progress that we're seeing
2
18987
2069
我們看到科技的驚人進展,
00:21
in technologies like self-driving cars
3
21080
1861
比如自動駕駛的汽車,
00:22
has led to an explosion of interest in this question,
4
22965
3065
讓很多人注意到我剛問的問題,
00:26
but because it's something that's been asked
5
26054
2150
但因為在過去這個問題
已經被問過太多次了,
00:28
so many times in the past,
6
28228
1256
00:29
maybe what we should really be asking
7
29508
1840
也許我們真正該問的是,
00:31
is whether this time is really different.
8
31372
2900
這次是否真的會有所不同?
00:35
The fear that automation might displace workers
9
35252
2961
恐懼自動化會取代工人,
00:38
and potentially lead to lots of unemployment
10
38237
2117
並可能會導致許多人失業,
00:40
goes back at a minimum 200 years to the Luddite revolts in England.
11
40378
3888
可追溯回至少兩百年前的 盧德(勒德)份子運動。
00:44
And since then, this concern has come up again and again.
12
44290
3196
從那之後,這種擔憂就 一而再再而三地出現。
00:47
I'm going to guess
13
47510
1161
我猜測,
00:48
that most of you have probably never heard of the Triple Revolution report,
14
48695
4466
在座大部份人可能從來沒有 聽過「三重革命」報告,
00:53
but this was a very prominent report.
15
53185
2293
但它是份非常重要的報告。
00:55
It was put together by a brilliant group of people --
16
55502
2531
它是由一群聰明人集思廣義出來的,
00:58
it actually included two Nobel laureates --
17
58057
3057
實際上還包括兩名諾貝爾得主,
01:01
and this report was presented to the President of the United States,
18
61138
3223
這份報告被呈交給美國總統,
01:04
and it argued that the US was on the brink of economic and social upheaval
19
64385
5494
報告指出,美國正處在 經濟和社會動亂的邊緣,
01:09
because industrial automation was going to put millions of people
20
69903
3102
因為工業自動化
將會讓數百萬人失去工作。
01:13
out of work.
21
73029
1152
01:14
Now, that report was delivered to President Lyndon Johnson
22
74205
3657
那份報告被呈交給詹森總統,
01:17
in March of 1964.
23
77886
1801
當時是 1964 年三月。
01:19
So that's now over 50 years,
24
79711
2216
那是至少五十年以前的事,
01:21
and, of course, that hasn't really happened.
25
81951
2058
當然,報告說的狀況沒有發生。
01:24
And that's been the story again and again.
26
84033
2144
那故事從此不斷重覆上演。
01:26
This alarm has been raised repeatedly,
27
86201
2109
警報不斷重覆被發出,
01:28
but it's always been a false alarm.
28
88334
2013
但每次都是假警報。
01:30
And because it's been a false alarm,
29
90371
1809
因為一直都是假警報,
01:32
it's led to a very conventional way of thinking about this.
30
92204
2807
就導致對這狀況的慣性思維。
01:35
And that says essentially that yes,
31
95035
2532
基本上,那思維是:
01:37
technology may devastate entire industries.
32
97591
2548
對啊,科技可能會破壞所有產業,
01:40
It may wipe out whole occupations and types of work.
33
100163
3732
它有可能會徹底消滅 所有職業和各種工作;
01:43
But at the same time, of course,
34
103919
1608
但同時,當然,
01:45
progress is going to lead to entirely new things.
35
105551
2351
進步也會引來全新的事物。
01:47
So there will be new industries that will arise in the future,
36
107926
2962
所以將來會有新的產業出現,
01:50
and those industries, of course, will have to hire people.
37
110912
2858
而那些產業,當然,一定會僱用人。
01:53
There'll be new kinds of work that will appear,
38
113794
2238
將來會出現新類型的工作會,
01:56
and those might be things that today we can't really even imagine.
39
116056
3210
可能是我們現今無法想像的。
01:59
And that has been the story so far,
40
119290
1747
目前為止,故事一直是如此,
02:01
and it's been a positive story.
41
121061
1494
且一直是很正面的。
02:03
It turns out that the new jobs that have been created
42
123095
3325
結果,新創造出來的工作,
02:06
have generally been a lot better than the old ones.
43
126444
2470
一般來說,比舊的工作好很多。
02:08
They have, for example, been more engaging.
44
128938
2656
比如,新的工作比較吸引人。
02:11
They've been in safer, more comfortable work environments,
45
131618
3429
工作環境比較安全、比較舒適,
02:15
and, of course, they've paid more.
46
135071
1680
當然,薪水也比較高。
02:16
So it has been a positive story.
47
136775
1865
所以這個故事一直很正面。
02:18
That's the way things have played out so far.
48
138664
2208
目前為止的發展也的確是這樣。
02:21
But there is one particular class of worker
49
141292
2948
但特別有一類的工作者,
02:24
for whom the story has been quite different.
50
144264
2252
對他們來說,故事相當不同。
02:27
For these workers,
51
147938
1150
對這些工作者而言,
02:29
technology has completely decimated their work,
52
149112
3021
科技可說是大舉毀滅了他們的工作,
02:32
and it really hasn't created any new opportunities at all.
53
152157
3214
且完全沒有再創造出 新的機會給他們。
02:35
And these workers, of course,
54
155395
2195
當然,這些工作者
02:37
are horses.
55
157614
1288
是馬。
02:38
(Laughter)
56
158926
1443
(笑聲)
02:40
So I can ask a very provocative question:
57
160393
2750
我問一個會引發爭議的問題:
02:43
Is it possible that at some point in the future,
58
163167
3435
有沒有可能,在未來的某個時點,
02:46
a significant fraction of the human workforce is going to be made redundant
59
166626
4628
將有一大部份的人類勞動力過剩,
02:51
in the way that horses were?
60
171278
1702
就像馬所遭遇的情況。
02:53
Now, you might have a very visceral, reflexive reaction to that.
61
173485
3000
對那個問題,你可能會有 很本能、反射性的反應。
02:56
You might say, "That's absurd.
62
176509
1647
你也許會說:「太荒唐了。
02:58
How can you possibly compare human beings to horses?"
63
178180
3669
你怎麼能把人類拿來和馬做比較?」
03:02
Horses, of course, are very limited,
64
182437
1769
當然,馬非常受限,
03:04
and when cars and trucks and tractors came along,
65
184230
2893
當汽車、卡車、牽引機 (拖拉機)出現,
03:07
horses really had nowhere else to turn.
66
187147
2045
馬就無處可去了。
03:09
People, on the other hand, are intelligent;
67
189844
2360
另一方面,人有智慧;
03:12
we can learn, we can adapt.
68
192228
1785
我們能學習,我們能適應。
03:14
And in theory,
69
194037
1164
理論上,
03:15
that ought to mean that we can always find something new to do,
70
195225
3127
那應該意味著 我們總能找到新的事情來做,
03:18
and that we can always remain relevant to the future economy.
71
198376
3306
我們總能與未來的經濟持續相關。
03:21
But here's the really critical thing to understand.
72
201706
2437
但要了解非常重要的一點。
03:24
The machines that will threaten workers in the future
73
204790
2865
在未來會威脅到工作者的機器,
03:27
are really nothing like those cars and trucks and tractors
74
207679
3234
完全不像取代了馬的汽車、
03:30
that displaced horses.
75
210937
1616
卡車、牽引機。
03:32
The future is going to be full of thinking, learning, adapting machines.
76
212577
4839
未來將會滿是會思考、 學習、適應的機器。
03:37
And what that really means
77
217440
1408
那意味著,
03:38
is that technology is finally beginning to encroach
78
218872
2834
科技最終將會開始侵犯到
03:41
on that fundamental human capability --
79
221730
2849
基礎的人類能力──
03:44
the thing that makes us so different from horses,
80
224603
2803
讓我們和馬大不相同的能力,
03:47
and the very thing that, so far,
81
227430
2234
也是這能力,讓我們目前為止
03:49
has allowed us to stay ahead of the march of progress
82
229688
2647
能走在這進步發展的前端
03:52
and remain relevant,
83
232359
1189
並保有相關性,
03:53
and, in fact, indispensable to the economy.
84
233572
3067
事實上,也讓經濟少不了我們。
03:58
So what is it that is really so different
85
238407
2495
所以,相對於我們過去所看到的,
04:00
about today's information technology
86
240926
2043
現今的資訊科技到底
04:02
relative to what we've seen in the past?
87
242993
1947
有什麼如此不同的地方?
04:04
I would point to three fundamental things.
88
244964
2653
我要指出根本的三樣。
04:07
The first thing is that we have seen this ongoing process
89
247641
4409
第一,我們已見到這正在進行的過程
04:12
of exponential acceleration.
90
252074
1888
以指數級的速率加速。
04:14
I know you all know about Moore's law,
91
254420
2095
我知道你們都明白摩爾定律,
04:16
but in fact, it's more broad-based than that;
92
256539
2296
但事實上,它的根基還要更廣; (註:不止適用於積體電路)
04:18
it extends in many cases, for example, to software,
93
258859
3150
在許多情況下,它會延伸, 比如,延伸到軟體,
04:22
it extends to communications, bandwidth and so forth.
94
262033
3000
它也會延伸到通訊、頻寬、等等。
04:25
But the really key thing to understand
95
265057
1984
但,需要了解的關鍵點是,
04:27
is that this acceleration has now been going on for a really long time.
96
267065
3871
這種加速現象已經 發生很長一段時間了。
04:30
In fact, it's been going on for decades.
97
270960
1925
事實上,已經有數十年了。
04:32
If you measure from the late 1950s,
98
272909
2756
如果從 1950 年代末期開始算,
04:35
when the first integrated circuits were fabricated,
99
275689
2425
當第一個積體電路被製造出來,
04:38
we've seen something on the order of 30 doublings in computational power
100
278138
4785
從那時起,
我們目睹電腦運算的效能 倍增了大約三十次。
04:42
since then.
101
282947
1156
04:44
That's just an extraordinary number of times to double any quantity,
102
284127
3688
不論起初的量是多少, 倍增了那麼多次都是很可觀的。
04:47
and what it really means
103
287839
1240
它真正的意涵是,
04:49
is that we're now at a point where we're going to see
104
289103
2524
我們正處在一個時點,
即將要看到很大量的絕對進展,
04:51
just an extraordinary amount of absolute progress,
105
291651
2411
04:54
and, of course, things are going to continue to also accelerate
106
294086
2975
當然,這個時間點之後的加速
還是會持續下去。
04:57
from this point.
107
297085
1159
04:58
So as we look forward to the coming years and decades,
108
298268
2540
所以當我們期待未來的 幾年及幾十年,
05:00
I think that means that we're going to see things
109
300832
2338
我們將會看到
我們完全沒準備會看到的事物,
05:03
that we're really not prepared for.
110
303194
1673
05:04
We're going to see things that astonish us.
111
304891
2077
我們將會看到讓我們吃驚的事物。
05:06
The second key thing
112
306992
1266
第二個要點是
05:08
is that the machines are, in a limited sense, beginning to think.
113
308282
3906
機器開始有限的思考。
05:12
And by this, I don't mean human-level AI,
114
312212
2457
我並不是指人類水平級的人工智慧,
05:14
or science fiction artificial intelligence;
115
314693
2936
或科幻小說中的人工智慧;
05:17
I simply mean that machines and algorithms are making decisions.
116
317653
4462
我指的只是會決策的機器和演算法。
05:22
They're solving problems, and most importantly, they're learning.
117
322139
3860
它們會解決問題, 更重要的是,它們會學習。
05:26
In fact, if there's one technology that is truly central to this
118
326023
3303
事實上,有項技術扮演著中心角色,
05:29
and has really become the driving force behind this,
119
329350
3077
同時也是背後的推動力,
05:32
it's machine learning,
120
332451
1172
就是機器學習,
05:33
which is just becoming this incredibly powerful,
121
333647
2720
它開始變得非常強大、
05:36
disruptive, scalable technology.
122
336391
2638
具顛覆性,是可擴展的技術。
05:39
One of the best examples I've seen of that recently
123
339561
2469
近期我看過最好的例子之一,
05:42
was what Google's DeepMind division was able to do
124
342054
2751
是 Google 的 DeepMind 團隊
05:44
with its AlphaGo system.
125
344829
1553
用他們開發的 AlphaGo 系統 能夠做到什麼。
05:46
Now, this is the system that was able to beat the best player in the world
126
346406
4300
這個系統能在古老的圍棋賽中
打敗世界最強的棋手。
05:50
at the ancient game of Go.
127
350730
1979
05:52
Now, at least to me,
128
352733
1150
至少對我而言,
05:53
there are two things that really stand out about the game of Go.
129
353907
3117
圍棋比賽有兩點特別突出。
05:57
One is that as you're playing the game,
130
357048
2296
第一,當你在下圍棋時,
05:59
the number of configurations that the board can be in
131
359368
2866
棋盤上有可能發生的 棋子配置組合數,
06:02
is essentially infinite.
132
362258
1411
基本上是無限多。
06:03
There are actually more possibilities than there are atoms in the universe.
133
363693
3833
可能的組合數, 比宇宙中的原子數還要多。
06:07
So what that means is,
134
367980
1184
那意味著,
06:09
you're never going to be able to build a computer to win at the game of Go
135
369188
3597
你永遠不能建造一台 贏得圍棋比賽的電腦,
06:12
the way chess was approached, for example,
136
372809
2180
採用以前建造下西洋棋的 電腦那類的方式,
06:15
which is basically to throw brute-force computational power at it.
137
375013
4526
基本上是以蠻力狂加運算的效能。
06:19
So clearly, a much more sophisticated, thinking-like approach is needed.
138
379563
4177
很顯然,需要有 更精密的類思考方式。
06:24
The second thing that really stands out is that,
139
384368
3271
第二個特點是,
06:27
if you talk to one of the championship Go players,
140
387663
2647
如果你和圍棋冠軍賽的棋手交談,
06:30
this person cannot necessarily even really articulate what exactly it is
141
390334
4485
這個人不見得能明確表達出
06:34
they're thinking about as they play the game.
142
394843
2215
他們在比賽時腦中想的是什麼。
06:37
It's often something that's very intuitive,
143
397082
2193
通常他們就是非常直覺地在下棋,
06:39
it's almost just like a feeling about which move they should make.
144
399299
3322
就像是他們能夠感覺到 下一步棋要怎麼下。
06:42
So given those two qualities,
145
402645
1407
在這兩種特色的前提下,
06:44
I would say that playing Go at a world champion level
146
404076
3937
我會說能用世界冠軍的水平來下圍棋
06:48
really ought to be something that's safe from automation,
147
408037
3238
應該是自動化做不到的事,
06:51
and the fact that it isn't should really raise a cautionary flag for us.
148
411299
4446
但事實卻不是如此, 這應該要讓我們有所警覺。
06:55
And the reason is that we tend to draw a very distinct line,
149
415769
3917
原因是,我們都傾向於 畫一條很清楚的線,
06:59
and on one side of that line are all the jobs and tasks
150
419710
3509
線一邊的所有工作和任務
07:03
that we perceive as being on some level fundamentally routine and repetitive
151
423243
4748
被我們歸類於具有某種程度的 基本例行性、可重覆性、
07:08
and predictable.
152
428015
1350
並且是可被預測的。
07:09
And we know that these jobs might be in different industries,
153
429389
2858
我們知道這些工作 可能分屬不同的產業,
07:12
they might be in different occupations and at different skill levels,
154
432271
3373
可能是不同的職業, 對技巧的需求也不同;
07:15
but because they are innately predictable,
155
435668
2210
但由於它們先天的可預測性,
07:17
we know they're probably at some point going to be susceptible
156
437902
3127
我們知道,可能在某個時間點,
它們會受機器學習影響,
07:21
to machine learning,
157
441053
1177
07:22
and therefore, to automation.
158
442254
1419
而被自動化取代掉。
07:23
And make no mistake -- that's a lot of jobs.
159
443697
2097
別誤會,很多工作都是如此。
07:25
That's probably something on the order of roughly half
160
445818
2679
可能在經濟體中有大約一半的工作
07:28
the jobs in the economy.
161
448521
1567
都屬這一類。
07:30
But then on the other side of that line,
162
450112
2159
但在線的另一邊,
07:32
we have all the jobs that require some capability
163
452295
4071
是需要某些能力的所有工作,
07:36
that we perceive as being uniquely human,
164
456390
2372
我們認為是人類獨有的能力,
07:38
and these are the jobs that we think are safe.
165
458786
2223
我們認為這些工作是安全的。
07:41
Now, based on what I know about the game of Go,
166
461033
2265
根據我對圍棋的所知,
07:43
I would've guessed that it really ought to be on the safe side of that line.
167
463322
3703
我會猜測它應該屬於 線的這一邊,安全的這一邊。
07:47
But the fact that it isn't, and that Google solved this problem,
168
467049
3178
但事實是它不在這一邊, Google 破解了這個問題,
07:50
suggests that that line is going to be very dynamic.
169
470251
2432
意味著那條線是非常動態的。
07:52
It's going to shift,
170
472707
1179
它會移動,
07:53
and it's going to shift in a way that consumes more and more jobs and tasks
171
473910
4135
它移動和取代掉 越來越多的工作和任務,
07:58
that we currently perceive as being safe from automation.
172
478069
3017
那些我們目前認為是安全、 不會被自動化的。
08:01
The other key thing to understand
173
481921
1657
還要了解另一件重要的事,
08:03
is that this is by no means just about low-wage jobs or blue-collar jobs,
174
483602
5138
這現象絕對不會只發生在 低薪或藍領工作上、
08:08
or jobs and tasks done by people
175
488764
1875
或由相對比較低教育程度的人
08:10
that have relatively low levels of education.
176
490663
2104
所做的工作上。
08:12
There's lots of evidence to show
177
492791
1524
有很多證據顯示,
08:14
that these technologies are rapidly climbing the skills ladder.
178
494339
3160
這些科技所需要的技術 正在快速攀升。
08:17
So we already see an impact on professional jobs --
179
497523
3616
我們已經看到影響力 開始觸及專業工作──
08:21
tasks done by people like accountants,
180
501163
4435
由類似像會計、
財務分析師、
08:25
financial analysts,
181
505622
1317
08:26
journalists,
182
506963
1296
記者、
律師、放射學家這類人 所做的工作任務。
08:28
lawyers, radiologists and so forth.
183
508283
2377
08:30
So a lot of the assumptions that we make
184
510684
1938
我們對於這類職業、
08:32
about the kind of occupations and tasks and jobs
185
512646
3220
任務、工作,所做的許多假設,
08:35
that are going to be threatened by automation in the future
186
515890
2819
在未來將會被自動化給威脅,
08:38
are very likely to be challenged going forward.
187
518733
2198
往前也將會受到挑戰。
08:40
So as we put these trends together,
188
520955
1700
當我們整合這些趨勢,
08:42
I think what it shows is that we could very well end up in a future
189
522679
3292
就會顯示
我們未來可能面臨嚴重的失業。
08:45
with significant unemployment.
190
525995
1507
08:48
Or at a minimum,
191
528254
1152
或至少,
08:49
we could face lots of underemployment or stagnant wages,
192
529430
3781
我們可能會面臨許多大材小用 或者是薪水停滯不前,
08:53
maybe even declining wages.
193
533235
2097
甚至可能薪水下降。
08:56
And, of course, soaring levels of inequality.
194
536142
2810
當然,不平等的情況也會加劇。
08:58
All of that, of course, is going to put a terrific amount of stress
195
538976
4033
當然,這一切將會對於社會的結構
09:03
on the fabric of society.
196
543033
1917
造成很大的壓力。
09:04
But beyond that, there's also a fundamental economic problem,
197
544974
3059
但在那之外,還有個 根本的經濟問題,
09:08
and that arises because jobs are currently the primary mechanism
198
548057
5195
問題出現的原因 是目前主要靠著「工作」這機制
09:13
that distributes income, and therefore purchasing power,
199
553276
3545
來分配收入、和它帶來的購買力,
09:16
to all the consumers that buy the products and services we're producing.
200
556845
5132
給那些向我們購買 產品與服務的消費者。
09:22
In order to have a vibrant market economy,
201
562831
2515
為了要有活躍的市場經濟,
09:25
you've got to have lots and lots of consumers
202
565370
2120
你得要有很多有能力購買
09:27
that are really capable of buying the products and services
203
567514
3029
那些被製造出來之產品和服務
09:30
that are being produced.
204
570567
1151
的消費者。
09:31
If you don't have that, then you run the risk
205
571742
2386
如果沒有,你要冒的風險就是
09:34
of economic stagnation,
206
574152
1415
經濟停滯、
09:35
or maybe even a declining economic spiral,
207
575591
3669
或甚至下降的經濟螺旋,
09:39
as there simply aren't enough customers out there
208
579284
2314
因為就是沒有足夠的客人
09:41
to buy the products and services being produced.
209
581622
2459
來購買製出的產品和服務。
09:44
It's really important to realize
210
584105
1928
非常重要的是要了解到,
09:46
that all of us as individuals rely on access to that market economy
211
586057
6014
我們每個人都仰賴市場經濟,
09:52
in order to be successful.
212
592095
1729
才有可能成功。
09:53
You can visualize that by thinking in terms of one really exceptional person.
213
593848
4436
視覺化的方式是,你可以 想像一個非常特殊的人。
09:58
Imagine for a moment you take, say, Steve Jobs,
214
598308
2988
想像一下,比如你可以選賈伯斯,
10:01
and you drop him on an island all by himself.
215
601320
2581
你把他丟在一個無人島上。
10:03
On that island, he's going to be running around,
216
603925
2294
在島上,他會到處跑來跑去,
10:06
gathering coconuts just like anyone else.
217
606243
2538
收集椰子,就和所有其他人一樣。
10:08
He's really not going to be anything special,
218
608805
2188
他不會有什麼特別的地方,
10:11
and the reason, of course, is that there is no market
219
611017
3172
而原因當然是因為,那裡沒有市場
10:14
for him to scale his incredible talents across.
220
614213
2786
來讓他發揮他出色的才華。
10:17
So access to this market is really critical to us as individuals,
221
617023
3470
所以對於個人來說,能進入 這個市場是很重要的,
10:20
and also to the entire system in terms of it being sustainable.
222
620517
4022
此外,進入這個體制, 在永續面也是很重要的。
10:25
So the question then becomes: What exactly could we do about this?
223
625063
3844
於是,問題變成了: 對此,我們到底能做什麼?
10:29
And I think you can view this through a very utopian framework.
224
629285
3232
我想,可以透過一個 非常理想化的框架來看此事。
10:32
You can imagine a future where we all have to work less,
225
632541
2643
你可以想像在未來, 我們工作量減少,
10:35
we have more time for leisure,
226
635208
3001
有比較多休閒時間,
10:38
more time to spend with our families,
227
638233
1928
比較多家庭時間,
10:40
more time to do things that we find genuinely rewarding
228
640185
3255
比較多時間去做我們 真正認為有價值的事,
10:43
and so forth.
229
643464
1157
諸如此類。
10:44
And I think that's a terrific vision.
230
644645
1855
我認為那是很棒的遠景。
10:46
That's something that we should absolutely strive to move toward.
231
646524
3629
我們絕對應該朝那方向努力。
10:50
But at the same time, I think we have to be realistic,
232
650177
2676
但同時,我認為我們得要實際一點,
10:52
and we have to realize
233
652877
1393
我們得要了解,
10:54
that we're very likely to face a significant income distribution problem.
234
654294
4860
我們非常有可能會要面臨 一個嚴重的收入分配問題。
10:59
A lot of people are likely to be left behind.
235
659178
2967
很多人可能會被扔在後頭。
11:03
And I think that in order to solve that problem,
236
663186
2404
我認為,要解決那個問題,
11:05
we're ultimately going to have to find a way
237
665614
2098
我們最終得要找到一個方式,
11:07
to decouple incomes from traditional work.
238
667736
2606
將收入和傳統工作給分離開。
11:10
And the best, more straightforward way I know to do that
239
670366
2866
如果要這樣做,我所知道 最好、最直接的方法
11:13
is some kind of a guaranteed income or universal basic income.
240
673256
3568
就是某種保障收入 或是全體基本收入。
11:16
Now, basic income is becoming a very important idea.
241
676848
2488
基本收入正變成一個很重要的想法。
11:19
It's getting a lot of traction and attention,
242
679360
2139
它得到許多的注意力和關注,
11:21
there are a lot of important pilot projects
243
681523
2273
有許多重要的前導計畫
11:23
and experiments going on throughout the world.
244
683820
2175
及實驗在全世界進行。
11:26
My own view is that a basic income is not a panacea;
245
686628
3200
我自己的看法是, 基本收入並非萬靈丹;
11:29
it's not necessarily a plug-and-play solution,
246
689852
2532
它未必是插電就可以解決的方案,
11:32
but rather, it's a place to start.
247
692408
1635
但總是個起始點,
11:34
It's an idea that we can build on and refine.
248
694067
2782
我們可以從這想法開始,再改善它。
11:36
For example, one thing that I have written quite a lot about
249
696873
2817
比如,我寫了很多的一個題材,
11:39
is the possibility of incorporating explicit incentives into a basic income.
250
699714
4592
是明確地將獎勵 納入基本收入當中的可行性。
11:44
To illustrate that,
251
704930
1169
讓我解釋一下,
11:46
imagine that you are a struggling high school student.
252
706123
2768
想像你是個讀得很辛苦的高中生。
11:48
Imagine that you are at risk of dropping out of school.
253
708915
2834
想像你有可能會被退學。
11:52
And yet, suppose you know that at some point in the future,
254
712289
3378
但假設你知道在未來某個時間點,
11:55
no matter what,
255
715691
1224
不論如何,
11:56
you're going to get the same basic income as everyone else.
256
716939
3697
你和別人得到的基本收入是一樣的。
12:00
Now, to my mind, that creates a very perverse incentive
257
720660
3042
我認為那會在你腦中 產生橫下心來的動機,
12:03
for you to simply give up and drop out of school.
258
723726
2497
使你直接放棄並退學。
12:06
So I would say, let's not structure things that way.
259
726247
2505
我會說,咱們 不要設計成那樣的結構。
12:08
Instead, let's pay people who graduate from high school somewhat more
260
728776
5316
而是支付高中畢業生較高的薪水,
12:14
than those who simply drop out.
261
734116
1696
比中綴生要高。
12:16
And we can take that idea of building incentives into a basic income,
262
736329
3478
我們可以把這個將獎勵 納入基本收入中的想法,
12:19
and maybe extend it to other areas.
263
739831
1667
也許再延伸至其他的領域。
12:21
For example, we might create an incentive to work in the community
264
741522
3577
比如,我們可以針對 在社區中助人的行為,
12:25
to help others,
265
745123
1158
創造一種獎勵;
12:26
or perhaps to do positive things for the environment,
266
746305
3064
或是去獎勵人們 為環境做出正面的貢獻,
12:29
and so forth.
267
749393
1170
諸如此類。
12:30
So by incorporating incentives into a basic income,
268
750587
3011
把獎勵納入到基本收入當中,
12:33
we might actually improve it,
269
753622
1629
我們可能可以改善它,
12:35
and also, perhaps, take at least a couple of steps
270
755275
2626
另外,也許也可以更接近
12:37
towards solving another problem
271
757925
2425
解決另一個我認為
12:40
that I think we're quite possibly going to face in the future,
272
760374
2944
在未來也很可能要面臨的問題,
12:43
and that is, how do we all find meaning and fulfillment,
273
763342
3752
就是:我們要如何 找到意義和實現人生、
12:47
and how do we occupy our time
274
767118
2318
以及我們要如何把時間
12:49
in a world where perhaps there's less demand for traditional work?
275
769460
4349
花在一個也許比較不需求 傳統工作的世界裡?
12:54
So by extending and refining a basic income,
276
774201
2805
透過延伸和改善基本收入,
12:57
I think we can make it look better,
277
777030
2336
我想我們可以讓它看起來更好,
12:59
and we can also, perhaps, make it more politically and socially acceptable
278
779390
5298
我們也能讓它在政治面 和社會面更容易被接受,
13:04
and feasible --
279
784712
1164
也更可行──
13:05
and, of course, by doing that,
280
785900
1474
當然,透過那樣做,
13:07
we increase the odds that it will actually come to be.
281
787398
3450
我們就會增加實現它的可能性。
13:11
I think one of the most fundamental,
282
791731
2270
我想,對於基本收入這個想法,
13:14
almost instinctive objections
283
794025
2168
或是擴展安全網,
13:16
that many of us have to the idea of a basic income,
284
796217
3453
我們所有人最主要、
13:19
or really to any significant expansion of the safety net,
285
799694
3732
也最直覺的反對意見,
13:23
is this fear that we're going to end up with too many people
286
803450
3760
就是害怕最後會有太多人
13:27
riding in the economic cart,
287
807234
1738
爬上這經濟車箱,
13:28
and not enough people pulling that cart.
288
808996
2047
而沒有足夠人去拉這車廂。
13:31
And yet, really, the whole point I'm making here, of course,
289
811067
2834
但,其實,我在這裡要說的重點是,
13:33
is that in the future,
290
813925
1361
在未來,
13:35
machines are increasingly going to be capable of pulling that cart for us.
291
815310
3826
機器將會有能力為我們拉車。
13:39
That should give us more options
292
819160
1990
那就會讓我們有更多選項,
13:41
for the way we structure our society and our economy,
293
821174
3811
可用以不同的方式 架構我們的社會和經濟,
13:45
And I think eventually, it's going to go beyond simply being an option,
294
825009
3442
我認為,最終它將不只是個選項,
13:48
and it's going to become an imperative.
295
828475
1901
而將變成勢在必行。
13:50
The reason, of course, is that all of this is going to put
296
830400
2822
當然,因為這一切
將會帶給社會一定程度的壓力,
13:53
such a degree of stress on our society,
297
833246
2014
13:55
and also because jobs are that mechanism
298
835284
2514
也因為要靠「工作」這個機制,
13:57
that gets purchasing power to consumers
299
837822
1965
將購買力分配給消費者,
13:59
so they can then drive the economy.
300
839811
2516
他們接著才能夠帶動經濟。
14:02
If, in fact, that mechanism begins to erode in the future,
301
842351
3547
事實上,如果未來那機制開始腐蝕了,
14:05
then we're going to need to replace it with something else
302
845922
2815
我們就得要用其他東西來取代它,
14:08
or we're going to face the risk
303
848761
1563
不然我們就要面臨
14:10
that our whole system simply may not be sustainable.
304
850348
2567
整個體制不夠永續的風險。
14:12
But the bottom line here is that I really think
305
852939
2382
但這裡的關鍵是,我真的認為
14:15
that solving these problems,
306
855345
2436
解決這些問題,
14:17
and especially finding a way to build a future economy
307
857805
3400
特別是找出方法來建立一種對社會
14:21
that works for everyone,
308
861229
2013
每個層級的每個人都
14:23
at every level of our society,
309
863266
1861
行得通的未來經濟,
14:25
is going to be one of the most important challenges that we all face
310
865151
3540
將會是未來幾年和幾十年間,
我們所有人要面臨 的最重大挑戰之一。
14:28
in the coming years and decades.
311
868715
2043
14:30
Thank you very much.
312
870782
1248
非常謝謝。
14:32
(Applause)
313
872054
1860
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7