Del Harvey: The strangeness of scale at Twitter

106,770 views ・ 2014-03-27

TED


請雙擊下方英文字幕播放視頻。

譯者: Yamei Huang 審譯者: Adrienne Lin
00:12
My job at Twitter
0
12984
1291
我在推特的工作
00:14
is to ensure user trust,
1
14275
1978
就是確保使用者對推特的信任,
00:16
protect user rights and keep users safe,
2
16253
2837
以及保護使用者的權益及安全,
00:19
both from each other
3
19090
1260
不只是使用者之間
00:20
and, at times, from themselves.
4
20350
3899
有時是有關使用者本身的權益及安全。
00:24
Let's talk about what scale looks like at Twitter.
5
24249
4275
讓我們談談推特訊息的規模。
00:28
Back in January 2009,
6
28524
2870
2009 年 1 月,
00:31
we saw more than two million new tweets each day
7
31394
3331
每一天,我們在推特平台上
00:34
on the platform.
8
34725
1764
看到超過 200 萬條新訊息。
00:36
January 2014, more than 500 million.
9
36489
5908
2014 年 1 月,則有超過 5 億條訊息。
00:42
We were seeing two million tweets
10
42397
2492
六分鐘內,
00:44
in less than six minutes.
11
44889
2176
就有 200 萬條推文。
00:47
That's a 24,900-percent increase.
12
47065
6984
那是 24,900% 的成長。
00:54
Now, the vast majority of activity on Twitter
13
54049
3253
今天,絶大部分在推特上的活動
00:57
puts no one in harm's way.
14
57302
1503
不會傷害任何人。
00:58
There's no risk involved.
15
58805
1935
沒有任何風險。
01:00
My job is to root out and prevent activity that might.
16
60740
5753
我的工作則是根除 任何可能傷害他人權益的活動。
01:06
Sounds straightforward, right?
17
66493
1973
聽起來很簡單,對吧?
01:08
You might even think it'd be easy,
18
68466
1152
你或許會認為這個工作很簡單,
01:09
given that I just said the vast majority
19
69618
2170
尤其當我說,推特上絕大部分的動作
01:11
of activity on Twitter puts no one in harm's way.
20
71788
3810
並不會對任何人造成傷害。
01:15
Why spend so much time
21
75598
2169
那為什麼要花費這麼多時間
01:17
searching for potential calamities
22
77767
2743
在無害的網路活動中,
01:20
in innocuous activities?
23
80510
2900
尋找可能的危機?
01:23
Given the scale that Twitter is at,
24
83410
2940
以推特的規模來看,
01:26
a one-in-a-million chance happens
25
86350
2357
百萬分之一的機率,
01:28
500 times a day.
26
88707
4876
相當於一天會有 500 條 可能造成危害的訊息。
01:33
It's the same for other companies
27
93583
1445
這個訊息量,是其他公司
01:35
dealing at this sort of scale.
28
95028
1471
所要處理的訊息量相同
01:36
For us, edge cases,
29
96499
1708
對我們而言,那些稀少罕見,
01:38
those rare situations that are unlikely to occur,
30
98207
3625
不太可能發生的極端事件,
01:41
are more like norms.
31
101832
2622
有如家常便飯。
01:44
Say 99.999 percent of tweets
32
104454
3942
假設百分之 99.999% 的推文
01:48
pose no risk to anyone.
33
108396
1888
都不會傷害任何人,
01:50
There's no threat involved.
34
110284
1066
不涉及任何風險。
01:51
Maybe people are documenting travel landmarks
35
111350
2954
也許大家只是在記錄旅遊景點,
01:54
like Australia's Heart Reef,
36
114304
1963
像是澳洲的心形礁,
01:56
or tweeting about a concert they're attending,
37
116267
2921
或是傳些關於他們正在參加的演唱會,
01:59
or sharing pictures of cute baby animals.
38
119188
4747
或者是分享一些可愛小動物的照片。
02:03
After you take out that 99.999 percent,
39
123935
4509
當你除去那 99.999% 的機率,
02:08
that tiny percentage of tweets remaining
40
128444
3529
剩下極微小的百分比
02:11
works out to roughly
41
131973
2389
粗估下來
02:14
150,000 per month.
42
134362
3475
每月大約有十五萬條訊息。
02:17
The sheer scale of what we're dealing with
43
137837
2456
管理這麼龐大的規模,
02:20
makes for a challenge.
44
140293
2312
是個挑戰。
02:22
You know what else makes my role
45
142605
1178
你知道還有什麼
02:23
particularly challenging?
46
143783
3107
讓我的工作更具挑戰性的嗎?
02:26
People do weird things.
47
146890
5123
人會做些奇怪的事。
02:32
(Laughter)
48
152013
1829
(笑聲)
02:33
And I have to figure out what they're doing,
49
153842
2391
而我則必須搞清楚他們在做什麼,
02:36
why, and whether or not there's risk involved,
50
156233
2249
動機是什麼,還有是否有危險性,
02:38
often without much in terms of context
51
158482
2168
且通常是在沒有資料
02:40
or background.
52
160650
1847
或背景的情況下就要去搞清楚。
02:42
I'm going to show you some examples
53
162497
2077
讓我舉幾個我在推特工作時
02:44
that I've run into during my time at Twitter --
54
164574
2005
遇到的例子,
02:46
these are all real examples —
55
166579
1620
這些全都是真實的案例,
02:48
of situations that at first seemed cut and dried,
56
168199
2653
一些原先看來簡單明瞭的情況,
02:50
but the truth of the matter was something
57
170852
1643
但事情的真相
02:52
altogether different.
58
172495
1550
又是截然不同。
02:54
The details have been changed
59
174045
1977
有些細節已被更改,
02:56
to protect the innocent
60
176022
1257
是為了保護無辜的人,
02:57
and sometimes the guilty.
61
177279
3233
有時也包括罪犯。
03:00
We'll start off easy.
62
180512
3005
我們從簡單的開始。
03:03
["Yo bitch"]
63
183517
1793
[嘿 賤女人]
03:05
If you saw a Tweet that only said this,
64
185310
3228
當你在推特上看到這句話,
03:08
you might think to yourself,
65
188538
1694
你可能會認為:
03:10
"That looks like abuse."
66
190232
1653
「那是一種辱罵」。
03:11
After all, why would you want to receive the message,
67
191885
3107
畢竟,誰會希望收到這樣的訊息:
03:14
"Yo, bitch."
68
194992
2218
「嘿,賤女人。」
03:17
Now, I try to stay relatively hip
69
197210
4663
現在,我試著跟上趨勢
03:21
to the latest trends and memes,
70
201873
2512
及最新流行用語,
03:24
so I knew that "yo, bitch"
71
204385
2704
所以我知道「嘿,賤女人」
03:27
was also often a common greeting between friends,
72
207089
3154
也常被用作朋友間的招呼用語
03:30
as well as being a popular "Breaking Bad" reference.
73
210243
4262
是來自於《絕命毒師》的說法。
03:34
I will admit that I did not expect
74
214505
2487
我得承認我沒有想到
03:36
to encounter a fourth use case.
75
216992
2841
這句話會有第四種用法。
03:39
It turns out it is also used on Twitter
76
219833
3104
原來在推特上,扮成狗的人
03:42
when people are role-playing as dogs.
77
222937
3062
也會用這個詞。
03:45
(Laughter)
78
225999
5279
(笑聲)
03:51
And in fact, in that case,
79
231278
1666
事實上,在這個情況下,
03:52
it's not only not abusive,
80
232944
1609
不止沒有辱罵的意味,
03:54
it's technically just an accurate greeting.
81
234553
3139
嚴格說來,這是一個準確的問候用語。
03:57
(Laughter)
82
237692
2889
(笑聲)
04:00
So okay, determining whether or not
83
240581
2071
所以,一條沒有來龍去脈的訊息
04:02
something is abusive without context,
84
242652
1848
要去判定這個訊息是否有辱罵的意味,
04:04
definitely hard.
85
244500
1592
絕對是很困難的。
04:06
Let's look at spam.
86
246092
2717
我們來看看垃圾訊息。
04:08
Here's an example of an account engaged
87
248809
1960
這是使用者傳送垃圾訊息
04:10
in classic spammer behavior,
88
250769
1668
的典型例子,
04:12
sending the exact same message
89
252437
1559
一直不斷地傳送相同的訊息
04:13
to thousands of people.
90
253996
1804
給上千個人。
04:15
While this is a mockup I put together using my account,
91
255800
2793
這是我用自己帳號作出的模擬範例,
04:18
we see accounts doing this all the time.
92
258593
3001
我們總可以看到使用者傳送這樣的訊息。
04:21
Seems pretty straightforward.
93
261594
1979
看起來相當簡單明瞭。
04:23
We should just automatically suspend accounts
94
263573
2053
我們應該自動封鎖
04:25
engaging in this kind of behavior.
95
265626
3307
涉及這種行為的帳號。
04:28
Turns out there's some exceptions to that rule.
96
268933
3210
結果總有些例外。
04:32
Turns out that that message could also be a notification
97
272143
2883
這些訊息,也有可能是通知
04:35
you signed up for that the International Space Station is passing overhead
98
275026
3889
你登記參加國際太空站經過你上空的活動,
04:38
because you wanted to go outside
99
278915
1846
你希望收到通知,即時走到戶外
04:40
and see if you could see it.
100
280761
1948
可以親自目睹。
04:42
You're not going to get that chance
101
282709
1225
你絶不會因為
04:43
if we mistakenly suspend the account
102
283934
1847
誤認為這是垃圾訊息
04:45
thinking it's spam.
103
285781
2266
而停用這個帳號的情況發生。
04:48
Okay. Let's make the stakes higher.
104
288047
3526
好。讓我們再把風險的層級提高。
04:51
Back to my account,
105
291573
1916
再來看我的帳號,
04:53
again exhibiting classic behavior.
106
293489
3505
在推特上展示特定的行為。
04:56
This time it's sending the same message and link.
107
296994
2643
這次是在持特上傳送相同的訊息和連結
04:59
This is often indicative of something called phishing,
108
299637
2774
這通常是一種網路釣魚,
05:02
somebody trying to steal another person's account information
109
302411
3178
有人試著去引導他人到另一個網站
05:05
by directing them to another website.
110
305589
2203
然後盜用他的帳號
05:07
That's pretty clearly not a good thing.
111
307792
4194
很明顯這不是一件好事。
05:11
We want to, and do, suspend accounts
112
311986
1930
我們要,而且必須去阻止
05:13
engaging in that kind of behavior.
113
313916
2624
可疑的帳號去做這樣的行為。
05:16
So why are the stakes higher for this?
114
316540
3247
但是,為何這麼做風險更高?
05:19
Well, this could also be a bystander at a rally
115
319787
2999
這像是遊行人潮當中的旁觀者
05:22
who managed to record a video
116
322786
1910
拿著攝影機,對著
05:24
of a police officer beating a non-violent protester
117
324696
3270
警察動手打一個 無暴力行為的抗議者攝影,
05:27
who's trying to let the world know what's happening.
118
327966
2975
好讓全世界的人知道此事。
05:30
We don't want to gamble
119
330941
1643
我們不想冒這個險
05:32
on potentially silencing that crucial speech
120
332584
2517
把有可能很重要的訊息
05:35
by classifying it as spam and suspending it.
121
335101
2929
歸類為垃圾訊息,然後停用帳號。
05:38
That means we evaluate hundreds of parameters
122
338030
2879
那意味著,當我們在觀察使用者行為時
05:40
when looking at account behaviors,
123
340909
1688
我們憑估成千上百個因素,
05:42
and even then, we can still get it wrong
124
342597
2016
即使是這麼做了,百密仍有一疏,
05:44
and have to reevaluate.
125
344613
2236
必須再重新評估這些訊息。
05:46
Now, given the sorts of challenges I'm up against,
126
346849
3708
現在,面臨各式各樣的挑戰,
05:50
it's crucial that I not only predict
127
350557
2696
重要的是,不但要去預測可能發生的事,
05:53
but also design protections for the unexpected.
128
353253
3784
而且要對可能發生的事, 設計一套因應的保護措施。
05:57
And that's not just an issue for me,
129
357037
2342
這不僅事關我和推特,
05:59
or for Twitter, it's an issue for you.
130
359379
2087
這也關係到你。
06:01
It's an issue for anybody who's building or creating
131
361466
2406
關係到任何想創造美好事物,
06:03
something that you think is going to be amazing
132
363872
1925
06:05
and will let people do awesome things.
133
365797
2789
以及想要讓他人也一起 做美好事物的推特使用者。
06:08
So what do I do?
134
368586
2866
所以我要怎麼做呢?
06:11
I pause and I think,
135
371452
3318
我一再思考這問題
06:14
how could all of this
136
374770
2095
這些事情
06:16
go horribly wrong?
137
376865
3793
到底怎麼會出錯?
06:20
I visualize catastrophe.
138
380658
4453
我想像發生災難的情形。
06:25
And that's hard. There's a sort of
139
385111
2463
這很困難,
06:27
inherent cognitive dissonance in doing that,
140
387574
2848
因為這麼做, 有點像是內在認知不協調,
06:30
like when you're writing your wedding vows
141
390422
1812
就像是寫結婚誓言時,
06:32
at the same time as your prenuptial agreement.
142
392234
2646
同時也寫婚前協議書。
06:34
(Laughter)
143
394880
1696
(笑聲)
06:36
But you still have to do it,
144
396576
2373
但還是必須要去做,
06:38
particularly if you're marrying 500 million tweets per day.
145
398949
4446
特別是每天要處理 5 億條推文。
06:43
What do I mean by "visualize catastrophe?"
146
403395
3097
我所說的「想像災難」是什麼意思呢?
06:46
I try to think of how something as
147
406492
2762
我試著去想像,
06:49
benign and innocuous as a picture of a cat
148
409254
3228
像是一張無害的貓咪照片
06:52
could lead to death,
149
412482
1104
為何可能導致死亡,
06:53
and what to do to prevent that.
150
413586
2326
以及如何避免這種事情發生。
06:55
Which happens to be my next example.
151
415912
2383
正是接下來我要說的例子。
06:58
This is my cat, Eli.
152
418295
3110
這隻是我的貓,叫伊萊。
07:01
We wanted to give users the ability
153
421405
1981
我們盡可能讓推特的使用者
07:03
to add photos to their tweets.
154
423386
2073
在推特上傳送圖片,
07:05
A picture is worth a thousand words.
155
425459
1597
一張圖勝過千言萬語,
07:07
You only get 140 characters.
156
427056
2009
而一次推文只能傳送 140 個字。
07:09
You add a photo to your tweet,
157
429065
1200
你在推文加入圖片,
07:10
look at how much more content you've got now.
158
430265
3038
你會發現推文的內容更加豐富。
07:13
There's all sorts of great things you can do
159
433303
1677
藉由推特加入圖片的功能,
07:14
by adding a photo to a tweet.
160
434980
2007
你可以做各種麼美妙的事。
07:16
My job isn't to think of those.
161
436987
2280
我的工作不是去想這些事情。
07:19
It's to think of what could go wrong.
162
439267
2747
而是去想事情可能會出什麼差錯。
07:22
How could this picture
163
442014
1892
這張圖片
07:23
lead to my death?
164
443906
3539
如何導致我死亡?
07:27
Well, here's one possibility.
165
447445
3160
有一個可能性。
07:30
There's more in that picture than just a cat.
166
450605
3086
這張圖的資訊不只是一隻貓。
07:33
There's geodata.
167
453691
2092
還有地理資訊在裡頭。
07:35
When you take a picture with your smartphone
168
455783
2212
當你以智慧型手機
07:37
or digital camera,
169
457995
1299
或數位相機拍照,
07:39
there's a lot of additional information
170
459294
1654
會有許多額外的資訊
07:40
saved along in that image.
171
460948
1616
儲存在照片裡。
07:42
In fact, this image also contains
172
462564
1932
事實上,這張照片還包含
07:44
the equivalent of this,
173
464496
1805
相當於這個的資訊,
07:46
more specifically, this.
174
466301
3079
更具體地說是這個。
07:49
Sure, it's not likely that someone's going to try
175
469380
1956
當然,不太可能有人嘗試
07:51
to track me down and do me harm
176
471336
2285
根據這張貓照片的相關資訊
07:53
based upon image data associated
177
473621
1784
追蹤我以及傷害我。
07:55
with a picture I took of my cat,
178
475405
1948
07:57
but I start by assuming the worst will happen.
179
477353
3651
但我一開始就要假設 最壞的情況一定會發生,
08:01
That's why, when we launched photos on Twitter,
180
481004
2338
這就是為什麼我們 在開放上傳照片到推特時,
08:03
we made the decision to strip that geodata out.
181
483342
3821
就決定把照片裡的地理資訊全刪掉。
08:07
(Applause)
182
487163
5847
(掌聲)
08:13
If I start by assuming the worst
183
493010
2613
如果一開始,我就假設 可能發生最壞的情況,
08:15
and work backwards,
184
495623
947
然後再往前倒推,
08:16
I can make sure that the protections we build
185
496570
2553
我可以確定我們建立的保護制度,
08:19
work for both expected
186
499123
1768
可以應付意料中
08:20
and unexpected use cases.
187
500891
2078
以及意料外的事件。
08:22
Given that I spend my days and nights
188
502969
2945
我日夜地
08:25
imagining the worst that could happen,
189
505914
2541
想像發生最壞情況的情形,
08:28
it wouldn't be surprising if my worldview was gloomy.
190
508455
4257
如果因此造成我憂鬱的世界觀, 也不會令人感到意外。
08:32
(Laughter)
191
512712
1783
(笶聲)
08:34
It's not.
192
514495
1417
其實並非如此。
08:35
The vast majority of interactions I see --
193
515912
3876
我看到的絶大部份互動,
08:39
and I see a lot, believe me -- are positive,
194
519788
3901
我看了很多,相信我, 它們都是正面的。
08:43
people reaching out to help
195
523689
1924
人們伸出援手互相幫忙,
08:45
or to connect or share information with each other.
196
525613
3448
彼此互相連絡或分享資訊。
08:49
It's just that for those of us dealing with scale,
197
529061
3323
只是我們要處理龐大的資訊量,
08:52
for those of us tasked with keeping people safe,
198
532384
3800
承擔保護使用者安全的責任,
08:56
we have to assume the worst will happen,
199
536184
2546
所以必須假設將發生最壞的情況,
08:58
because for us, a one-in-a-million chance
200
538730
4227
對我們來說,百萬分之一的可能性
09:02
is pretty good odds.
201
542957
2749
是相當高的機率。
09:05
Thank you.
202
545706
1864
謝謝。
09:07
(Applause)
203
547570
4000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog