How AI is making it easier to diagnose disease | Pratik Shah

86,833 views ・ 2018-08-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: Shuhui Chen 校对人员: Yolanda Zhang
00:13
Computer algorithms today are performing incredible tasks
0
13280
3856
今天的计算机算法, 正在使用类似人类的智能,
00:17
with high accuracies, at a massive scale, using human-like intelligence.
1
17160
4736
大规模的执行具有高精度的, 不可思议的任务。
00:21
And this intelligence of computers is often referred to as AI
2
21920
3936
而这种计算机智能,通常被称为AI,
00:25
or artificial intelligence.
3
25880
1856
或“人工智能”。
00:27
AI is poised to make an incredible impact on our lives in the future.
4
27760
4200
人工智能有望在未来对我们的生活 产生令人难以置信的影响。
00:32
Today, however, we still face massive challenges
5
32880
3936
然而今天,在检测和诊断 几种危及生命的疾病,
00:36
in detecting and diagnosing several life-threatening illnesses,
6
36840
3496
比如传染病和癌症时,
00:40
such as infectious diseases and cancer.
7
40360
2360
我们仍然面临着大量的挑战。
00:44
Thousands of patients every year
8
44000
2296
每年,数以千计的病人
00:46
lose their lives due to liver and oral cancer.
9
46320
2800
因患上肝癌和口腔癌失去生命。
00:49
Our best way to help these patients
10
49880
2696
帮助病人最好的方式
00:52
is to perform early detection and diagnoses of these diseases.
11
52600
4320
就是对这些疾病进行 早期检测和诊断。
00:57
So how do we detect these diseases today, and can artificial intelligence help?
12
57880
4160
那么,今天我们如何检测这些疾病? AI可以提供帮助吗?
01:03
In patients who, unfortunately, are suspected of these diseases,
13
63920
3656
对于不幸被怀疑 患有这些疾病的患者,
01:07
an expert physician first orders
14
67600
2656
专家医师会先要求他们照射
01:10
very expensive medical imaging technologies
15
70280
2616
非常昂贵的医疗图像,
01:12
such as fluorescent imaging, CTs, MRIs, to be performed.
16
72920
4096
例如荧光成像,CT,MRI等。
收集到这些图像之后,
01:17
Once those images are collected,
17
77040
2296
01:19
another expert physician then diagnoses those images and talks to the patient.
18
79360
4520
另一位专家医师会进行诊断, 并与患者交流。
01:24
As you can see, this is a very resource-intensive process,
19
84520
3456
显而易见,这是个 非常耗费资源的过程,
需要两位专家医师 和昂贵的医学图像技术。
01:28
requiring both expert physicians, expensive medical imaging technologies,
20
88000
4416
01:32
and is not considered practical for the developing world.
21
92440
3096
这在发展中国家被认为并不实用,
01:35
And in fact, in many industrialized nations, as well.
22
95560
3360
事实上,在许多 工业化国家也是如此。
01:39
So, can we solve this problem using artificial intelligence?
23
99760
2880
那么,我们能够用 人工智能解决这个问题吗?
01:43
Today, if I were to use traditional artificial intelligence architectures
24
103840
4056
今天,如果使用传统的 人工智能架构
01:47
to solve this problem,
25
107920
1216
来解决这个问题,
01:49
I would require 10,000 --
26
109160
1456
我可能需要1万张——
01:50
I repeat, on an order of 10,000 of these very expensive medical images
27
110640
4016
我重复一次,我首先需要 生成1万张这种非常昂贵的
01:54
first to be generated.
28
114680
1376
医学图像。
01:56
After that, I would then go to an expert physician,
29
116080
2896
之后,我会去找一位专业医师
01:59
who would then analyze those images for me.
30
119000
2496
为我分析这些图像。
02:01
And using those two pieces of information,
31
121520
2096
利用这两条信息,
02:03
I can train a standard deep neural network or a deep learning network
32
123640
3656
我可以训练标准的深度神经网络, 或深度学习网络
02:07
to provide patient's diagnosis.
33
127320
2136
对患者进行诊断。
02:09
Similar to the first approach,
34
129480
1736
与第一步相似,
02:11
traditional artificial intelligence approaches
35
131240
2143
传统人工智能方法
02:13
suffer from the same problem.
36
133407
1449
遭遇了同样的问题:
02:14
Large amounts of data, expert physicians and expert medical imaging technologies.
37
134880
4560
那就是需要大量的数据、 专家医师和专业的医疗图像技术。
02:20
So, can we invent more scalable, effective
38
140320
4296
我们是否能够创造出一种 规模更大、更有效率、
02:24
and more valuable artificial intelligence architectures
39
144640
3296
同时更有价值的人工智能架构,
02:27
to solve these very important problems facing us today?
40
147960
3056
来解决我们今天面临的 这些重要的问题呢?
02:31
And this is exactly what my group at MIT Media Lab does.
41
151040
3296
而这就是我们的团队 在MIT媒体实验室所研究的内容。
02:34
We have invented a variety of unorthodox AI architectures
42
154360
3856
我们开发了各种新型AI架构,
02:38
to solve some of the most important challenges facing us today
43
158240
3176
来解决一些我们当今 在医疗图像和临床试验中
02:41
in medical imaging and clinical trials.
44
161440
2200
面临的最重要的挑战。
02:44
In the example I shared with you today, we had two goals.
45
164480
3056
在我今天分享的例子中, 包括了我们的两个目标。
02:47
Our first goal was to reduce the number of images
46
167560
2976
第一个目标,是减少 用来训练人工智能算法
02:50
required to train artificial intelligence algorithms.
47
170560
3256
所需要的图片数量。
02:53
Our second goal -- we were more ambitious,
48
173840
2096
第二个目标——更大的志向,
02:55
we wanted to reduce the use of expensive medical imaging technologies
49
175960
3736
我们希望让患者减少使用昂贵的
02:59
to screen patients.
50
179720
1216
医疗图像技术。
03:00
So how did we do it?
51
180960
1200
那么我们是怎样做的?
03:02
For our first goal,
52
182920
1216
我们的第一个目标,
03:04
instead of starting with tens and thousands
53
184160
2056
相比于传统AI
03:06
of these very expensive medical images, like traditional AI,
54
186240
3016
从成千上万张昂贵的医疗图像开始,
03:09
we started with a single medical image.
55
189280
2056
我们选择从单张图像开始。
03:11
From this image, my team and I figured out a very clever way
56
191360
3776
根据这张图片, 我和我的团队想出了
03:15
to extract billions of information packets.
57
195160
2736
一种非常聪明的方法 来提取数十亿个信息包。
03:17
These information packets included colors, pixels, geometry
58
197920
3696
这些信息包包含颜色、像素、形态
03:21
and rendering of the disease on the medical image.
59
201640
2536
和疾病呈现在医疗图像上的效果。
03:24
In a sense, we converted one image into billions of training data points,
60
204200
4336
这样一来,我们就将一张图像 转换成了数十亿个训练数据点,
03:28
massively reducing the amount of data needed for training.
61
208560
3536
需要训练的数据量就大大减少了。
03:32
For our second goal,
62
212120
1216
第二个目标,
03:33
to reduce the use of expensive medical imaging technologies to screen patients,
63
213360
3856
是减少对患者使用医疗图像技术。
03:37
we started with a standard, white light photograph,
64
217240
2856
最开始,我们会从 数码单反相机或手机中
03:40
acquired either from a DSLR camera or a mobile phone, for the patient.
65
220120
4336
获取一张标准的白色光线照片。
03:44
Then remember those billions of information packets?
66
224480
2456
然后,还记得那 数十亿个信息包吗?
03:46
We overlaid those from the medical image onto this image,
67
226960
3536
将这些医疗图像的信息包 覆盖在这张图片上,
03:50
creating something that we call a composite image.
68
230520
2520
这时我们就创建了一张合成图像。
03:53
Much to our surprise, we only required 50 --
69
233480
3296
令人惊讶的是,我们只需要50张——
03:56
I repeat, only 50 --
70
236800
1336
强调一下,仅仅50张——
03:58
of these composite images to train our algorithms to high efficiencies.
71
238160
3840
这些复合图像, 就能训练我们的算法提高效率。
04:02
To summarize our approach,
72
242680
1336
总结一下我们的方法,
04:04
instead of using 10,000 very expensive medical images,
73
244040
3176
区别于用1万张昂贵的 医疗图像训练AI算法,
04:07
we can now train the AI algorithms in an unorthodox way,
74
247240
3016
我们使用了一种全新的方式,
04:10
using only 50 of these high-resolution, but standard photographs,
75
250280
4256
只需要将数码相机或手机拍摄的
04:14
acquired from DSLR cameras and mobile phones,
76
254560
2496
50张高分辨率的标准照片,
04:17
and provide diagnosis.
77
257080
1536
即可提供诊断。
04:18
More importantly,
78
258640
1216
更重要的是,
04:19
our algorithms can accept, in the future and even right now,
79
259880
3136
在未来,甚至现在, 我们的算法可以接受
04:23
some very simple, white light photographs from the patient,
80
263040
2816
一些病人自己拍摄的白光照片,
04:25
instead of expensive medical imaging technologies.
81
265880
2440
来替代昂贵的医疗图像技术。
04:29
I believe that we are poised to enter an era
82
269120
3096
我相信,我们已经准备好 进入这样一个时代,
04:32
where artificial intelligence
83
272240
1936
人工智能
04:34
is going to make an incredible impact on our future.
84
274200
2536
正在对我们的未来产生 不可思议的影响。
04:36
And I think that thinking about traditional AI,
85
276760
2456
我也认为相比拥有丰富数据
04:39
which is data-rich but application-poor,
86
279240
2776
但应用困难的传统AI,
04:42
we should also continue thinking
87
282040
1536
我们应该不断思考
04:43
about unorthodox artificial intelligence architectures,
88
283600
3016
非传统的人工智能架构。
04:46
which can accept small amounts of data
89
286640
1936
它们能够接受少量数据,
04:48
and solve some of the most important problems facing us today,
90
288600
2936
并解决一些今天 我们所面临的重要问题,
04:51
especially in health care.
91
291560
1256
特别是在医疗健康方面。
04:52
Thank you very much.
92
292840
1216
非常感谢。
04:54
(Applause)
93
294080
3840
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7