How AI is making it easier to diagnose disease | Pratik Shah

88,787 views ・ 2018-08-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: Shuhui Chen 校对人员: Yolanda Zhang
00:13
Computer algorithms today are performing incredible tasks
0
13280
3856
今天的计算机算法, 正在使用类似人类的智能,
00:17
with high accuracies, at a massive scale, using human-like intelligence.
1
17160
4736
大规模的执行具有高精度的, 不可思议的任务。
00:21
And this intelligence of computers is often referred to as AI
2
21920
3936
而这种计算机智能,通常被称为AI,
00:25
or artificial intelligence.
3
25880
1856
或“人工智能”。
00:27
AI is poised to make an incredible impact on our lives in the future.
4
27760
4200
人工智能有望在未来对我们的生活 产生令人难以置信的影响。
00:32
Today, however, we still face massive challenges
5
32880
3936
然而今天,在检测和诊断 几种危及生命的疾病,
00:36
in detecting and diagnosing several life-threatening illnesses,
6
36840
3496
比如传染病和癌症时,
00:40
such as infectious diseases and cancer.
7
40360
2360
我们仍然面临着大量的挑战。
00:44
Thousands of patients every year
8
44000
2296
每年,数以千计的病人
00:46
lose their lives due to liver and oral cancer.
9
46320
2800
因患上肝癌和口腔癌失去生命。
00:49
Our best way to help these patients
10
49880
2696
帮助病人最好的方式
00:52
is to perform early detection and diagnoses of these diseases.
11
52600
4320
就是对这些疾病进行 早期检测和诊断。
00:57
So how do we detect these diseases today, and can artificial intelligence help?
12
57880
4160
那么,今天我们如何检测这些疾病? AI可以提供帮助吗?
01:03
In patients who, unfortunately, are suspected of these diseases,
13
63920
3656
对于不幸被怀疑 患有这些疾病的患者,
01:07
an expert physician first orders
14
67600
2656
专家医师会先要求他们照射
01:10
very expensive medical imaging technologies
15
70280
2616
非常昂贵的医疗图像,
01:12
such as fluorescent imaging, CTs, MRIs, to be performed.
16
72920
4096
例如荧光成像,CT,MRI等。
收集到这些图像之后,
01:17
Once those images are collected,
17
77040
2296
01:19
another expert physician then diagnoses those images and talks to the patient.
18
79360
4520
另一位专家医师会进行诊断, 并与患者交流。
01:24
As you can see, this is a very resource-intensive process,
19
84520
3456
显而易见,这是个 非常耗费资源的过程,
需要两位专家医师 和昂贵的医学图像技术。
01:28
requiring both expert physicians, expensive medical imaging technologies,
20
88000
4416
01:32
and is not considered practical for the developing world.
21
92440
3096
这在发展中国家被认为并不实用,
01:35
And in fact, in many industrialized nations, as well.
22
95560
3360
事实上,在许多 工业化国家也是如此。
01:39
So, can we solve this problem using artificial intelligence?
23
99760
2880
那么,我们能够用 人工智能解决这个问题吗?
01:43
Today, if I were to use traditional artificial intelligence architectures
24
103840
4056
今天,如果使用传统的 人工智能架构
01:47
to solve this problem,
25
107920
1216
来解决这个问题,
01:49
I would require 10,000 --
26
109160
1456
我可能需要1万张——
01:50
I repeat, on an order of 10,000 of these very expensive medical images
27
110640
4016
我重复一次,我首先需要 生成1万张这种非常昂贵的
01:54
first to be generated.
28
114680
1376
医学图像。
01:56
After that, I would then go to an expert physician,
29
116080
2896
之后,我会去找一位专业医师
01:59
who would then analyze those images for me.
30
119000
2496
为我分析这些图像。
02:01
And using those two pieces of information,
31
121520
2096
利用这两条信息,
02:03
I can train a standard deep neural network or a deep learning network
32
123640
3656
我可以训练标准的深度神经网络, 或深度学习网络
02:07
to provide patient's diagnosis.
33
127320
2136
对患者进行诊断。
02:09
Similar to the first approach,
34
129480
1736
与第一步相似,
02:11
traditional artificial intelligence approaches
35
131240
2143
传统人工智能方法
02:13
suffer from the same problem.
36
133407
1449
遭遇了同样的问题:
02:14
Large amounts of data, expert physicians and expert medical imaging technologies.
37
134880
4560
那就是需要大量的数据、 专家医师和专业的医疗图像技术。
02:20
So, can we invent more scalable, effective
38
140320
4296
我们是否能够创造出一种 规模更大、更有效率、
02:24
and more valuable artificial intelligence architectures
39
144640
3296
同时更有价值的人工智能架构,
02:27
to solve these very important problems facing us today?
40
147960
3056
来解决我们今天面临的 这些重要的问题呢?
02:31
And this is exactly what my group at MIT Media Lab does.
41
151040
3296
而这就是我们的团队 在MIT媒体实验室所研究的内容。
02:34
We have invented a variety of unorthodox AI architectures
42
154360
3856
我们开发了各种新型AI架构,
02:38
to solve some of the most important challenges facing us today
43
158240
3176
来解决一些我们当今 在医疗图像和临床试验中
02:41
in medical imaging and clinical trials.
44
161440
2200
面临的最重要的挑战。
02:44
In the example I shared with you today, we had two goals.
45
164480
3056
在我今天分享的例子中, 包括了我们的两个目标。
02:47
Our first goal was to reduce the number of images
46
167560
2976
第一个目标,是减少 用来训练人工智能算法
02:50
required to train artificial intelligence algorithms.
47
170560
3256
所需要的图片数量。
02:53
Our second goal -- we were more ambitious,
48
173840
2096
第二个目标——更大的志向,
02:55
we wanted to reduce the use of expensive medical imaging technologies
49
175960
3736
我们希望让患者减少使用昂贵的
02:59
to screen patients.
50
179720
1216
医疗图像技术。
03:00
So how did we do it?
51
180960
1200
那么我们是怎样做的?
03:02
For our first goal,
52
182920
1216
我们的第一个目标,
03:04
instead of starting with tens and thousands
53
184160
2056
相比于传统AI
03:06
of these very expensive medical images, like traditional AI,
54
186240
3016
从成千上万张昂贵的医疗图像开始,
03:09
we started with a single medical image.
55
189280
2056
我们选择从单张图像开始。
03:11
From this image, my team and I figured out a very clever way
56
191360
3776
根据这张图片, 我和我的团队想出了
03:15
to extract billions of information packets.
57
195160
2736
一种非常聪明的方法 来提取数十亿个信息包。
03:17
These information packets included colors, pixels, geometry
58
197920
3696
这些信息包包含颜色、像素、形态
03:21
and rendering of the disease on the medical image.
59
201640
2536
和疾病呈现在医疗图像上的效果。
03:24
In a sense, we converted one image into billions of training data points,
60
204200
4336
这样一来,我们就将一张图像 转换成了数十亿个训练数据点,
03:28
massively reducing the amount of data needed for training.
61
208560
3536
需要训练的数据量就大大减少了。
03:32
For our second goal,
62
212120
1216
第二个目标,
03:33
to reduce the use of expensive medical imaging technologies to screen patients,
63
213360
3856
是减少对患者使用医疗图像技术。
03:37
we started with a standard, white light photograph,
64
217240
2856
最开始,我们会从 数码单反相机或手机中
03:40
acquired either from a DSLR camera or a mobile phone, for the patient.
65
220120
4336
获取一张标准的白色光线照片。
03:44
Then remember those billions of information packets?
66
224480
2456
然后,还记得那 数十亿个信息包吗?
03:46
We overlaid those from the medical image onto this image,
67
226960
3536
将这些医疗图像的信息包 覆盖在这张图片上,
03:50
creating something that we call a composite image.
68
230520
2520
这时我们就创建了一张合成图像。
03:53
Much to our surprise, we only required 50 --
69
233480
3296
令人惊讶的是,我们只需要50张——
03:56
I repeat, only 50 --
70
236800
1336
强调一下,仅仅50张——
03:58
of these composite images to train our algorithms to high efficiencies.
71
238160
3840
这些复合图像, 就能训练我们的算法提高效率。
04:02
To summarize our approach,
72
242680
1336
总结一下我们的方法,
04:04
instead of using 10,000 very expensive medical images,
73
244040
3176
区别于用1万张昂贵的 医疗图像训练AI算法,
04:07
we can now train the AI algorithms in an unorthodox way,
74
247240
3016
我们使用了一种全新的方式,
04:10
using only 50 of these high-resolution, but standard photographs,
75
250280
4256
只需要将数码相机或手机拍摄的
04:14
acquired from DSLR cameras and mobile phones,
76
254560
2496
50张高分辨率的标准照片,
04:17
and provide diagnosis.
77
257080
1536
即可提供诊断。
04:18
More importantly,
78
258640
1216
更重要的是,
04:19
our algorithms can accept, in the future and even right now,
79
259880
3136
在未来,甚至现在, 我们的算法可以接受
04:23
some very simple, white light photographs from the patient,
80
263040
2816
一些病人自己拍摄的白光照片,
04:25
instead of expensive medical imaging technologies.
81
265880
2440
来替代昂贵的医疗图像技术。
04:29
I believe that we are poised to enter an era
82
269120
3096
我相信,我们已经准备好 进入这样一个时代,
04:32
where artificial intelligence
83
272240
1936
人工智能
04:34
is going to make an incredible impact on our future.
84
274200
2536
正在对我们的未来产生 不可思议的影响。
04:36
And I think that thinking about traditional AI,
85
276760
2456
我也认为相比拥有丰富数据
04:39
which is data-rich but application-poor,
86
279240
2776
但应用困难的传统AI,
04:42
we should also continue thinking
87
282040
1536
我们应该不断思考
04:43
about unorthodox artificial intelligence architectures,
88
283600
3016
非传统的人工智能架构。
04:46
which can accept small amounts of data
89
286640
1936
它们能够接受少量数据,
04:48
and solve some of the most important problems facing us today,
90
288600
2936
并解决一些今天 我们所面临的重要问题,
04:51
especially in health care.
91
291560
1256
特别是在医疗健康方面。
04:52
Thank you very much.
92
292840
1216
非常感谢。
04:54
(Applause)
93
294080
3840
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog