Can AI Catch What Doctors Miss? | Eric Topol | TED

159,019 views ・ 2023-12-09

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: suya f.
00:05
I've had the real fortune of working at Scripps Research
0
5961
3336
在过去的 17 年里,我很幸运 能在斯克利普斯研究所工作。
00:09
for the last 17 years.
1
9339
1835
00:11
It's the largest nonprofit biomedical institution in the country.
2
11174
5255
它是美国最大的 非营利生物医学机构。
00:16
And I've watched some of my colleagues,
3
16972
2419
我看到过一些同事
00:19
who have spent two to three years
4
19391
2294
花了两到三年时间
00:21
to define the crystal 3-D structure of a protein.
5
21685
3253
定义一种蛋白质的晶体三维结构。
00:26
Well, now that can be done in two or three minutes.
6
26231
3420
现在两三分钟就搞定了。
00:29
And that's because of the work of AlphaFold,
7
29693
2419
由于 AlphaFold 的成果,
00:32
which is a derivative of DeepMind, Demis Hassabis and John Jumper,
8
32112
6882
AlphaFold 是 DeepMind 开发的技术,
戴密斯·哈萨比斯(Demis Hassabis) 和约翰·乔普(John Jumper)
00:38
recognized by the American Nobel Prize in September.
9
38994
3503
于 9 月获得了美国诺贝尔奖。
00:42
What's interesting, this work,
10
42998
1918
有趣的是,这项成果,
00:44
which is taking the amino acid sequence in one dimension
11
44958
4588
从一维层面提取氨基酸序列
00:49
and predicting the three-dimensional protein at atomic level,
12
49588
5296
并以原子级别预测三维蛋白质,
00:54
[has] now inspired many other of these protein structure prediction models,
13
54926
5881
(已经)启发了许多其他 蛋白质结构预测模型
01:00
as well as RNA and antibodies,
14
60849
2711
以及 RNA 和抗体,
01:03
and even being able to pick up all the missense mutations in the genome,
15
63602
4838
甚至能发现基因组中 所有的错义突变,
01:08
and even being able to come up wit proteins
16
68481
4046
甚至能提出以前从未被创造、
01:12
that have never been invented before, that don't exist in nature.
17
72569
3920
自然界中不存在的蛋白质。
01:16
Now, the only thing I think about this is it was a transformer model,
18
76990
3295
我唯一想到的一点是 它是一个 Transformer 模型,
01:20
we'll talk about that in a moment,
19
80285
2169
我们之后会谈到,
01:22
in this award, since Demis and John
20
82454
5046
在这个奖项中,由于戴密斯和约翰
01:27
and their team of 30 scientists
21
87542
1877
以及他们由 30 名科学家组成的团队
01:29
don't understand how the transformer model works,
22
89419
4004
不了解 Transformer 模型的工作原理,
01:33
shouldn't the AI get an asterisk as part of that award?
23
93465
4963
难道 AI 不应该 从这个奖项中分一杯羹吗?
01:39
I'm going to switch from life science,
24
99262
2127
我将从生命科学,
01:41
which has been the singular biggest contribution just reviewed,
25
101431
4129
也就是我们刚刚说到最重大的贡献,
01:45
to medicine.
26
105560
1335
谈到医学。
01:47
And in the medical community,
27
107604
1501
在医学界,
01:49
the thing that we don't talk much about are diagnostic medical errors.
28
109105
6215
我们不太谈论的是医疗诊断错误。
01:55
And according to the National Academy of Medicine,
29
115362
2669
根据美国国家医学院的说法,
01:58
all of us will experience at least one in our lifetime.
30
118031
3462
我们所有人一生中 都会经历至少一次。
02:01
And we know from a recent Johns Hopkins study
31
121993
2294
我们从约翰·霍普金斯大学 最近的一项研究中得知,
02:04
that these errors have led to 800,000 Americans dead
32
124329
5672
这些错误每年会导致 80 万美国人死亡
02:10
or seriously disabled each year.
33
130043
3629
或严重残疾。
02:13
So this is a big problem.
34
133713
1502
这可是个大问题。
02:15
And the question is, can AI help us?
35
135215
3211
问题是, AI 能帮助我们吗?
02:18
And you keep hearing about the term “precision medicine.”
36
138843
3295
你总是会听到“精准医疗”这个词。
02:22
Well, if you keep making the same mistake over and over again, that's very precise.
37
142806
5589
如果你一遍又一遍地 犯同样的错误,那确实非常精确。
02:28
(Laughter)
38
148436
1168
(笑声)
02:30
We don't need that,
39
150188
1168
我们才不要这样,
02:31
we need accuracy and precision medicine.
40
151398
2669
我们需要准确和精准的医疗。
02:34
So can we get there?
41
154442
1585
我们能达成这个目标吗?
02:36
Well, this is a picture of the retina.
42
156486
2252
这是一张视网膜的照片。
02:39
And this was the first major hint,
43
159072
2961
这是第一个重要迹象,
02:42
training 100,000 images with supervised learning.
44
162075
4963
通过监督学习训练十万张图像。
02:47
Could the machine see things that people couldn't see?
45
167080
4880
机器能看见人们看不见的东西吗?
02:52
And so the question was, to the retinal experts,
46
172919
2961
对视网膜专家问这么一个问题:
02:55
is this from a man or a woman?
47
175880
2002
它来自男性还是女性?
02:58
And the chance of getting it accurate was 50 percent.
48
178717
3420
答对的概率是 50%。
03:02
(Laughter)
49
182137
1167
(笑声)
03:03
But the AI got it right, 97 percent.
50
183346
3754
但 AI 做对了 97%。
03:07
So that training,
51
187142
2043
在这种训练中,
03:09
the features are not even fully defined of how that was possible.
52
189227
4171
能达成这样效果的特征 甚至没有被完整地定义。
03:14
Well that gets then to all of medical images.
53
194274
3086
来说说各种医疗图像。
03:17
This is just representative, the chest X-ray.
54
197652
2628
举个代表性的例子, 胸部 X 光检查。
03:20
And in fact with the chest X-ray,
55
200822
2169
其实在胸部 X 光片中,
03:22
the ability here for the AI to pick up,
56
202991
3086
AI 能够发挥的能力是识别,
03:26
the radiologists, expert radiologists missing the nodule,
57
206077
4880
在放射科医生、 放射科专家医生遗漏了结节时,
03:30
which turned out to be picked up by the AI as cancerous,
58
210999
3128
发现结节是癌性的,
03:34
and this is, of course, representative of all of medical scans,
59
214127
4004
当然这也代表了所有医学扫描,
03:38
whether it’s CT scans, MRI, ultrasound.
60
218173
3837
无论是 CT 扫描、 核磁共振成像还是超声波。
03:42
That through supervised learning of large, labeled, annotated data sets,
61
222051
5881
通过监督学习 带标签和注释的大型数据集,
03:47
we can see AI do at least as well, if not better,
62
227974
3921
我们可以看到 AI 的表现 即使不胜过,
03:51
than expert physicians.
63
231895
1960
也与专家医生相当。
03:55
And 21 randomized trials of picking up polyps --
64
235023
4755
还有 21 场检测息肉的随机试验,
03:59
machine vision during colonoscopy -- have all shown
65
239819
4171
在结肠镜检查过程中使用机器视觉,
04:03
that polyps are picked up better
66
243990
3003
全都表明,在机器视觉的帮助下,
04:06
with the aid of machine vision than by the gastroenterologist alone,
67
246993
3796
比单靠胃肠病学家 发现息肉的效果更好,
04:10
especially as the day goes on, later in the day, interestingly.
68
250789
4337
尤其是到了一天晚些时候。
04:15
We don't know whether picking up all these additional polyps
69
255168
3253
我们不知道 额外识别出这些息肉
04:18
changes the natural history of cancers,
70
258463
2085
是否会改变癌症的自然病史,
04:20
but it tells you about machine eyes,
71
260590
3086
但是它展现了机器眼,
04:23
the power of machine eyes.
72
263718
1376
机器眼的力量。
04:25
Now that was interesting.
73
265470
2377
很有意思。
04:27
But now still with deep learning models, not transformer models,
74
267889
5714
但它用的还是深度学习模型, 不是 Transformer 模型,
04:33
we've seen and learned that the ability
75
273645
3253
我们已经见证并了解到
04:36
for computer vision to pick up things that human eyes can't see
76
276898
5589
计算机视觉识别 人眼看不见的东西的能力
04:42
is quite remarkable.
77
282487
1460
非常出色。
04:43
Here's the retina.
78
283988
1418
这是视网膜。
04:46
Picking up the control of diabetes and blood pressure.
79
286074
3378
检测到糖尿病和血压控制。
04:50
Kidney disease.
80
290495
1710
肾脏疾病。
04:52
Liver and gallbladder disease.
81
292872
2586
肝胆疾病。
04:56
The heart calcium score,
82
296084
2043
心脏钙化积分
04:58
which you would normally get through a scan of the heart.
83
298127
4004
通常是通过心脏扫描得出的。
05:03
Alzheimer's disease before any clinical symptoms have been manifest.
84
303174
4129
在出现临床症状之前 就诊断出阿尔茨海默病。
05:08
Predicting heart attacks and strokes.
85
308012
2586
预测心脏病发作和中风。
05:11
Hyperlipidemia.
86
311599
1543
高脂血症。
05:13
And seven years before any symptoms of Parkinson's disease,
87
313518
4546
出现帕金森氏病症状的 七年以前发现患病。
05:18
to pick that up.
88
318064
1251
05:19
Now this is interesting because in the future,
89
319941
3587
这很有趣,因为将来,
05:23
we'll be taking pictures of our retina at checkups.
90
323570
3753
我们将在检查的时候 拍下视网膜的照片。
05:27
This is the gateway to almost every system in the body.
91
327365
3462
这是通往人体几乎所有系统的门户。
05:31
It's really striking.
92
331369
1168
真的很惊人。
05:32
And we'll come back to this because each one of these studies
93
332579
4087
我们还会回来讨论这个问题, 因为每项研究
05:36
was done with tens or hundreds [of] thousands of images
94
336666
4213
都是通过监督学习 使用成千上万张图像完成的,
05:40
with supervised learning,
95
340879
1251
05:42
and they’re all separate studies by different investigators.
96
342171
3921
是由不同的研究人员 分别进行的研究。
05:46
Now, as a cardiologist, I love to read cardiograms.
97
346426
4045
作为一名心脏病专家, 我喜欢阅读心电图。
05:50
I've been doing it for over 30 years.
98
350513
2169
我已经做了 30 多年了。
05:53
But I couldn't see these things.
99
353808
2086
但我看不到这些东西。
05:56
Like, the age and the sex of the patient,
100
356519
2920
比如,患者的年龄和性别,
05:59
or the ejection fraction of the heart,
101
359439
3086
或者心脏射血分数,
06:02
making difficult diagnoses that are frequently missed.
102
362567
3503
做出常常被忽略的困难诊断。
06:06
The anemia of the patient, that is, the hemoglobin to the decimal point.
103
366571
4212
患者的贫血, 即血红蛋白容量极低。
06:11
Predicting whether a person,
104
371951
1460
通过心电图预测一个 从未发生过房颤或中风的人
06:13
who's never had atrial fibrillation or stroke
105
373453
2502
06:15
from the ECG,
106
375955
1418
06:17
whether that's going to likely occur.
107
377415
2169
是否会出现症状。
06:20
Diabetes, a diagnosis of diabetes and prediabetes, from the cardiogram.
108
380418
4796
糖尿病,根据心电图 诊断糖尿病和糖尿病前期。
06:25
The filling pressure of the heart.
109
385965
2044
心脏充盈压。
06:28
Hypothyroidism
110
388509
2086
甲状腺功能减退和肾脏疾病。
06:30
and kidney disease.
111
390637
1626
06:32
Imagine getting an electrocardiogram to tell you about all these other things,
112
392305
3920
想象一下,让心电图 告诉你这些额外的事,
06:36
not really so much about the heart.
113
396267
2711
不仅仅关乎心脏。
06:39
Then there's the chest X-ray.
114
399729
1543
然后是胸部 X 光片。
06:41
Who would have guessed that we could accurately determine
115
401314
3920
谁能猜到我们可以准确地判断
06:45
the race of the patient,
116
405234
1377
患者的种族
06:46
no less the ethical implications of that,
117
406611
2794
以及与之相关的伦理意蕴,
06:49
from a chest X-ray through machine eyes?
118
409405
3379
而这都是通过由机器眼 看到的胸部 X 光片得出的?
06:53
And interestingly, picking up the diagnosis of diabetes,
119
413201
4171
有趣的是,还能通过胸片 诊断糖尿病
06:57
as well as how well the diabetes is controlled,
120
417372
4212
和糖尿病的控制情况,
07:01
through the chest X-ray.
121
421584
1668
07:04
And of course, so many different parameters about the heart,
122
424629
3795
当然,心脏有这么多不同的指标,
07:08
which we could never,
123
428424
2169
无论是放射科医生还是心脏病专家, 我们永远都无法做到
07:10
radiologists or cardiologists, could never be able to come up
124
430593
3837
07:14
with what machine vision can do.
125
434430
2878
机器视觉能做到的这么多诊断。
07:17
Pathologists often argue about a slide,
126
437976
3169
病理学家总是会争论一张片子 到底展现了什么。
07:21
about what does it really show?
127
441187
1794
07:23
But with this ability of machine eyes,
128
443314
4338
但是,凭借这种机器眼的能力,
07:27
the driver genomic mutations of the cancer can be defined,
129
447694
3878
可以定义癌症的 驱动基因组突变,
07:31
no less the structural copy number variants
130
451614
2878
还可以看出导致或出现在 这个肿瘤内的结构拷贝数变异。
07:34
that are accounting or present in that tumor.
131
454534
2878
07:37
Also, where is that tumor coming from?
132
457787
2336
还有,肿瘤从何而起?
07:40
For many patients, we don’t know.
133
460164
2253
对于许多患者来说,我们不知道。
07:42
But it can be determined through AI.
134
462458
4255
但可以通过 AI 确定。
07:46
And also the prognosis of the patient,
135
466754
2836
还有患者的预后,
07:49
just from the slide,
136
469590
2169
只需要通过各种训练 分析片子得出。
07:51
by all of the training.
137
471801
1627
07:53
Again, this is all just convolutional neural networks,
138
473469
4797
同样,这只是卷积神经网络,
07:58
not transformer models.
139
478307
1669
不是 Transformer 模型。
08:00
So when we go from the deep neural networks to transformer models,
140
480852
5630
当我们从深度神经网络 转向 Transformer 模型时,
08:06
this classic pre-print,
141
486524
2085
这份经典的预印本,
08:08
one of the most cited pre-prints ever,
142
488651
2586
有史以来被引用次数最多的预印本之一,
《Attention is All You Need》 (意为“注意力足矣”),
08:11
"Attention is All You Need,"
143
491237
1418
08:12
the ability to now be able to look at many more items,
144
492697
4296
可以处理更多对象的能力,
08:17
whether it be language or images,
145
497035
3837
无论是语言还是图像,
08:20
and be able to put this in context,
146
500913
2962
并能够将其置于上下文中,
08:23
setting up a transformational progress in many fields.
147
503916
4588
在许多领域取得了变革性进展。
08:29
The prototype is, the outgrowth of this is GPT-4.
148
509172
4504
这个模型的原型 或成果就是 GPT-4。
08:34
With over a trillion connections.
149
514510
2628
其拥有超过一万亿个连接。
08:37
Our human brain has 100 trillion connections or parameters.
150
517138
4713
我们的人脑有 100 万亿个 神经连接或参数。
08:42
But one trillion,
151
522185
1167
但是,一万亿,
08:43
just think of all the information, knowledge,
152
523352
2128
想一想这一万亿连接中 包含的所有信息、知识。
08:45
that's packed into those one trillion.
153
525480
1876
08:47
And interestingly, this is now multimodal with language, with images,
154
527398
4880
有趣的是,现在已经支持多模态, 包括语言、图像、语音。
08:52
with speech.
155
532320
1376
08:53
And it involves a massive amount of graphic processing units.
156
533696
3921
还包含大量的图形处理单元。
08:58
And it's with self-supervised learning,
157
538076
2293
还有自监督学习,
09:00
which is a big bottleneck in medicine
158
540369
2128
这是医学界的一大瓶颈,
09:02
because we can't get experts to label images.
159
542497
3169
因为我们不能让专家给图像打标签。
09:05
This can be done with self-supervised learning.
160
545708
2795
这可以通过自监督学习来完成。
09:08
So what does this set up in medicine?
161
548961
2837
这在医学中起到了什么作用呢?
09:11
It sets up, for example, keyboard liberation.
162
551839
4421
比如,它带来了键盘解放。
09:16
The one thing that both doctors, clinicians
163
556803
3920
这是医生、临床医师
09:20
and patients would like to see.
164
560765
2377
和患者都希望看到的一件事。
09:23
Everyone hates being data clerks as clinicians,
165
563851
3921
每个临床医师都不想当数据员,
09:27
and patients would like to see their doctor
166
567814
2836
等了好久终于可以看病的时候, 患者希望可以见到医生。
09:30
when they finally have the visit they've waited for a long time.
167
570650
3753
09:34
So the ability to change the face-to-face contact
168
574445
4713
因此,改变面对面接触的能力
09:39
is just one step along the way.
169
579200
2502
只是前进道路中的一步。
09:41
By having the liberation from keyboards with synthetic notes
170
581744
5005
借助从对话中得到、生成的合成笔记
将人们从键盘解放出来,
09:46
that are driven, derived from the conversation,
171
586791
2753
09:49
and then all the downstream normal data clerk functions that are done,
172
589585
4880
在非工作时间完成 各种数据员的常规后续工作。
09:54
often off-hours.
173
594507
1668
09:56
Now we're seeing in health systems across the United States
174
596217
3587
我们能在美国各地的卫生系统中看到,
09:59
where people, physicians are saving many hours of time
175
599846
3920
人们、医生节省了大量的时间,
10:03
and heading towards ultimately keyboard liberation.
176
603808
3587
最终走向键盘解放。
10:08
We recently published, with the group at Moorfields Eye Institute,
177
608396
3587
最近,我们与皮尔斯·基恩 (Pearse Keane)领导的
10:12
led by Pearse Keane,
178
612024
1335
莫菲尔德眼科研究所的 研究小组一起发布了
10:13
the first foundation model in medicine from the retina.
179
613401
3295
医学界第一个基于视网膜的基础模型。
10:16
And remember those eight different things that were all done by separate studies?
180
616737
4380
还记得那八件由不同研究完成的事吗?
10:21
This was all done with one model.
181
621159
2335
都是用一个模型完成的。
10:23
This is with 1.6 million retinal images
182
623494
3879
用了 160 万张视网膜图像
10:27
predicting all these different outcome likelihoods.
183
627415
4546
预测了各种不同结果的可能性。
10:32
And this is all open-source,
184
632003
1710
这都是开源的,
10:33
which is of course really important that others can build on these models.
185
633754
4380
当然非常重要,这样其他人 可以基于这些模型开发。
10:38
Now I just want to review a couple of really interesting patients.
186
638134
5547
我想回顾几个非常有趣的患者。
10:44
Andrew, who is now six years old.
187
644098
3003
安德鲁,现年六岁。
10:47
He had three years of relentlessly increasing pain, arrested growth.
188
647810
7007
三年来,他痛苦持续加剧,成长受阻。
10:55
His gait suffered with a dragging of his left foot,
189
655318
2544
他的步态因左脚 牵扯性疼痛而受到影响,
10:57
he had severe headaches.
190
657862
1918
头痛严重。
10:59
He went to 17 doctors over three years.
191
659780
3337
他在三年内去看了 17 位医生。
11:03
His mother then entered all his symptoms into ChatGPT.
192
663743
4254
然后,他的母亲将他所有的症状 输入进了 ChatGPT。
11:08
It made the diagnosis of occulta spina bifida,
193
668706
4254
它诊断为隐性脊柱裂,
11:12
which meant he had a tethered spinal cord that was missed by all 17 doctors
194
672960
5297
这意味着他患有脊髓栓系, 三年内的所有 17 位医生
11:18
over three years.
195
678257
1168
都没有注意到。
11:19
He had surgery to release the cord.
196
679467
2002
他接受了脊髓栓系松解手术。
11:21
He's now perfectly healthy.
197
681469
1793
现在非常健康。
11:24
(Applause)
198
684889
5630
(掌声)
11:30
This is a patient that was sent to me,
199
690561
2920
这是一位被送到我这里的病人,
11:33
who was suffering with, she was told, long COVID.
200
693481
4671
她被告知患有“长新冠”。
11:38
She saw many different physicians, neurologists,
201
698694
3379
她看了许多不同的医生、 神经科医生,
11:42
and her sister entered all her symptoms after getting nowhere,
202
702073
4546
她的姐妹把她所有的症状, 在经历了一路碰壁、
11:46
no treatment for long COVID,
203
706619
1418
长新冠无药可救、
11:48
there is no treatment validated,
204
708079
1710
没有经过验证的治疗方法后,
11:49
and her sister put all her symptoms into ChatGPT.
205
709789
4421
将所有症状都输入了 ChatGPT。
11:54
It found out it actually was not long COVID,
206
714252
2293
它发现其实并不是长新冠,
11:56
she had limbic encephalitis, which is treatable.
207
716587
3462
而是边缘系统脑炎, 是可以治疗的。
12:00
She was treated, and now she's doing extremely well.
208
720091
3128
她接受了治疗,现在情况非常好。
12:03
But these are not just anecdotes anymore.
209
723594
2753
但这些不再只是个例了。
12:06
70 very difficult cases
210
726389
3461
70 例非常困难的病例
12:09
that are the clinical pathologic conferences
211
729850
2461
登上《新英格兰医学杂志》的 临床病理学会议,
12:12
at the New England Journal of Medicine
212
732353
1877
12:14
were compared to GPT-4,
213
734272
2836
与 GPT-4 进行了比较,
12:17
and the chatbot did as well
214
737149
3295
聊天机器人在做出诊断方面的表现
12:20
or better than the expert master clinicians
215
740486
3295
与临床专家相当或更好。
12:23
in making the diagnosis.
216
743781
1960
12:26
So I just want to close with a recent conversation with my fellow.
217
746492
4713
我想以最近与我的同事的对话收尾。
12:31
Medicine is still an apprenticeship,
218
751706
2085
医学仍然采用的是“师徒制”,
12:33
and Andrew Cho is 30 years old,
219
753833
3837
安德鲁·赵(Andrew Cho) 今年 30 岁,
12:37
in his second year of cardiology fellowship.
220
757670
2085
是他攻读心脏病学培训的第二年。
12:39
We see all patients together in the clinic.
221
759797
2669
我们一起在诊所为所有患者看病。
12:42
And at the end of clinic the other day,
222
762967
2252
有一天在看诊结束时,
12:45
I sat down and said to him,
223
765261
1918
我坐下来对他说:
12:47
"Andrew, you are so lucky.
224
767179
2795
“安德鲁,你真幸运。
12:50
You're going to be practicing medicine in an era of keyboard liberation.
225
770516
4838
你能在键盘解放的时代 从事医学工作。
12:55
You're going to be connecting with patients
226
775813
2044
你会以我们几十年来前所未有的方式
12:57
the way we haven't done for decades."
227
777857
2502
与患者接触。”
13:00
That is the ability to have the note
228
780735
3086
这就是能够从对话中获取笔记
13:03
and the work from the conversation
229
783863
2502
和工作成果的能力,
13:06
to derive things like pre-authorization,
230
786407
3795
从而得出诸如预授权、
13:10
billing, prescriptions, future appointments --
231
790202
4755
账单、处方、未来预约之类 我们要做的事,
13:14
all the things that we do,
232
794999
1293
13:16
including nudges to the patient.
233
796334
1584
包括提示患者。
13:17
For example, did you get your blood pressure checks
234
797918
2461
比如,你有没有量血压,
13:20
and what did they show
235
800421
1168
得到的结果是什么意思,
13:21
and all that coming back to you.
236
801630
1544
这些都能回到你的手中。
13:23
But much more than that,
237
803215
1710
但不仅如此,
13:24
to help with making diagnoses.
238
804925
2086
还有助于做出诊断。
13:27
And the gift of time
239
807928
2002
还有时间上的优势,
13:29
that having all the data of a patient
240
809972
2169
在见到病人之前 就已经准备好了患者的所有数据。
13:32
that's all teed up before even seeing the patient.
241
812183
2961
13:35
And all this support changes the future of the patient-doctor relationship,
242
815144
6632
这些帮助都改变了医患关系的未来,
13:41
bringing in the gift of time.
243
821776
2460
带来了时间的恩赐。
13:44
So this is really exciting.
244
824612
1710
这真的很令人兴奋。
13:46
I said to Andrew, everything has to be validated, of course,
245
826364
4295
我对安德鲁说, 当然,这一切都必须经过验证,
13:50
that the benefit greatly outweighs any risk.
246
830701
3796
证明好处远大于任何风险。
13:54
But it is really a remarkable time for the future of health care,
247
834538
4505
但是对于医疗保健的未来来说, 这确实是一个重大的时刻,
13:59
it's so damn exciting.
248
839085
2544
真是令人兴奋。
14:01
Thank you.
249
841962
1168
谢谢。
14:03
(Applause)
250
843172
2753
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7