請雙擊下方英文字幕播放視頻。
譯者: Esther Lam
審譯者: Shelley Tsang 曾雯海
00:05
I've had the real fortune
of working at Scripps Research
0
5961
3336
我很幸運,過去十七年
能在斯克里普斯研究所工作。
00:09
for the last 17 years.
1
9339
1835
00:11
It's the largest nonprofit biomedical
institution in the country.
2
11174
5255
它是全國最大的非營利
生物醫學機構。
00:16
And I've watched some of my colleagues,
3
16972
2419
我看過我的一些同事
00:19
who have spent two to three years
4
19391
2294
花兩到三年的時間
00:21
to define the crystal
3-D structure of a protein.
5
21685
3253
去定義一種蛋白質的三維立體結構。
00:26
Well, now that can be done
in two or three minutes.
6
26231
3420
現在只要兩到三分鐘就能完成。
00:29
And that's because
of the work of AlphaFold,
7
29693
2419
那要歸功於 AlphaFold,
00:32
which is a derivative of DeepMind,
Demis Hassabis and John Jumper,
8
32112
6882
它是由 DeepMind 衍生出來的,
戴米斯‧哈薩比斯和約翰‧瓊波
00:38
recognized by the American
Nobel Prize in September.
9
38994
3503
他們是被美國人認可的專家學者
在九月得到諾貝爾獎。
00:42
What's interesting, this work,
10
42998
1918
有趣的是,這項產品
00:44
which is taking the amino acid
sequence in one dimension
11
44958
4588
是用一個維度上的氨基酸序列
00:49
and predicting the three-dimensional
protein at atomic level,
12
49588
5296
去預測原子層級的三維蛋白質,
00:54
[has] now inspired many other of these
protein structure prediction models,
13
54926
5881
現在已經促成了許多
其他的蛋白質結構預測模型,
01:00
as well as RNA and antibodies,
14
60849
2711
還有核糖核酸和抗體,
01:03
and even being able to pick up
all the missense mutations in the genome,
15
63602
4838
甚至可以挑出基因組中的錯義突變,
01:08
and even being able
to come up wit proteins
16
68481
4046
甚至還能提供
以前從未發明出來,
在大自然中也不存在的蛋白質。
01:12
that have never been invented before,
that don't exist in nature.
17
72569
3920
01:16
Now, the only thing I think about this
is it was a transformer model,
18
76990
3295
從而我現在唯一的想法是,
它是個轉換模型,
01:20
we'll talk about that in a moment,
19
80285
2169
我們稍後會討論這個,
01:22
in this award, since Demis and John
20
82454
5046
在這個獎項中,因為戴米斯和約翰
以及他們的三十名科學家團隊
01:27
and their team of 30 scientists
21
87542
1877
01:29
don't understand how
the transformer model works,
22
89419
4004
不了解轉換模型怎麼運作,
01:33
shouldn't the AI get an asterisk
as part of that award?
23
93465
4963
難道人工智慧不應該也得到一個詮釋星號,
作為該獎項的一部分?
01:39
I'm going to switch from life science,
24
99262
2127
我接著要從生命科學,
01:41
which has been the singular biggest
contribution just reviewed,
25
101431
4129
就是我們剛才提到的,迄今為止最大的貢獻,
01:45
to medicine.
26
105560
1335
換到醫學。
01:47
And in the medical community,
27
107604
1501
在醫學界,
01:49
the thing that we don't talk much about
are diagnostic medical errors.
28
109105
6215
我們不太會去談診斷醫療錯誤。
01:55
And according to the National
Academy of Medicine,
29
115362
2669
根據國家醫學院,
我們所有人一生中都至少
會遇到一次這種錯誤。
01:58
all of us will experience
at least one in our lifetime.
30
118031
3462
02:01
And we know from a recent
Johns Hopkins study
31
121993
2294
根據約翰‧霍普金斯大學
最近的一項研究,
02:04
that these errors have led
to 800,000 Americans dead
32
124329
5672
這些錯誤,每年會導致八十萬名美國人死亡
或嚴重殘疾。
02:10
or seriously disabled each year.
33
130043
3629
02:13
So this is a big problem.
34
133713
1502
所以這是個大問題。
02:15
And the question is, can AI help us?
35
135215
3211
問題是,人工智慧能幫我們嗎?
02:18
And you keep hearing
about the term “precision medicine.”
36
138843
3295
我們不斷聽到「精準醫療」這個詞。
02:22
Well, if you keep making the same mistake
over and over again, that's very precise.
37
142806
5589
如果你持續不斷犯同樣的錯誤,
那的確很精準。
02:28
(Laughter)
38
148436
1168
(笑聲)
02:30
We don't need that,
39
150188
1168
那不是我們需要的,
我們需要正確精準醫療。
02:31
we need accuracy and precision medicine.
40
151398
2669
02:34
So can we get there?
41
154442
1585
我們能做到嗎?
02:36
Well, this is a picture of the retina.
42
156486
2252
好,這是一張視網膜圖。
02:39
And this was the first major hint,
43
159072
2961
這是第一個重要提示,
02:42
training 100,000 images
with supervised learning.
44
162075
4963
背後是監督式學習方法搭配
十萬張影像的訓練資料。
02:47
Could the machine see things
that people couldn't see?
45
167080
4880
機器能看見人類看不見的東西嗎?
02:52
And so the question was,
to the retinal experts,
46
172919
2961
給視網膜專家的問題是:
02:55
is this from a man or a woman?
47
175880
2002
這是男性或女性的視網膜?
02:58
And the chance of getting it
accurate was 50 percent.
48
178717
3420
而答對的機率是 50%。
03:02
(Laughter)
49
182137
1167
(笑聲)
03:03
But the AI got it right, 97 percent.
50
183346
3754
但人工智慧答對了,97% 的正確率。
03:07
So that training,
51
187142
2043
所以,那種訓練,
03:09
the features are not even fully defined
of how that was possible.
52
189227
4171
這些特徵甚至還沒有完全定義出來,究竟是如何可能的。
03:14
Well that gets then
to all of medical images.
53
194274
3086
嗯,這就涉及到所有的醫學圖像。
03:17
This is just representative,
the chest X-ray.
54
197652
2628
這只是個代表性的例子,胸部 X 光。
03:20
And in fact with the chest X-ray,
55
200822
2169
事實上,就胸部 X 光來說,
03:22
the ability here for the AI to pick up,
56
202991
3086
人工智慧的挑選能力,
03:26
the radiologists, expert radiologists
missing the nodule,
57
206077
4880
放射科醫生,專業的放射科醫生
沒發現的小瘤,
03:30
which turned out to be picked up
by the AI as cancerous,
58
210999
3128
結果卻被人工智慧挑出來,
且判斷是惡性的,
03:34
and this is, of course,
representative of all of medical scans,
59
214127
4004
這個例子可以代表所有的醫學掃描,
03:38
whether it’s CT scans, MRI, ultrasound.
60
218173
3837
不論是電腦斷層、
磁振造影、超音波。
透過監督式學習方法搭配大型、
加上標籤、加上註解的資料集,
03:42
That through supervised learning
of large, labeled, annotated data sets,
61
222051
5881
03:47
we can see AI do
at least as well, if not better,
62
227974
3921
我們可以看到人工智慧
表現至少會和專業醫生一樣好,
甚至更好。
03:51
than expert physicians.
63
231895
1960
在二十一次的隨機試驗中
去找取息肉,
03:55
And 21 randomized trials
of picking up polyps --
64
235023
4755
03:59
machine vision during
colonoscopy -- have all shown
65
239819
4171
全部試驗都顯示, 在大腸鏡檢查中,
借助機器視覺
04:03
that polyps are picked up better
66
243990
3003
04:06
with the aid of machine vision
than by the gastroenterologist alone,
67
246993
3796
比單靠胃腸科醫師的表現更好
04:10
especially as the day goes on,
later in the day, interestingly.
68
250789
4337
有趣的是,在一天的
越後段時期越是如此。
04:15
We don't know whether picking up
all these additional polyps
69
255168
3253
我們不知道另外多找出
這些息肉是否會
04:18
changes the natural history of cancers,
70
258463
2085
改變癌症的自然史,
04:20
but it tells you about machine eyes,
71
260590
3086
但它能告訴你機器眼睛,
04:23
the power of machine eyes.
72
263718
1376
機器眼睛的力量。
04:25
Now that was interesting.
73
265470
2377
那是很有趣的。
04:27
But now still with deep learning models,
not transformer models,
74
267889
5714
但是现在仍然使用深度學習模型,
而不是變壓器模型,
04:33
we've seen and learned that the ability
75
273645
3253
我們已經看到並了解到,
04:36
for computer vision to pick up things
that human eyes can't see
76
276898
5589
電腦視覺
拾取人眼看不見的東西的能力
04:42
is quite remarkable.
77
282487
1460
非常出色。
04:43
Here's the retina.
78
283988
1418
這是視網膜。
04:46
Picking up the control of diabetes
and blood pressure.
79
286074
3378
控制糖尿病和血壓.。
04:50
Kidney disease.
80
290495
1710
腎臟疾病。
04:52
Liver and gallbladder disease.
81
292872
2586
肝胆疾病。
04:56
The heart calcium score,
82
296084
2043
心臟钙分数,
04:58
which you would normally get
through a scan of the heart.
83
298127
4004
這通常是通過心臟掃描得出的。
05:03
Alzheimer's disease before any
clinical symptoms have been manifest.
84
303174
4129
早於阿茲海默症之前
就已明顯的臨床症狀。
05:08
Predicting heart attacks and strokes.
85
308012
2586
預測心臟病發作和中風。
05:11
Hyperlipidemia.
86
311599
1543
高脂血症。
05:13
And seven years before
any symptoms of Parkinson's disease,
87
313518
4546
甚至在出现帕金森氏病症状的七年前,
05:18
to pick that up.
88
318064
1251
都可以被機器查出來。
05:19
Now this is interesting
because in the future,
89
319941
3587
這很有趣
因為在未來,
05:23
we'll be taking pictures
of our retina at checkups.
90
323570
3753
我們在檢查的時候
會拍照視網膜。
05:27
This is the gateway to almost
every system in the body.
91
327365
3462
這是通往身體幾乎所有系統的門戶。
05:31
It's really striking.
92
331369
1168
這真的很驚人。
05:32
And we'll come back to this
because each one of these studies
93
332579
4087
我們會回到這個主題,
因為這些研究中的每一項
05:36
was done with tens or hundreds [of]
thousands of images
94
336666
4213
都是透過監督學習
使用數十或數百,數千張圖像
05:40
with supervised learning,
95
340879
1251
完成的,
05:42
and they’re all separate studies
by different investigators.
96
342171
3921
而且它们都是
由不同的研究人员單獨的研究。
05:46
Now, as a cardiologist,
I love to read cardiograms.
97
346426
4045
现在,作為一名心臟科專家,
我喜歡閱讀心電圖。
05:50
I've been doing it for over 30 years.
98
350513
2169
我已经做了 30 多年了。
05:53
But I couldn't see these things.
99
353808
2086
但我看不到這些東西。
05:56
Like, the age and the sex of the patient,
100
356519
2920
比如,患者的年龄和性别,
05:59
or the ejection fraction of the heart,
101
359439
3086
或者心臟的射血分數,
06:02
making difficult diagnoses
that are frequently missed.
102
362567
3503
做出經常被遗漏並且困難的診斷。
06:06
The anemia of the patient, that is,
the hemoglobin to the decimal point.
103
366571
4212
患者的貧血情況,
即血红蛋白精確到小數點。
06:11
Predicting whether a person,
104
371951
1460
預測一個從未出現
06:13
who's never had
atrial fibrillation or stroke
105
373453
2502
房顫或中風的人
06:15
from the ECG,
106
375955
1418
是否從心電圖上
06:17
whether that's going to likely occur.
107
377415
2169
能看出這種情況是否可能發生。
06:20
Diabetes, a diagnosis of diabetes
and prediabetes, from the cardiogram.
108
380418
4796
糖尿病,從心電圖檢查中診斷糖尿病和糖尿病前期。
06:25
The filling pressure of the heart.
109
385965
2044
心臟充盈壓。
06:28
Hypothyroidism
110
388509
2086
甲狀腺功能减退
06:30
and kidney disease.
111
390637
1626
和腎臟疾病。
06:32
Imagine getting an electrocardiogram
to tell you about all these other things,
112
392305
3920
想像一下,透過心電圖檢查告訴您
有關所有這些其他事物的資訊,
06:36
not really so much about the heart.
113
396267
2711
而不僅僅是關於心臟的資訊。
06:39
Then there's the chest X-ray.
114
399729
1543
然後是胸部 X 光片。
06:41
Who would have guessed
that we could accurately determine
115
401314
3920
誰能猜到
我們竟然可以透過機器視覺從胸腔X光中準確地判斷,
06:45
the race of the patient,
116
405234
1377
患者的種族,
06:46
no less the ethical implications of that,
117
406611
2794
更不用說這其中的倫理影響呢。
06:49
from a chest X-ray through machine eyes?
118
409405
3379
誰會猜到我们可以透過機器眼睛進行胸部X光檢查?
06:53
And interestingly, picking up
the diagnosis of diabetes,
119
413201
4171
而有趣的是,
06:57
as well as how well
the diabetes is controlled,
120
417372
4212
透過胸部 X光片
了解糖尿病的診斷
以及糖尿病的控制情况。
當然,心臟有這麼多不同的参数,
07:01
through the chest X-ray.
121
421584
1668
07:04
And of course, so many different
parameters about the heart,
122
424629
3795
無論是
07:08
which we could never,
123
428424
2169
07:10
radiologists or cardiologists,
could never be able to come up
124
430593
3837
放射科醫生或心臟科醫生,
永遠無法想像機器視覺能做什麼。
07:14
with what machine vision can do.
125
434430
2878
07:17
Pathologists often argue about a slide,
126
437976
3169
病理學家經常爭論投影片,
07:21
about what does it really show?
127
441187
1794
爭論它到底顯示了什麼?
07:23
But with this ability of machine eyes,
128
443314
4338
但是,憑藉著機器眼睛的這種能力,
07:27
the driver genomic mutations
of the cancer can be defined,
129
447694
3878
可以定義癌症的驅動基因組突變,
07:31
no less the structural
copy number variants
130
451614
2878
更不用說
07:34
that are accounting
or present in that tumor.
131
454534
2878
構成 或存在於該腫瘤中的結構
或者拷貝數變異了。
07:37
Also, where is that tumor coming from?
132
457787
2336
另外,那腫瘤來自哪裡?
07:40
For many patients, we don’t know.
133
460164
2253
對於許多患者來說,我們不知道。
07:42
But it can be determined through AI.
134
462458
4255
但這可以通過人工智能來確定。
07:46
And also the prognosis of the patient,
135
466754
2836
還有患者的預後,
07:49
just from the slide,
136
469590
2169
光從幻燈片來看,
07:51
by all of the training.
137
471801
1627
透過所有的訓練。
07:53
Again, this is all just
convolutional neural networks,
138
473469
4797
同樣的,
這只是卷積神經網絡,
07:58
not transformer models.
139
478307
1669
而不是變壓器模型。
08:00
So when we go from the deep neural
networks to transformer models,
140
480852
5630
所以當我們從深層神經網路到變壓器模型,
08:06
this classic pre-print,
141
486524
2085
這本經典的預印本,
08:08
one of the most cited pre-prints ever,
142
488651
2586
有史以來被引用最多的預印本之一,
08:11
"Attention is All You Need,"
143
491237
1418
“注意力就是你所需要的”
08:12
the ability to now be able
to look at many more items,
144
492697
4296
现在
能够查看更多项目,
08:17
whether it be language or images,
145
497035
3837
無論是語言還是圖像,
08:20
and be able to put this in context,
146
500913
2962
並能夠將其放在上下文中,
08:23
setting up a transformational
progress in many fields.
147
503916
4588
從而在許多領域取得變革性進展。
08:29
The prototype is,
the outgrowth of this is GPT-4.
148
509172
4504
直接地說,這的延伸就是 GPT-4
08:34
With over a trillion connections.
149
514510
2628
擁有超過一兆的連接。
08:37
Our human brain has 100 trillion
connections or parameters.
150
517138
4713
我們人的大腦有100兆
連接或參數。
08:42
But one trillion,
151
522185
1167
但是,一兆,
08:43
just think of all
the information, knowledge,
152
523352
2128
想一想
08:45
that's packed into those one trillion.
153
525480
1876
就一兆中所包含的信息、知識。
08:47
And interestingly, this is now multimodal
with language, with images,
154
527398
4880
有趣的是,现在這是一種多模式,
包括語言、圖像、
08:52
with speech.
155
532320
1376
語音。
08:53
And it involves a massive amount
of graphic processing units.
156
533696
3921
而且它涉及大量
的圖形處理單元。
08:58
And it's with self-supervised learning,
157
538076
2293
還有透過自我監督學習,
09:00
which is a big bottleneck in medicine
158
540369
2128
這是醫學上的大瓶頸,
09:02
because we can't get experts
to label images.
159
542497
3169
因為我們找不到專家
來標記圖像。
09:05
This can be done
with self-supervised learning.
160
545708
2795
這可以透過自我監督學習
來完成。
09:08
So what does this set up in medicine?
161
548961
2837
那麼這在醫學上起到了什麼作用?
09:11
It sets up, for example,
keyboard liberation.
162
551839
4421
例如,它设置了
鍵盤解放。
09:16
The one thing that both
doctors, clinicians
163
556803
3920
這是
醫師、臨床醫師
09:20
and patients would like to see.
164
560765
2377
和患者都希望看到的一件事。
09:23
Everyone hates being
data clerks as clinicians,
165
563851
3921
每個人都討厭把床醫師的身份當數據員,
09:27
and patients would like
to see their doctor
166
567814
2836
患者希望
09:30
when they finally have the visit
they've waited for a long time.
167
570650
3753
在終於等到他們期待已久的就診時
見到他們的醫生。
09:34
So the ability to change
the face-to-face contact
168
574445
4713
因此,改變面對面接觸的型式
09:39
is just one step along the way.
169
579200
2502
只是這條路上的一步。
09:41
By having the liberation from
keyboards with synthetic notes
170
581744
5005
通過從鍵盤中解放出來,使用合成音符
09:46
that are driven,
derived from the conversation,
171
586791
2753
這些音符是從對話中生成的,
09:49
and then all the downstream normal
data clerk functions that are done,
172
589585
4880
然後是通常在非工作時間完成的所有下游
09:54
often off-hours.
173
594507
1668
常規數據員功能。
09:56
Now we're seeing in health systems
across the United States
174
596217
3587
現在,我們在美國各地的衛生系統中看到,
09:59
where people, physicians
are saving many hours of time
175
599846
3920
人們和醫生都在節省大量時間
10:03
and heading towards ultimately
keyboard liberation.
176
603808
3587
最終走向鍵盤解放。
10:08
We recently published, with the group
at Moorfields Eye Institute,
177
608396
3587
最近,我們與皮爾斯·基恩
10:12
led by Pearse Keane,
178
612024
1335
領導的莫菲爾德眼科研究所的研究小組一起發布了
10:13
the first foundation model
in medicine from the retina.
179
613401
3295
第一個視網膜醫學基礎模型。
10:16
And remember those eight different things
that were all done by separate studies?
180
616737
4380
還記得我剛才提到那八件不同的事情
都是通過單獨的研究完成的嗎?
10:21
This was all done with one model.
181
621159
2335
這一切都是用一個模型完成的。
10:23
This is with 1.6 million retinal images
182
623494
3879
也就是说,有160萬張視網膜圖像
10:27
predicting all these different
outcome likelihoods.
183
627415
4546
預測了所有這些不同的結果的可能性。
10:32
And this is all open-source,
184
632003
1710
這些都是公開的資源,
10:33
which is of course really important
that others can build on these models.
185
633754
4380
當然非常重要的,其他人可以在這些模型上進行構建。
10:38
Now I just want to review a couple
of really interesting patients.
186
638134
5547
現在我只想回顧幾個非常有趣的患者。
10:44
Andrew, who is now six years old.
187
644098
3003
安德魯,現年六歲。
10:47
He had three years of relentlessly
increasing pain, arrested growth.
188
647810
7007
他三年來一直遭受不斷增加的疼痛,停滯的生長。
10:55
His gait suffered with a dragging
of his left foot,
189
655318
2544
他的步態因左腳拖曳而受到影響,
10:57
he had severe headaches.
190
657862
1918
頭痛嚴重。
10:59
He went to 17 doctors over three years.
191
659780
3337
他在三年内去看了17位醫生。
11:03
His mother then entered all
his symptoms into ChatGPT.
192
663743
4254
然後,他的母親將所有他的症狀
都輸入到了ChatGPT中。
11:08
It made the diagnosis
of occulta spina bifida,
193
668706
4254
它診斷為隱性脊柱裂,
11:12
which meant he had a tethered spinal cord
that was missed by all 17 doctors
194
672960
5297
這意味著他患有脊髓系繩,
三年多來
11:18
over three years.
195
678257
1168
所有17位醫生都漏掉了這條脊髓。
11:19
He had surgery to release the cord.
196
679467
2002
他接受了鬆開索帶的手術。
11:21
He's now perfectly healthy.
197
681469
1793
他现在非常健康。
11:24
(Applause)
198
684889
5630
(掌聲)
11:30
This is a patient that was sent to me,
199
690561
2920
這是一位被送到我這裡的病人,
11:33
who was suffering with,
she was told, long COVID.
200
693481
4671
她被告知患有長期新冠病毒
11:38
She saw many different
physicians, neurologists,
201
698694
3379
她見過許多不同的醫生、神經科醫生,
11:42
and her sister entered all her symptoms
after getting nowhere,
202
702073
4546
她的姐姐在別無選擇之後
輸入了所有症狀,
11:46
no treatment for long COVID,
203
706619
1418
沒有治療長期新冠病毒,
11:48
there is no treatment validated,
204
708079
1710
沒有經過驗證的治療方法,
11:49
and her sister put all
her symptoms into ChatGPT.
205
709789
4421
姐姐將所有症狀都輸入了ChatGPT。
11:54
It found out it actually
was not long COVID,
206
714252
2293
它發現實際上不是長期新冠病毒,
11:56
she had limbic encephalitis,
which is treatable.
207
716587
3462
她患有邊緣性腦炎,這是可以治療的。
12:00
She was treated, and now
she's doing extremely well.
208
720091
3128
她接受了治療,現在情況非常好。
12:03
But these are not just anecdotes anymore.
209
723594
2753
但這些不再只是軼事了。
12:06
70 very difficult cases
210
726389
3461
將70例非常困難的病例
12:09
that are the clinical
pathologic conferences
211
729850
2461
在
12:12
at the New England Journal of Medicine
212
732353
1877
《新英格蘭醫學雜誌》的臨床病理學會議上,
12:14
were compared to GPT-4,
213
734272
2836
與 GPT-4 進行了比較,
12:17
and the chatbot did as well
214
737149
3295
聊天機器人在做出診斷方面的表現
12:20
or better than the expert
master clinicians
215
740486
3295
與大師級的臨床醫師一樣好
12:23
in making the diagnosis.
216
743781
1960
或更好
12:26
So I just want to close
with a recent conversation with my fellow.
217
746492
4713
因此,我只想以最近與我的同伴的談話作為結束。
12:31
Medicine is still an apprenticeship,
218
751706
2085
醫學仍然是學徒,
12:33
and Andrew Cho is 30 years old,
219
753833
3837
安德魯·曹
今年30歲
12:37
in his second year
of cardiology fellowship.
220
757670
2085
是他以獎學金攻讀心臟病學的第二年。
12:39
We see all patients
together in the clinic.
221
759797
2669
我們一起在診所為所有患者看病。
12:42
And at the end of clinic the other day,
222
762967
2252
前幾天在診所結束時,
12:45
I sat down and said to him,
223
765261
1918
我坐下來對他說:
12:47
"Andrew, you are so lucky.
224
767179
2795
安德鲁,你真幸運。
12:50
You're going to be practicing medicine
in an era of keyboard liberation.
225
770516
4838
在鍵盤解放的時代,你將從事醫學工作。
12:55
You're going to be
connecting with patients
226
775813
2044
你將以幾十年來從未有過的方式與患者
12:57
the way we haven't done for decades."
227
777857
2502
建立聯繫。
13:00
That is the ability to have the note
228
780735
3086
這就是能夠從對話中獲得醫療筆記
13:03
and the work from the conversation
229
783863
2502
和工作成果,
13:06
to derive things like pre-authorization,
230
786407
3795
從而得出諸如預授權、
13:10
billing, prescriptions,
future appointments --
231
790202
4755
帳單、處方、未來預約
13:14
all the things that we do,
232
794999
1293
等所有我們所做的事情,
13:16
including nudges to the patient.
233
796334
1584
包括向患者推動。
13:17
For example, did you get
your blood pressure checks
234
797918
2461
例如,你有沒有收到血壓檢查,
13:20
and what did they show
235
800421
1168
檢查結果顯示了什麼,
13:21
and all that coming back to you.
236
801630
1544
所有這些都回覆給你。
13:23
But much more than that,
237
803215
1710
但不僅如此,
13:24
to help with making diagnoses.
238
804925
2086
還有助於做出診斷。
13:27
And the gift of time
239
807928
2002
還有時間的禮物,
13:29
that having all the data of a patient
240
809972
2169
那就是在看病人之前,
13:32
that's all teed up before
even seeing the patient.
241
812183
2961
就已經準備好了患者的所有數據。
13:35
And all this support changes the future
of the patient-doctor relationship,
242
815144
6632
所有這些支持都改變了未來醫生和病人的關係的,
13:41
bringing in the gift of time.
243
821776
2460
引入時間的恩賜。
13:44
So this is really exciting.
244
824612
1710
所以這真的很令人興奮。
13:46
I said to Andrew, everything
has to be validated, of course,
245
826364
4295
我對安德魯說,當然,一切都必須得到驗證,
13:50
that the benefit greatly
outweighs any risk.
246
830701
3796
確保收益遠大於任何風險。
13:54
But it is really a remarkable time
for the future of health care,
247
834538
4505
但是對於醫療保健的未來來说,
這確實是一個非凡的時刻,
13:59
it's so damn exciting.
248
839085
2544
真的令人興奮。
14:01
Thank you.
249
841962
1168
謝謝。
14:03
(Applause)
250
843172
2753
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。