Can AI Catch What Doctors Miss? | Eric Topol | TED

173,124 views ・ 2023-12-09

TED


請雙擊下方英文字幕播放視頻。

譯者: Esther Lam 審譯者: Shelley Tsang 曾雯海
00:05
I've had the real fortune of working at Scripps Research
0
5961
3336
我很幸運,過去十七年 能在斯克里普斯研究所工作。
00:09
for the last 17 years.
1
9339
1835
00:11
It's the largest nonprofit biomedical institution in the country.
2
11174
5255
它是全國最大的非營利 生物醫學機構。
00:16
And I've watched some of my colleagues,
3
16972
2419
我看過我的一些同事
00:19
who have spent two to three years
4
19391
2294
花兩到三年的時間
00:21
to define the crystal 3-D structure of a protein.
5
21685
3253
去定義一種蛋白質的三維立體結構。
00:26
Well, now that can be done in two or three minutes.
6
26231
3420
現在只要兩到三分鐘就能完成。
00:29
And that's because of the work of AlphaFold,
7
29693
2419
那要歸功於 AlphaFold,
00:32
which is a derivative of DeepMind, Demis Hassabis and John Jumper,
8
32112
6882
它是由 DeepMind 衍生出來的, 戴米斯‧哈薩比斯和約翰‧瓊波
00:38
recognized by the American Nobel Prize in September.
9
38994
3503
他們是被美國人認可的專家學者 在九月得到諾貝爾獎。
00:42
What's interesting, this work,
10
42998
1918
有趣的是,這項產品
00:44
which is taking the amino acid sequence in one dimension
11
44958
4588
是用一個維度上的氨基酸序列
00:49
and predicting the three-dimensional protein at atomic level,
12
49588
5296
去預測原子層級的三維蛋白質,
00:54
[has] now inspired many other of these protein structure prediction models,
13
54926
5881
現在已經促成了許多 其他的蛋白質結構預測模型,
01:00
as well as RNA and antibodies,
14
60849
2711
還有核糖核酸和抗體,
01:03
and even being able to pick up all the missense mutations in the genome,
15
63602
4838
甚至可以挑出基因組中的錯義突變,
01:08
and even being able to come up wit proteins
16
68481
4046
甚至還能提供
以前從未發明出來, 在大自然中也不存在的蛋白質。
01:12
that have never been invented before, that don't exist in nature.
17
72569
3920
01:16
Now, the only thing I think about this is it was a transformer model,
18
76990
3295
從而我現在唯一的想法是, 它是個轉換模型,
01:20
we'll talk about that in a moment,
19
80285
2169
我們稍後會討論這個,
01:22
in this award, since Demis and John
20
82454
5046
在這個獎項中,因為戴米斯和約翰
以及他們的三十名科學家團隊
01:27
and their team of 30 scientists
21
87542
1877
01:29
don't understand how the transformer model works,
22
89419
4004
不了解轉換模型怎麼運作,
01:33
shouldn't the AI get an asterisk as part of that award?
23
93465
4963
難道人工智慧不應該也得到一個詮釋星號, 作為該獎項的一部分?
01:39
I'm going to switch from life science,
24
99262
2127
我接著要從生命科學,
01:41
which has been the singular biggest contribution just reviewed,
25
101431
4129
就是我們剛才提到的,迄今為止最大的貢獻,
01:45
to medicine.
26
105560
1335
換到醫學。
01:47
And in the medical community,
27
107604
1501
在醫學界,
01:49
the thing that we don't talk much about are diagnostic medical errors.
28
109105
6215
我們不太會去談診斷醫療錯誤。
01:55
And according to the National Academy of Medicine,
29
115362
2669
根據國家醫學院,
我們所有人一生中都至少 會遇到一次這種錯誤。
01:58
all of us will experience at least one in our lifetime.
30
118031
3462
02:01
And we know from a recent Johns Hopkins study
31
121993
2294
根據約翰‧霍普金斯大學 最近的一項研究,
02:04
that these errors have led to 800,000 Americans dead
32
124329
5672
這些錯誤,每年會導致八十萬名美國人死亡
或嚴重殘疾。
02:10
or seriously disabled each year.
33
130043
3629
02:13
So this is a big problem.
34
133713
1502
所以這是個大問題。
02:15
And the question is, can AI help us?
35
135215
3211
問題是,人工智慧能幫我們嗎?
02:18
And you keep hearing about the term “precision medicine.”
36
138843
3295
我們不斷聽到「精準醫療」這個詞。
02:22
Well, if you keep making the same mistake over and over again, that's very precise.
37
142806
5589
如果你持續不斷犯同樣的錯誤, 那的確很精準。
02:28
(Laughter)
38
148436
1168
(笑聲)
02:30
We don't need that,
39
150188
1168
那不是我們需要的, 我們需要正確精準醫療。
02:31
we need accuracy and precision medicine.
40
151398
2669
02:34
So can we get there?
41
154442
1585
我們能做到嗎?
02:36
Well, this is a picture of the retina.
42
156486
2252
好,這是一張視網膜圖。
02:39
And this was the first major hint,
43
159072
2961
這是第一個重要提示,
02:42
training 100,000 images with supervised learning.
44
162075
4963
背後是監督式學習方法搭配 十萬張影像的訓練資料。
02:47
Could the machine see things that people couldn't see?
45
167080
4880
機器能看見人類看不見的東西嗎?
02:52
And so the question was, to the retinal experts,
46
172919
2961
給視網膜專家的問題是:
02:55
is this from a man or a woman?
47
175880
2002
這是男性或女性的視網膜?
02:58
And the chance of getting it accurate was 50 percent.
48
178717
3420
而答對的機率是 50%。
03:02
(Laughter)
49
182137
1167
(笑聲)
03:03
But the AI got it right, 97 percent.
50
183346
3754
但人工智慧答對了,97% 的正確率。
03:07
So that training,
51
187142
2043
所以,那種訓練,
03:09
the features are not even fully defined of how that was possible.
52
189227
4171
這些特徵甚至還沒有完全定義出來,究竟是如何可能的。
03:14
Well that gets then to all of medical images.
53
194274
3086
嗯,這就涉及到所有的醫學圖像。
03:17
This is just representative, the chest X-ray.
54
197652
2628
這只是個代表性的例子,胸部 X 光。
03:20
And in fact with the chest X-ray,
55
200822
2169
事實上,就胸部 X 光來說,
03:22
the ability here for the AI to pick up,
56
202991
3086
人工智慧的挑選能力,
03:26
the radiologists, expert radiologists missing the nodule,
57
206077
4880
放射科醫生,專業的放射科醫生 沒發現的小瘤,
03:30
which turned out to be picked up by the AI as cancerous,
58
210999
3128
結果卻被人工智慧挑出來, 且判斷是惡性的,
03:34
and this is, of course, representative of all of medical scans,
59
214127
4004
這個例子可以代表所有的醫學掃描,
03:38
whether it’s CT scans, MRI, ultrasound.
60
218173
3837
不論是電腦斷層、 磁振造影、超音波。
透過監督式學習方法搭配大型、 加上標籤、加上註解的資料集,
03:42
That through supervised learning of large, labeled, annotated data sets,
61
222051
5881
03:47
we can see AI do at least as well, if not better,
62
227974
3921
我們可以看到人工智慧 表現至少會和專業醫生一樣好,
甚至更好。
03:51
than expert physicians.
63
231895
1960
在二十一次的隨機試驗中 去找取息肉,
03:55
And 21 randomized trials of picking up polyps --
64
235023
4755
03:59
machine vision during colonoscopy -- have all shown
65
239819
4171
全部試驗都顯示, 在大腸鏡檢查中,
借助機器視覺
04:03
that polyps are picked up better
66
243990
3003
04:06
with the aid of machine vision than by the gastroenterologist alone,
67
246993
3796
比單靠胃腸科醫師的表現更好
04:10
especially as the day goes on, later in the day, interestingly.
68
250789
4337
有趣的是,在一天的 越後段時期越是如此。
04:15
We don't know whether picking up all these additional polyps
69
255168
3253
我們不知道另外多找出 這些息肉是否會
04:18
changes the natural history of cancers,
70
258463
2085
改變癌症的自然史,
04:20
but it tells you about machine eyes,
71
260590
3086
但它能告訴你機器眼睛,
04:23
the power of machine eyes.
72
263718
1376
機器眼睛的力量。
04:25
Now that was interesting.
73
265470
2377
那是很有趣的。
04:27
But now still with deep learning models, not transformer models,
74
267889
5714
但是现在仍然使用深度學習模型, 而不是變壓器模型,
04:33
we've seen and learned that the ability
75
273645
3253
我們已經看到並了解到,
04:36
for computer vision to pick up things that human eyes can't see
76
276898
5589
電腦視覺 拾取人眼看不見的東西的能力
04:42
is quite remarkable.
77
282487
1460
非常出色。
04:43
Here's the retina.
78
283988
1418
這是視網膜。
04:46
Picking up the control of diabetes and blood pressure.
79
286074
3378
控制糖尿病和血壓.。
04:50
Kidney disease.
80
290495
1710
腎臟疾病。
04:52
Liver and gallbladder disease.
81
292872
2586
肝胆疾病。
04:56
The heart calcium score,
82
296084
2043
心臟钙分数,
04:58
which you would normally get through a scan of the heart.
83
298127
4004
這通常是通過心臟掃描得出的。
05:03
Alzheimer's disease before any clinical symptoms have been manifest.
84
303174
4129
早於阿茲海默症之前 就已明顯的臨床症狀。
05:08
Predicting heart attacks and strokes.
85
308012
2586
預測心臟病發作和中風。
05:11
Hyperlipidemia.
86
311599
1543
高脂血症。
05:13
And seven years before any symptoms of Parkinson's disease,
87
313518
4546
甚至在出现帕金森氏病症状的七年前,
05:18
to pick that up.
88
318064
1251
都可以被機器查出來。
05:19
Now this is interesting because in the future,
89
319941
3587
這很有趣 因為在未來,
05:23
we'll be taking pictures of our retina at checkups.
90
323570
3753
我們在檢查的時候 會拍照視網膜。
05:27
This is the gateway to almost every system in the body.
91
327365
3462
這是通往身體幾乎所有系統的門戶。
05:31
It's really striking.
92
331369
1168
這真的很驚人。
05:32
And we'll come back to this because each one of these studies
93
332579
4087
我們會回到這個主題, 因為這些研究中的每一項
05:36
was done with tens or hundreds [of] thousands of images
94
336666
4213
都是透過監督學習 使用數十或數百,數千張圖像
05:40
with supervised learning,
95
340879
1251
完成的,
05:42
and they’re all separate studies by different investigators.
96
342171
3921
而且它们都是 由不同的研究人员單獨的研究。
05:46
Now, as a cardiologist, I love to read cardiograms.
97
346426
4045
现在,作為一名心臟科專家, 我喜歡閱讀心電圖。
05:50
I've been doing it for over 30 years.
98
350513
2169
我已经做了 30 多年了。
05:53
But I couldn't see these things.
99
353808
2086
但我看不到這些東西。
05:56
Like, the age and the sex of the patient,
100
356519
2920
比如,患者的年龄和性别,
05:59
or the ejection fraction of the heart,
101
359439
3086
或者心臟的射血分數,
06:02
making difficult diagnoses that are frequently missed.
102
362567
3503
做出經常被遗漏並且困難的診斷。
06:06
The anemia of the patient, that is, the hemoglobin to the decimal point.
103
366571
4212
患者的貧血情況, 即血红蛋白精確到小數點。
06:11
Predicting whether a person,
104
371951
1460
預測一個從未出現
06:13
who's never had atrial fibrillation or stroke
105
373453
2502
房顫或中風的人
06:15
from the ECG,
106
375955
1418
是否從心電圖上
06:17
whether that's going to likely occur.
107
377415
2169
能看出這種情況是否可能發生。
06:20
Diabetes, a diagnosis of diabetes and prediabetes, from the cardiogram.
108
380418
4796
糖尿病,從心電圖檢查中診斷糖尿病和糖尿病前期。
06:25
The filling pressure of the heart.
109
385965
2044
心臟充盈壓。
06:28
Hypothyroidism
110
388509
2086
甲狀腺功能减退
06:30
and kidney disease.
111
390637
1626
和腎臟疾病。
06:32
Imagine getting an electrocardiogram to tell you about all these other things,
112
392305
3920
想像一下,透過心電圖檢查告訴您 有關所有這些其他事物的資訊,
06:36
not really so much about the heart.
113
396267
2711
而不僅僅是關於心臟的資訊。
06:39
Then there's the chest X-ray.
114
399729
1543
然後是胸部 X 光片。
06:41
Who would have guessed that we could accurately determine
115
401314
3920
誰能猜到 我們竟然可以透過機器視覺從胸腔X光中準確地判斷,
06:45
the race of the patient,
116
405234
1377
患者的種族,
06:46
no less the ethical implications of that,
117
406611
2794
更不用說這其中的倫理影響呢。
06:49
from a chest X-ray through machine eyes?
118
409405
3379
誰會猜到我们可以透過機器眼睛進行胸部X光檢查?
06:53
And interestingly, picking up the diagnosis of diabetes,
119
413201
4171
而有趣的是,
06:57
as well as how well the diabetes is controlled,
120
417372
4212
透過胸部 X光片 了解糖尿病的診斷
以及糖尿病的控制情况。 當然,心臟有這麼多不同的参数,
07:01
through the chest X-ray.
121
421584
1668
07:04
And of course, so many different parameters about the heart,
122
424629
3795
無論是
07:08
which we could never,
123
428424
2169
07:10
radiologists or cardiologists, could never be able to come up
124
430593
3837
放射科醫生或心臟科醫生,
永遠無法想像機器視覺能做什麼。
07:14
with what machine vision can do.
125
434430
2878
07:17
Pathologists often argue about a slide,
126
437976
3169
病理學家經常爭論投影片,
07:21
about what does it really show?
127
441187
1794
爭論它到底顯示了什麼?
07:23
But with this ability of machine eyes,
128
443314
4338
但是,憑藉著機器眼睛的這種能力,
07:27
the driver genomic mutations of the cancer can be defined,
129
447694
3878
可以定義癌症的驅動基因組突變,
07:31
no less the structural copy number variants
130
451614
2878
更不用說
07:34
that are accounting or present in that tumor.
131
454534
2878
構成 或存在於該腫瘤中的結構 或者拷貝數變異了。
07:37
Also, where is that tumor coming from?
132
457787
2336
另外,那腫瘤來自哪裡?
07:40
For many patients, we don’t know.
133
460164
2253
對於許多患者來說,我們不知道。
07:42
But it can be determined through AI.
134
462458
4255
但這可以通過人工智能來確定。
07:46
And also the prognosis of the patient,
135
466754
2836
還有患者的預後,
07:49
just from the slide,
136
469590
2169
光從幻燈片來看,
07:51
by all of the training.
137
471801
1627
透過所有的訓練。
07:53
Again, this is all just convolutional neural networks,
138
473469
4797
同樣的, 這只是卷積神經網絡,
07:58
not transformer models.
139
478307
1669
而不是變壓器模型。
08:00
So when we go from the deep neural networks to transformer models,
140
480852
5630
所以當我們從深層神經網路到變壓器模型,
08:06
this classic pre-print,
141
486524
2085
這本經典的預印本,
08:08
one of the most cited pre-prints ever,
142
488651
2586
有史以來被引用最多的預印本之一,
08:11
"Attention is All You Need,"
143
491237
1418
“注意力就是你所需要的”
08:12
the ability to now be able to look at many more items,
144
492697
4296
现在 能够查看更多项目,
08:17
whether it be language or images,
145
497035
3837
無論是語言還是圖像,
08:20
and be able to put this in context,
146
500913
2962
並能夠將其放在上下文中,
08:23
setting up a transformational progress in many fields.
147
503916
4588
從而在許多領域取得變革性進展。
08:29
The prototype is, the outgrowth of this is GPT-4.
148
509172
4504
直接地說,這的延伸就是 GPT-4
08:34
With over a trillion connections.
149
514510
2628
擁有超過一兆的連接。
08:37
Our human brain has 100 trillion connections or parameters.
150
517138
4713
我們人的大腦有100兆 連接或參數。
08:42
But one trillion,
151
522185
1167
但是,一兆,
08:43
just think of all the information, knowledge,
152
523352
2128
想一想
08:45
that's packed into those one trillion.
153
525480
1876
就一兆中所包含的信息、知識。
08:47
And interestingly, this is now multimodal with language, with images,
154
527398
4880
有趣的是,现在這是一種多模式, 包括語言、圖像、
08:52
with speech.
155
532320
1376
語音。
08:53
And it involves a massive amount of graphic processing units.
156
533696
3921
而且它涉及大量 的圖形處理單元。
08:58
And it's with self-supervised learning,
157
538076
2293
還有透過自我監督學習,
09:00
which is a big bottleneck in medicine
158
540369
2128
這是醫學上的大瓶頸,
09:02
because we can't get experts to label images.
159
542497
3169
因為我們找不到專家 來標記圖像。
09:05
This can be done with self-supervised learning.
160
545708
2795
這可以透過自我監督學習 來完成。
09:08
So what does this set up in medicine?
161
548961
2837
那麼這在醫學上起到了什麼作用?
09:11
It sets up, for example, keyboard liberation.
162
551839
4421
例如,它设置了 鍵盤解放。
09:16
The one thing that both doctors, clinicians
163
556803
3920
這是 醫師、臨床醫師
09:20
and patients would like to see.
164
560765
2377
和患者都希望看到的一件事。
09:23
Everyone hates being data clerks as clinicians,
165
563851
3921
每個人都討厭把床醫師的身份當數據員,
09:27
and patients would like to see their doctor
166
567814
2836
患者希望
09:30
when they finally have the visit they've waited for a long time.
167
570650
3753
在終於等到他們期待已久的就診時 見到他們的醫生。
09:34
So the ability to change the face-to-face contact
168
574445
4713
因此,改變面對面接觸的型式
09:39
is just one step along the way.
169
579200
2502
只是這條路上的一步。
09:41
By having the liberation from keyboards with synthetic notes
170
581744
5005
通過從鍵盤中解放出來,使用合成音符
09:46
that are driven, derived from the conversation,
171
586791
2753
這些音符是從對話中生成的,
09:49
and then all the downstream normal data clerk functions that are done,
172
589585
4880
然後是通常在非工作時間完成的所有下游
09:54
often off-hours.
173
594507
1668
常規數據員功能。
09:56
Now we're seeing in health systems across the United States
174
596217
3587
現在,我們在美國各地的衛生系統中看到,
09:59
where people, physicians are saving many hours of time
175
599846
3920
人們和醫生都在節省大量時間
10:03
and heading towards ultimately keyboard liberation.
176
603808
3587
最終走向鍵盤解放。
10:08
We recently published, with the group at Moorfields Eye Institute,
177
608396
3587
最近,我們與皮爾斯·基恩
10:12
led by Pearse Keane,
178
612024
1335
領導的莫菲爾德眼科研究所的研究小組一起發布了
10:13
the first foundation model in medicine from the retina.
179
613401
3295
第一個視網膜醫學基礎模型。
10:16
And remember those eight different things that were all done by separate studies?
180
616737
4380
還記得我剛才提到那八件不同的事情 都是通過單獨的研究完成的嗎?
10:21
This was all done with one model.
181
621159
2335
這一切都是用一個模型完成的。
10:23
This is with 1.6 million retinal images
182
623494
3879
也就是说,有160萬張視網膜圖像
10:27
predicting all these different outcome likelihoods.
183
627415
4546
預測了所有這些不同的結果的可能性。
10:32
And this is all open-source,
184
632003
1710
這些都是公開的資源,
10:33
which is of course really important that others can build on these models.
185
633754
4380
當然非常重要的,其他人可以在這些模型上進行構建。
10:38
Now I just want to review a couple of really interesting patients.
186
638134
5547
現在我只想回顧幾個非常有趣的患者。
10:44
Andrew, who is now six years old.
187
644098
3003
安德魯,現年六歲。
10:47
He had three years of relentlessly increasing pain, arrested growth.
188
647810
7007
他三年來一直遭受不斷增加的疼痛,停滯的生長。
10:55
His gait suffered with a dragging of his left foot,
189
655318
2544
他的步態因左腳拖曳而受到影響,
10:57
he had severe headaches.
190
657862
1918
頭痛嚴重。
10:59
He went to 17 doctors over three years.
191
659780
3337
他在三年内去看了17位醫生。
11:03
His mother then entered all his symptoms into ChatGPT.
192
663743
4254
然後,他的母親將所有他的症狀 都輸入到了ChatGPT中。
11:08
It made the diagnosis of occulta spina bifida,
193
668706
4254
它診斷為隱性脊柱裂,
11:12
which meant he had a tethered spinal cord that was missed by all 17 doctors
194
672960
5297
這意味著他患有脊髓系繩, 三年多來
11:18
over three years.
195
678257
1168
所有17位醫生都漏掉了這條脊髓。
11:19
He had surgery to release the cord.
196
679467
2002
他接受了鬆開索帶的手術。
11:21
He's now perfectly healthy.
197
681469
1793
他现在非常健康。
11:24
(Applause)
198
684889
5630
(掌聲)
11:30
This is a patient that was sent to me,
199
690561
2920
這是一位被送到我這裡的病人,
11:33
who was suffering with, she was told, long COVID.
200
693481
4671
她被告知患有長期新冠病毒
11:38
She saw many different physicians, neurologists,
201
698694
3379
她見過許多不同的醫生、神經科醫生,
11:42
and her sister entered all her symptoms after getting nowhere,
202
702073
4546
她的姐姐在別無選擇之後 輸入了所有症狀,
11:46
no treatment for long COVID,
203
706619
1418
沒有治療長期新冠病毒,
11:48
there is no treatment validated,
204
708079
1710
沒有經過驗證的治療方法,
11:49
and her sister put all her symptoms into ChatGPT.
205
709789
4421
姐姐將所有症狀都輸入了ChatGPT。
11:54
It found out it actually was not long COVID,
206
714252
2293
它發現實際上不是長期新冠病毒,
11:56
she had limbic encephalitis, which is treatable.
207
716587
3462
她患有邊緣性腦炎,這是可以治療的。
12:00
She was treated, and now she's doing extremely well.
208
720091
3128
她接受了治療,現在情況非常好。
12:03
But these are not just anecdotes anymore.
209
723594
2753
但這些不再只是軼事了。
12:06
70 very difficult cases
210
726389
3461
將70例非常困難的病例
12:09
that are the clinical pathologic conferences
211
729850
2461
12:12
at the New England Journal of Medicine
212
732353
1877
《新英格蘭醫學雜誌》的臨床病理學會議上,
12:14
were compared to GPT-4,
213
734272
2836
與 GPT-4 進行了比較,
12:17
and the chatbot did as well
214
737149
3295
聊天機器人在做出診斷方面的表現
12:20
or better than the expert master clinicians
215
740486
3295
與大師級的臨床醫師一樣好
12:23
in making the diagnosis.
216
743781
1960
或更好
12:26
So I just want to close with a recent conversation with my fellow.
217
746492
4713
因此,我只想以最近與我的同伴的談話作為結束。
12:31
Medicine is still an apprenticeship,
218
751706
2085
醫學仍然是學徒,
12:33
and Andrew Cho is 30 years old,
219
753833
3837
安德魯·曹 今年30歲
12:37
in his second year of cardiology fellowship.
220
757670
2085
是他以獎學金攻讀心臟病學的第二年。
12:39
We see all patients together in the clinic.
221
759797
2669
我們一起在診所為所有患者看病。
12:42
And at the end of clinic the other day,
222
762967
2252
前幾天在診所結束時,
12:45
I sat down and said to him,
223
765261
1918
我坐下來對他說:
12:47
"Andrew, you are so lucky.
224
767179
2795
安德鲁,你真幸運。
12:50
You're going to be practicing medicine in an era of keyboard liberation.
225
770516
4838
在鍵盤解放的時代,你將從事醫學工作。
12:55
You're going to be connecting with patients
226
775813
2044
你將以幾十年來從未有過的方式與患者
12:57
the way we haven't done for decades."
227
777857
2502
建立聯繫。
13:00
That is the ability to have the note
228
780735
3086
這就是能夠從對話中獲得醫療筆記
13:03
and the work from the conversation
229
783863
2502
和工作成果,
13:06
to derive things like pre-authorization,
230
786407
3795
從而得出諸如預授權、
13:10
billing, prescriptions, future appointments --
231
790202
4755
帳單、處方、未來預約
13:14
all the things that we do,
232
794999
1293
等所有我們所做的事情,
13:16
including nudges to the patient.
233
796334
1584
包括向患者推動。
13:17
For example, did you get your blood pressure checks
234
797918
2461
例如,你有沒有收到血壓檢查,
13:20
and what did they show
235
800421
1168
檢查結果顯示了什麼,
13:21
and all that coming back to you.
236
801630
1544
所有這些都回覆給你。
13:23
But much more than that,
237
803215
1710
但不僅如此,
13:24
to help with making diagnoses.
238
804925
2086
還有助於做出診斷。
13:27
And the gift of time
239
807928
2002
還有時間的禮物,
13:29
that having all the data of a patient
240
809972
2169
那就是在看病人之前,
13:32
that's all teed up before even seeing the patient.
241
812183
2961
就已經準備好了患者的所有數據。
13:35
And all this support changes the future of the patient-doctor relationship,
242
815144
6632
所有這些支持都改變了未來醫生和病人的關係的,
13:41
bringing in the gift of time.
243
821776
2460
引入時間的恩賜。
13:44
So this is really exciting.
244
824612
1710
所以這真的很令人興奮。
13:46
I said to Andrew, everything has to be validated, of course,
245
826364
4295
我對安德魯說,當然,一切都必須得到驗證,
13:50
that the benefit greatly outweighs any risk.
246
830701
3796
確保收益遠大於任何風險。
13:54
But it is really a remarkable time for the future of health care,
247
834538
4505
但是對於醫療保健的未來來说, 這確實是一個非凡的時刻,
13:59
it's so damn exciting.
248
839085
2544
真的令人興奮。
14:01
Thank you.
249
841962
1168
謝謝。
14:03
(Applause)
250
843172
2753
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog