Can AI Catch What Doctors Miss? | Eric Topol | TED

173,124 views ・ 2023-12-09

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: suya f.
00:05
I've had the real fortune of working at Scripps Research
0
5961
3336
在过去的 17 年里,我很幸运 能在斯克利普斯研究所工作。
00:09
for the last 17 years.
1
9339
1835
00:11
It's the largest nonprofit biomedical institution in the country.
2
11174
5255
它是美国最大的 非营利生物医学机构。
00:16
And I've watched some of my colleagues,
3
16972
2419
我看到过一些同事
00:19
who have spent two to three years
4
19391
2294
花了两到三年时间
00:21
to define the crystal 3-D structure of a protein.
5
21685
3253
定义一种蛋白质的晶体三维结构。
00:26
Well, now that can be done in two or three minutes.
6
26231
3420
现在两三分钟就搞定了。
00:29
And that's because of the work of AlphaFold,
7
29693
2419
由于 AlphaFold 的成果,
00:32
which is a derivative of DeepMind, Demis Hassabis and John Jumper,
8
32112
6882
AlphaFold 是 DeepMind 开发的技术,
戴密斯·哈萨比斯(Demis Hassabis) 和约翰·乔普(John Jumper)
00:38
recognized by the American Nobel Prize in September.
9
38994
3503
于 9 月获得了美国诺贝尔奖。
00:42
What's interesting, this work,
10
42998
1918
有趣的是,这项成果,
00:44
which is taking the amino acid sequence in one dimension
11
44958
4588
从一维层面提取氨基酸序列
00:49
and predicting the three-dimensional protein at atomic level,
12
49588
5296
并以原子级别预测三维蛋白质,
00:54
[has] now inspired many other of these protein structure prediction models,
13
54926
5881
(已经)启发了许多其他 蛋白质结构预测模型
01:00
as well as RNA and antibodies,
14
60849
2711
以及 RNA 和抗体,
01:03
and even being able to pick up all the missense mutations in the genome,
15
63602
4838
甚至能发现基因组中 所有的错义突变,
01:08
and even being able to come up wit proteins
16
68481
4046
甚至能提出以前从未被创造、
01:12
that have never been invented before, that don't exist in nature.
17
72569
3920
自然界中不存在的蛋白质。
01:16
Now, the only thing I think about this is it was a transformer model,
18
76990
3295
我唯一想到的一点是 它是一个 Transformer 模型,
01:20
we'll talk about that in a moment,
19
80285
2169
我们之后会谈到,
01:22
in this award, since Demis and John
20
82454
5046
在这个奖项中,由于戴密斯和约翰
01:27
and their team of 30 scientists
21
87542
1877
以及他们由 30 名科学家组成的团队
01:29
don't understand how the transformer model works,
22
89419
4004
不了解 Transformer 模型的工作原理,
01:33
shouldn't the AI get an asterisk as part of that award?
23
93465
4963
难道 AI 不应该 从这个奖项中分一杯羹吗?
01:39
I'm going to switch from life science,
24
99262
2127
我将从生命科学,
01:41
which has been the singular biggest contribution just reviewed,
25
101431
4129
也就是我们刚刚说到最重大的贡献,
01:45
to medicine.
26
105560
1335
谈到医学。
01:47
And in the medical community,
27
107604
1501
在医学界,
01:49
the thing that we don't talk much about are diagnostic medical errors.
28
109105
6215
我们不太谈论的是医疗诊断错误。
01:55
And according to the National Academy of Medicine,
29
115362
2669
根据美国国家医学院的说法,
01:58
all of us will experience at least one in our lifetime.
30
118031
3462
我们所有人一生中 都会经历至少一次。
02:01
And we know from a recent Johns Hopkins study
31
121993
2294
我们从约翰·霍普金斯大学 最近的一项研究中得知,
02:04
that these errors have led to 800,000 Americans dead
32
124329
5672
这些错误每年会导致 80 万美国人死亡
02:10
or seriously disabled each year.
33
130043
3629
或严重残疾。
02:13
So this is a big problem.
34
133713
1502
这可是个大问题。
02:15
And the question is, can AI help us?
35
135215
3211
问题是, AI 能帮助我们吗?
02:18
And you keep hearing about the term “precision medicine.”
36
138843
3295
你总是会听到“精准医疗”这个词。
02:22
Well, if you keep making the same mistake over and over again, that's very precise.
37
142806
5589
如果你一遍又一遍地 犯同样的错误,那确实非常精确。
02:28
(Laughter)
38
148436
1168
(笑声)
02:30
We don't need that,
39
150188
1168
我们才不要这样,
02:31
we need accuracy and precision medicine.
40
151398
2669
我们需要准确和精准的医疗。
02:34
So can we get there?
41
154442
1585
我们能达成这个目标吗?
02:36
Well, this is a picture of the retina.
42
156486
2252
这是一张视网膜的照片。
02:39
And this was the first major hint,
43
159072
2961
这是第一个重要迹象,
02:42
training 100,000 images with supervised learning.
44
162075
4963
通过监督学习训练十万张图像。
02:47
Could the machine see things that people couldn't see?
45
167080
4880
机器能看见人们看不见的东西吗?
02:52
And so the question was, to the retinal experts,
46
172919
2961
对视网膜专家问这么一个问题:
02:55
is this from a man or a woman?
47
175880
2002
它来自男性还是女性?
02:58
And the chance of getting it accurate was 50 percent.
48
178717
3420
答对的概率是 50%。
03:02
(Laughter)
49
182137
1167
(笑声)
03:03
But the AI got it right, 97 percent.
50
183346
3754
但 AI 做对了 97%。
03:07
So that training,
51
187142
2043
在这种训练中,
03:09
the features are not even fully defined of how that was possible.
52
189227
4171
能达成这样效果的特征 甚至没有被完整地定义。
03:14
Well that gets then to all of medical images.
53
194274
3086
来说说各种医疗图像。
03:17
This is just representative, the chest X-ray.
54
197652
2628
举个代表性的例子, 胸部 X 光检查。
03:20
And in fact with the chest X-ray,
55
200822
2169
其实在胸部 X 光片中,
03:22
the ability here for the AI to pick up,
56
202991
3086
AI 能够发挥的能力是识别,
03:26
the radiologists, expert radiologists missing the nodule,
57
206077
4880
在放射科医生、 放射科专家医生遗漏了结节时,
03:30
which turned out to be picked up by the AI as cancerous,
58
210999
3128
发现结节是癌性的,
03:34
and this is, of course, representative of all of medical scans,
59
214127
4004
当然这也代表了所有医学扫描,
03:38
whether it’s CT scans, MRI, ultrasound.
60
218173
3837
无论是 CT 扫描、 核磁共振成像还是超声波。
03:42
That through supervised learning of large, labeled, annotated data sets,
61
222051
5881
通过监督学习 带标签和注释的大型数据集,
03:47
we can see AI do at least as well, if not better,
62
227974
3921
我们可以看到 AI 的表现 即使不胜过,
03:51
than expert physicians.
63
231895
1960
也与专家医生相当。
03:55
And 21 randomized trials of picking up polyps --
64
235023
4755
还有 21 场检测息肉的随机试验,
03:59
machine vision during colonoscopy -- have all shown
65
239819
4171
在结肠镜检查过程中使用机器视觉,
04:03
that polyps are picked up better
66
243990
3003
全都表明,在机器视觉的帮助下,
04:06
with the aid of machine vision than by the gastroenterologist alone,
67
246993
3796
比单靠胃肠病学家 发现息肉的效果更好,
04:10
especially as the day goes on, later in the day, interestingly.
68
250789
4337
尤其是到了一天晚些时候。
04:15
We don't know whether picking up all these additional polyps
69
255168
3253
我们不知道 额外识别出这些息肉
04:18
changes the natural history of cancers,
70
258463
2085
是否会改变癌症的自然病史,
04:20
but it tells you about machine eyes,
71
260590
3086
但是它展现了机器眼,
04:23
the power of machine eyes.
72
263718
1376
机器眼的力量。
04:25
Now that was interesting.
73
265470
2377
很有意思。
04:27
But now still with deep learning models, not transformer models,
74
267889
5714
但它用的还是深度学习模型, 不是 Transformer 模型,
04:33
we've seen and learned that the ability
75
273645
3253
我们已经见证并了解到
04:36
for computer vision to pick up things that human eyes can't see
76
276898
5589
计算机视觉识别 人眼看不见的东西的能力
04:42
is quite remarkable.
77
282487
1460
非常出色。
04:43
Here's the retina.
78
283988
1418
这是视网膜。
04:46
Picking up the control of diabetes and blood pressure.
79
286074
3378
检测到糖尿病和血压控制。
04:50
Kidney disease.
80
290495
1710
肾脏疾病。
04:52
Liver and gallbladder disease.
81
292872
2586
肝胆疾病。
04:56
The heart calcium score,
82
296084
2043
心脏钙化积分
04:58
which you would normally get through a scan of the heart.
83
298127
4004
通常是通过心脏扫描得出的。
05:03
Alzheimer's disease before any clinical symptoms have been manifest.
84
303174
4129
在出现临床症状之前 就诊断出阿尔茨海默病。
05:08
Predicting heart attacks and strokes.
85
308012
2586
预测心脏病发作和中风。
05:11
Hyperlipidemia.
86
311599
1543
高脂血症。
05:13
And seven years before any symptoms of Parkinson's disease,
87
313518
4546
出现帕金森氏病症状的 七年以前发现患病。
05:18
to pick that up.
88
318064
1251
05:19
Now this is interesting because in the future,
89
319941
3587
这很有趣,因为将来,
05:23
we'll be taking pictures of our retina at checkups.
90
323570
3753
我们将在检查的时候 拍下视网膜的照片。
05:27
This is the gateway to almost every system in the body.
91
327365
3462
这是通往人体几乎所有系统的门户。
05:31
It's really striking.
92
331369
1168
真的很惊人。
05:32
And we'll come back to this because each one of these studies
93
332579
4087
我们还会回来讨论这个问题, 因为每项研究
05:36
was done with tens or hundreds [of] thousands of images
94
336666
4213
都是通过监督学习 使用成千上万张图像完成的,
05:40
with supervised learning,
95
340879
1251
05:42
and they’re all separate studies by different investigators.
96
342171
3921
是由不同的研究人员 分别进行的研究。
05:46
Now, as a cardiologist, I love to read cardiograms.
97
346426
4045
作为一名心脏病专家, 我喜欢阅读心电图。
05:50
I've been doing it for over 30 years.
98
350513
2169
我已经做了 30 多年了。
05:53
But I couldn't see these things.
99
353808
2086
但我看不到这些东西。
05:56
Like, the age and the sex of the patient,
100
356519
2920
比如,患者的年龄和性别,
05:59
or the ejection fraction of the heart,
101
359439
3086
或者心脏射血分数,
06:02
making difficult diagnoses that are frequently missed.
102
362567
3503
做出常常被忽略的困难诊断。
06:06
The anemia of the patient, that is, the hemoglobin to the decimal point.
103
366571
4212
患者的贫血, 即血红蛋白容量极低。
06:11
Predicting whether a person,
104
371951
1460
通过心电图预测一个 从未发生过房颤或中风的人
06:13
who's never had atrial fibrillation or stroke
105
373453
2502
06:15
from the ECG,
106
375955
1418
06:17
whether that's going to likely occur.
107
377415
2169
是否会出现症状。
06:20
Diabetes, a diagnosis of diabetes and prediabetes, from the cardiogram.
108
380418
4796
糖尿病,根据心电图 诊断糖尿病和糖尿病前期。
06:25
The filling pressure of the heart.
109
385965
2044
心脏充盈压。
06:28
Hypothyroidism
110
388509
2086
甲状腺功能减退和肾脏疾病。
06:30
and kidney disease.
111
390637
1626
06:32
Imagine getting an electrocardiogram to tell you about all these other things,
112
392305
3920
想象一下,让心电图 告诉你这些额外的事,
06:36
not really so much about the heart.
113
396267
2711
不仅仅关乎心脏。
06:39
Then there's the chest X-ray.
114
399729
1543
然后是胸部 X 光片。
06:41
Who would have guessed that we could accurately determine
115
401314
3920
谁能猜到我们可以准确地判断
06:45
the race of the patient,
116
405234
1377
患者的种族
06:46
no less the ethical implications of that,
117
406611
2794
以及与之相关的伦理意蕴,
06:49
from a chest X-ray through machine eyes?
118
409405
3379
而这都是通过由机器眼 看到的胸部 X 光片得出的?
06:53
And interestingly, picking up the diagnosis of diabetes,
119
413201
4171
有趣的是,还能通过胸片 诊断糖尿病
06:57
as well as how well the diabetes is controlled,
120
417372
4212
和糖尿病的控制情况,
07:01
through the chest X-ray.
121
421584
1668
07:04
And of course, so many different parameters about the heart,
122
424629
3795
当然,心脏有这么多不同的指标,
07:08
which we could never,
123
428424
2169
无论是放射科医生还是心脏病专家, 我们永远都无法做到
07:10
radiologists or cardiologists, could never be able to come up
124
430593
3837
07:14
with what machine vision can do.
125
434430
2878
机器视觉能做到的这么多诊断。
07:17
Pathologists often argue about a slide,
126
437976
3169
病理学家总是会争论一张片子 到底展现了什么。
07:21
about what does it really show?
127
441187
1794
07:23
But with this ability of machine eyes,
128
443314
4338
但是,凭借这种机器眼的能力,
07:27
the driver genomic mutations of the cancer can be defined,
129
447694
3878
可以定义癌症的 驱动基因组突变,
07:31
no less the structural copy number variants
130
451614
2878
还可以看出导致或出现在 这个肿瘤内的结构拷贝数变异。
07:34
that are accounting or present in that tumor.
131
454534
2878
07:37
Also, where is that tumor coming from?
132
457787
2336
还有,肿瘤从何而起?
07:40
For many patients, we don’t know.
133
460164
2253
对于许多患者来说,我们不知道。
07:42
But it can be determined through AI.
134
462458
4255
但可以通过 AI 确定。
07:46
And also the prognosis of the patient,
135
466754
2836
还有患者的预后,
07:49
just from the slide,
136
469590
2169
只需要通过各种训练 分析片子得出。
07:51
by all of the training.
137
471801
1627
07:53
Again, this is all just convolutional neural networks,
138
473469
4797
同样,这只是卷积神经网络,
07:58
not transformer models.
139
478307
1669
不是 Transformer 模型。
08:00
So when we go from the deep neural networks to transformer models,
140
480852
5630
当我们从深度神经网络 转向 Transformer 模型时,
08:06
this classic pre-print,
141
486524
2085
这份经典的预印本,
08:08
one of the most cited pre-prints ever,
142
488651
2586
有史以来被引用次数最多的预印本之一,
《Attention is All You Need》 (意为“注意力足矣”),
08:11
"Attention is All You Need,"
143
491237
1418
08:12
the ability to now be able to look at many more items,
144
492697
4296
可以处理更多对象的能力,
08:17
whether it be language or images,
145
497035
3837
无论是语言还是图像,
08:20
and be able to put this in context,
146
500913
2962
并能够将其置于上下文中,
08:23
setting up a transformational progress in many fields.
147
503916
4588
在许多领域取得了变革性进展。
08:29
The prototype is, the outgrowth of this is GPT-4.
148
509172
4504
这个模型的原型 或成果就是 GPT-4。
08:34
With over a trillion connections.
149
514510
2628
其拥有超过一万亿个连接。
08:37
Our human brain has 100 trillion connections or parameters.
150
517138
4713
我们的人脑有 100 万亿个 神经连接或参数。
08:42
But one trillion,
151
522185
1167
但是,一万亿,
08:43
just think of all the information, knowledge,
152
523352
2128
想一想这一万亿连接中 包含的所有信息、知识。
08:45
that's packed into those one trillion.
153
525480
1876
08:47
And interestingly, this is now multimodal with language, with images,
154
527398
4880
有趣的是,现在已经支持多模态, 包括语言、图像、语音。
08:52
with speech.
155
532320
1376
08:53
And it involves a massive amount of graphic processing units.
156
533696
3921
还包含大量的图形处理单元。
08:58
And it's with self-supervised learning,
157
538076
2293
还有自监督学习,
09:00
which is a big bottleneck in medicine
158
540369
2128
这是医学界的一大瓶颈,
09:02
because we can't get experts to label images.
159
542497
3169
因为我们不能让专家给图像打标签。
09:05
This can be done with self-supervised learning.
160
545708
2795
这可以通过自监督学习来完成。
09:08
So what does this set up in medicine?
161
548961
2837
这在医学中起到了什么作用呢?
09:11
It sets up, for example, keyboard liberation.
162
551839
4421
比如,它带来了键盘解放。
09:16
The one thing that both doctors, clinicians
163
556803
3920
这是医生、临床医师
09:20
and patients would like to see.
164
560765
2377
和患者都希望看到的一件事。
09:23
Everyone hates being data clerks as clinicians,
165
563851
3921
每个临床医师都不想当数据员,
09:27
and patients would like to see their doctor
166
567814
2836
等了好久终于可以看病的时候, 患者希望可以见到医生。
09:30
when they finally have the visit they've waited for a long time.
167
570650
3753
09:34
So the ability to change the face-to-face contact
168
574445
4713
因此,改变面对面接触的能力
09:39
is just one step along the way.
169
579200
2502
只是前进道路中的一步。
09:41
By having the liberation from keyboards with synthetic notes
170
581744
5005
借助从对话中得到、生成的合成笔记
将人们从键盘解放出来,
09:46
that are driven, derived from the conversation,
171
586791
2753
09:49
and then all the downstream normal data clerk functions that are done,
172
589585
4880
在非工作时间完成 各种数据员的常规后续工作。
09:54
often off-hours.
173
594507
1668
09:56
Now we're seeing in health systems across the United States
174
596217
3587
我们能在美国各地的卫生系统中看到,
09:59
where people, physicians are saving many hours of time
175
599846
3920
人们、医生节省了大量的时间,
10:03
and heading towards ultimately keyboard liberation.
176
603808
3587
最终走向键盘解放。
10:08
We recently published, with the group at Moorfields Eye Institute,
177
608396
3587
最近,我们与皮尔斯·基恩 (Pearse Keane)领导的
10:12
led by Pearse Keane,
178
612024
1335
莫菲尔德眼科研究所的 研究小组一起发布了
10:13
the first foundation model in medicine from the retina.
179
613401
3295
医学界第一个基于视网膜的基础模型。
10:16
And remember those eight different things that were all done by separate studies?
180
616737
4380
还记得那八件由不同研究完成的事吗?
10:21
This was all done with one model.
181
621159
2335
都是用一个模型完成的。
10:23
This is with 1.6 million retinal images
182
623494
3879
用了 160 万张视网膜图像
10:27
predicting all these different outcome likelihoods.
183
627415
4546
预测了各种不同结果的可能性。
10:32
And this is all open-source,
184
632003
1710
这都是开源的,
10:33
which is of course really important that others can build on these models.
185
633754
4380
当然非常重要,这样其他人 可以基于这些模型开发。
10:38
Now I just want to review a couple of really interesting patients.
186
638134
5547
我想回顾几个非常有趣的患者。
10:44
Andrew, who is now six years old.
187
644098
3003
安德鲁,现年六岁。
10:47
He had three years of relentlessly increasing pain, arrested growth.
188
647810
7007
三年来,他痛苦持续加剧,成长受阻。
10:55
His gait suffered with a dragging of his left foot,
189
655318
2544
他的步态因左脚 牵扯性疼痛而受到影响,
10:57
he had severe headaches.
190
657862
1918
头痛严重。
10:59
He went to 17 doctors over three years.
191
659780
3337
他在三年内去看了 17 位医生。
11:03
His mother then entered all his symptoms into ChatGPT.
192
663743
4254
然后,他的母亲将他所有的症状 输入进了 ChatGPT。
11:08
It made the diagnosis of occulta spina bifida,
193
668706
4254
它诊断为隐性脊柱裂,
11:12
which meant he had a tethered spinal cord that was missed by all 17 doctors
194
672960
5297
这意味着他患有脊髓栓系, 三年内的所有 17 位医生
11:18
over three years.
195
678257
1168
都没有注意到。
11:19
He had surgery to release the cord.
196
679467
2002
他接受了脊髓栓系松解手术。
11:21
He's now perfectly healthy.
197
681469
1793
现在非常健康。
11:24
(Applause)
198
684889
5630
(掌声)
11:30
This is a patient that was sent to me,
199
690561
2920
这是一位被送到我这里的病人,
11:33
who was suffering with, she was told, long COVID.
200
693481
4671
她被告知患有“长新冠”。
11:38
She saw many different physicians, neurologists,
201
698694
3379
她看了许多不同的医生、 神经科医生,
11:42
and her sister entered all her symptoms after getting nowhere,
202
702073
4546
她的姐妹把她所有的症状, 在经历了一路碰壁、
11:46
no treatment for long COVID,
203
706619
1418
长新冠无药可救、
11:48
there is no treatment validated,
204
708079
1710
没有经过验证的治疗方法后,
11:49
and her sister put all her symptoms into ChatGPT.
205
709789
4421
将所有症状都输入了 ChatGPT。
11:54
It found out it actually was not long COVID,
206
714252
2293
它发现其实并不是长新冠,
11:56
she had limbic encephalitis, which is treatable.
207
716587
3462
而是边缘系统脑炎, 是可以治疗的。
12:00
She was treated, and now she's doing extremely well.
208
720091
3128
她接受了治疗,现在情况非常好。
12:03
But these are not just anecdotes anymore.
209
723594
2753
但这些不再只是个例了。
12:06
70 very difficult cases
210
726389
3461
70 例非常困难的病例
12:09
that are the clinical pathologic conferences
211
729850
2461
登上《新英格兰医学杂志》的 临床病理学会议,
12:12
at the New England Journal of Medicine
212
732353
1877
12:14
were compared to GPT-4,
213
734272
2836
与 GPT-4 进行了比较,
12:17
and the chatbot did as well
214
737149
3295
聊天机器人在做出诊断方面的表现
12:20
or better than the expert master clinicians
215
740486
3295
与临床专家相当或更好。
12:23
in making the diagnosis.
216
743781
1960
12:26
So I just want to close with a recent conversation with my fellow.
217
746492
4713
我想以最近与我的同事的对话收尾。
12:31
Medicine is still an apprenticeship,
218
751706
2085
医学仍然采用的是“师徒制”,
12:33
and Andrew Cho is 30 years old,
219
753833
3837
安德鲁·赵(Andrew Cho) 今年 30 岁,
12:37
in his second year of cardiology fellowship.
220
757670
2085
是他攻读心脏病学培训的第二年。
12:39
We see all patients together in the clinic.
221
759797
2669
我们一起在诊所为所有患者看病。
12:42
And at the end of clinic the other day,
222
762967
2252
有一天在看诊结束时,
12:45
I sat down and said to him,
223
765261
1918
我坐下来对他说:
12:47
"Andrew, you are so lucky.
224
767179
2795
“安德鲁,你真幸运。
12:50
You're going to be practicing medicine in an era of keyboard liberation.
225
770516
4838
你能在键盘解放的时代 从事医学工作。
12:55
You're going to be connecting with patients
226
775813
2044
你会以我们几十年来前所未有的方式
12:57
the way we haven't done for decades."
227
777857
2502
与患者接触。”
13:00
That is the ability to have the note
228
780735
3086
这就是能够从对话中获取笔记
13:03
and the work from the conversation
229
783863
2502
和工作成果的能力,
13:06
to derive things like pre-authorization,
230
786407
3795
从而得出诸如预授权、
13:10
billing, prescriptions, future appointments --
231
790202
4755
账单、处方、未来预约之类 我们要做的事,
13:14
all the things that we do,
232
794999
1293
13:16
including nudges to the patient.
233
796334
1584
包括提示患者。
13:17
For example, did you get your blood pressure checks
234
797918
2461
比如,你有没有量血压,
13:20
and what did they show
235
800421
1168
得到的结果是什么意思,
13:21
and all that coming back to you.
236
801630
1544
这些都能回到你的手中。
13:23
But much more than that,
237
803215
1710
但不仅如此,
13:24
to help with making diagnoses.
238
804925
2086
还有助于做出诊断。
13:27
And the gift of time
239
807928
2002
还有时间上的优势,
13:29
that having all the data of a patient
240
809972
2169
在见到病人之前 就已经准备好了患者的所有数据。
13:32
that's all teed up before even seeing the patient.
241
812183
2961
13:35
And all this support changes the future of the patient-doctor relationship,
242
815144
6632
这些帮助都改变了医患关系的未来,
13:41
bringing in the gift of time.
243
821776
2460
带来了时间的恩赐。
13:44
So this is really exciting.
244
824612
1710
这真的很令人兴奋。
13:46
I said to Andrew, everything has to be validated, of course,
245
826364
4295
我对安德鲁说, 当然,这一切都必须经过验证,
13:50
that the benefit greatly outweighs any risk.
246
830701
3796
证明好处远大于任何风险。
13:54
But it is really a remarkable time for the future of health care,
247
834538
4505
但是对于医疗保健的未来来说, 这确实是一个重大的时刻,
13:59
it's so damn exciting.
248
839085
2544
真是令人兴奋。
14:01
Thank you.
249
841962
1168
谢谢。
14:03
(Applause)
250
843172
2753
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog