How AI is making it easier to diagnose disease | Pratik Shah

88,787 views ・ 2018-08-21

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:13
Computer algorithms today are performing incredible tasks
0
13280
3856
現今的電腦演算法能夠執行 很了不起的工作任務,
00:17
with high accuracies, at a massive scale, using human-like intelligence.
1
17160
4736
有高度的精確性,規模可以很大, 且用的是類似人類的智慧。
00:21
And this intelligence of computers is often referred to as AI
2
21920
3936
這種電腦的智慧通常被稱為 AI,
00:25
or artificial intelligence.
3
25880
1856
也就是人工智慧。
00:27
AI is poised to make an incredible impact on our lives in the future.
4
27760
4200
人工智慧已經準備好要對 我們未來的生活造成衝擊。
00:32
Today, however, we still face massive challenges
5
32880
3936
然而我們現今仍然面臨很大的挑戰,
00:36
in detecting and diagnosing several life-threatening illnesses,
6
36840
3496
包括偵測與診斷數種 會威脅生命的疾病,
00:40
such as infectious diseases and cancer.
7
40360
2360
比如感染性疾病以及癌症。
00:44
Thousands of patients every year
8
44000
2296
每年,有數千名病人
00:46
lose their lives due to liver and oral cancer.
9
46320
2800
因為肝癌或口腔癌而喪命。
00:49
Our best way to help these patients
10
49880
2696
若要幫助這些病人的最好方法
00:52
is to perform early detection and diagnoses of these diseases.
11
52600
4320
就是早期偵測並診斷出這些疾病。
00:57
So how do we detect these diseases today, and can artificial intelligence help?
12
57880
4160
現今我們要如何偵測出這些疾病? 人工智慧能幫得上忙嗎?
01:03
In patients who, unfortunately, are suspected of these diseases,
13
63920
3656
對於很不幸被懷疑可能 得了這些疾病的病人,
01:07
an expert physician first orders
14
67600
2656
專業的醫生首先會囑咐
01:10
very expensive medical imaging technologies
15
70280
2616
採用非常昂貴的醫療成像技術,
01:12
such as fluorescent imaging, CTs, MRIs, to be performed.
16
72920
4096
例如螢光成像、 電腦斷層掃瞄、核磁共振。
01:17
Once those images are collected,
17
77040
2296
一旦收集到了這些影像,
01:19
another expert physician then diagnoses those images and talks to the patient.
18
79360
4520
會有另一位專業醫生根據 這些影像做診斷,並和病人談。
01:24
As you can see, this is a very resource-intensive process,
19
84520
3456
不難看出,這是非常耗資源的過程,
01:28
requiring both expert physicians, expensive medical imaging technologies,
20
88000
4416
需要專業的醫生 和昂貴的醫療成像技術兩者,
01:32
and is not considered practical for the developing world.
21
92440
3096
而這在開發中國家是不實際的;
01:35
And in fact, in many industrialized nations, as well.
22
95560
3360
事實上,在許多工業化的國家亦然。
01:39
So, can we solve this problem using artificial intelligence?
23
99760
2880
所以,我們能用人工智慧 來解決這個問題嗎?
01:43
Today, if I were to use traditional artificial intelligence architectures
24
103840
4056
現今,若我要用傳統人工智慧架構
01:47
to solve this problem,
25
107920
1216
來解決這個問題,
01:49
I would require 10,000 --
26
109160
1456
我會需要一萬——
01:50
I repeat, on an order of 10,000 of these very expensive medical images
27
110640
4016
我重覆一次,大約一萬張 這種非常昂貴的醫療影像
01:54
first to be generated.
28
114680
1376
先被產生出來。
01:56
After that, I would then go to an expert physician,
29
116080
2896
產生出來後,接著去找專業醫生,
01:59
who would then analyze those images for me.
30
119000
2496
來為我分析這些影像。
02:01
And using those two pieces of information,
31
121520
2096
用這兩種資訊,
02:03
I can train a standard deep neural network or a deep learning network
32
123640
3656
我就能訓練標準的 深度類神經網路或深度學習網路
02:07
to provide patient's diagnosis.
33
127320
2136
來提供對病人的診斷。
02:09
Similar to the first approach,
34
129480
1736
和第一個方法很類似,
02:11
traditional artificial intelligence approaches
35
131240
2143
傳統人工智慧方法
02:13
suffer from the same problem.
36
133407
1449
也會遇到同樣的問題。
02:14
Large amounts of data, expert physicians and expert medical imaging technologies.
37
134880
4560
大量的資料、專業醫生, 以及專業醫療成像技術。
02:20
So, can we invent more scalable, effective
38
140320
4296
我們是否能發明 更有擴展性、更有效,
02:24
and more valuable artificial intelligence architectures
39
144640
3296
且更有價值的人工智慧架構,
02:27
to solve these very important problems facing us today?
40
147960
3056
來解決我們現今所面臨的 這些非常重要的問題?
02:31
And this is exactly what my group at MIT Media Lab does.
41
151040
3296
這就是我的團隊在麻省理工學院 媒體實驗室在做的事。
02:34
We have invented a variety of unorthodox AI architectures
42
154360
3856
我們已經發明了多種 非正統的人工智慧架構
02:38
to solve some of the most important challenges facing us today
43
158240
3176
來解決我們現今在醫療成像 及臨床實驗方面
02:41
in medical imaging and clinical trials.
44
161440
2200
所面臨的一些最重要的挑戰。
02:44
In the example I shared with you today, we had two goals.
45
164480
3056
在今天我和各位分享的 例子中,我們有兩個目標。
02:47
Our first goal was to reduce the number of images
46
167560
2976
我們的第一個目標是要減少
02:50
required to train artificial intelligence algorithms.
47
170560
3256
訓練人工智慧演算法 所需要的影像數量。
02:53
Our second goal -- we were more ambitious,
48
173840
2096
我們的第二個目標—— 我們的野心更大,
02:55
we wanted to reduce the use of expensive medical imaging technologies
49
175960
3736
我們想要減少使用昂貴醫療成像技術
02:59
to screen patients.
50
179720
1216
來篩選病人。
03:00
So how did we do it?
51
180960
1200
我們要怎麼做?
03:02
For our first goal,
52
182920
1216
針對第一個目標,
03:04
instead of starting with tens and thousands
53
184160
2056
不像傳統人工智慧一開始
03:06
of these very expensive medical images, like traditional AI,
54
186240
3016
要用到數萬張非常 昂貴的醫療影像,
03:09
we started with a single medical image.
55
189280
2056
我們反而從單一張醫療影像開始。
03:11
From this image, my team and I figured out a very clever way
56
191360
3776
從這張影像,我和我的團隊 想出了一個非常聰明的方法
03:15
to extract billions of information packets.
57
195160
2736
來取出數十億個資訊封包。
03:17
These information packets included colors, pixels, geometry
58
197920
3696
這些資訊封包包括用 顏色、像素、幾何學,
03:21
and rendering of the disease on the medical image.
59
201640
2536
在醫療影像上呈現疾病。
03:24
In a sense, we converted one image into billions of training data points,
60
204200
4336
在某種意義上,我們是把一張影像 轉變為數十億個訓練資料點,
03:28
massively reducing the amount of data needed for training.
61
208560
3536
大大減少了訓練所需要的資料量。
03:32
For our second goal,
62
212120
1216
至於第二個目標,
03:33
to reduce the use of expensive medical imaging technologies to screen patients,
63
213360
3856
也就是減少使用昂貴的 醫療成像技術來篩選病人,
03:37
we started with a standard, white light photograph,
64
217240
2856
我們一開始使用的是 一張病人的標準白光照片,
03:40
acquired either from a DSLR camera or a mobile phone, for the patient.
65
220120
4336
可以用數位單眼相機或手機來拍攝。
03:44
Then remember those billions of information packets?
66
224480
2456
接著,還記得 那數十億個資訊封包嗎?
03:46
We overlaid those from the medical image onto this image,
67
226960
3536
我們將那些來自醫療影像的 封包疊到這張影像上,
03:50
creating something that we call a composite image.
68
230520
2520
創造出我們所謂的合成影像。
03:53
Much to our surprise, we only required 50 --
69
233480
3296
很讓我們驚訝的是, 我們只需要五十張——
03:56
I repeat, only 50 --
70
236800
1336
我重覆一次,只要五十張——
03:58
of these composite images to train our algorithms to high efficiencies.
71
238160
3840
這種合成影像,就能把我們的 演算法訓練到很高效能的程度。
04:02
To summarize our approach,
72
242680
1336
總結一下我們的方法,
04:04
instead of using 10,000 very expensive medical images,
73
244040
3176
我們不需要使用一萬張 非常昂貴的醫療影像,
04:07
we can now train the AI algorithms in an unorthodox way,
74
247240
3016
我們現在可以用非正統的方法 來訓練人工智慧演算法,
04:10
using only 50 of these high-resolution, but standard photographs,
75
250280
4256
只要用五十張高解析度的 一般標準照片,
04:14
acquired from DSLR cameras and mobile phones,
76
254560
2496
用數位單眼相機或手機來拍攝即可,
04:17
and provide diagnosis.
77
257080
1536
這樣就能提供出診斷結果。
04:18
More importantly,
78
258640
1216
更重要的是,
04:19
our algorithms can accept, in the future and even right now,
79
259880
3136
在未來,甚至在現在, 我們的演算法能接受
04:23
some very simple, white light photographs from the patient,
80
263040
2816
病人非常簡單的白光照片,
04:25
instead of expensive medical imaging technologies.
81
265880
2440
取代昂貴的醫療成像技術。
04:29
I believe that we are poised to enter an era
82
269120
3096
我相信我們已經準備好 要進入一個新時代,
04:32
where artificial intelligence
83
272240
1936
在這個時代,人工智慧
04:34
is going to make an incredible impact on our future.
84
274200
2536
將會對我們的未來有很大的衝擊。
04:36
And I think that thinking about traditional AI,
85
276760
2456
想想傳統人工智慧,
04:39
which is data-rich but application-poor,
86
279240
2776
它在資料上很豐富, 但在應用上很有限,
04:42
we should also continue thinking
87
282040
1536
我們應該要持續思考
04:43
about unorthodox artificial intelligence architectures,
88
283600
3016
有沒有其他非正統的 人工智慧架構,
04:46
which can accept small amounts of data
89
286640
1936
能夠接受更少量的資料,
04:48
and solve some of the most important problems facing us today,
90
288600
2936
並解決一些現今我們 面臨最重要的問題,
04:51
especially in health care.
91
291560
1256
特別是健康照護問題。
04:52
Thank you very much.
92
292840
1216
非常謝謝。
04:54
(Applause)
93
294080
3840
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog