What happens when our computers get smarter than we are? | Nick Bostrom

2,720,475 views ・ 2015-04-27

TED


请双击下面的英文字幕来播放视频。

翻译人员: Huazhe Xie 校对人员: Geoff Chen
00:12
I work with a bunch of mathematicians, philosophers and computer scientists,
0
12570
4207
我和一些数学家、 哲学家和电脑学家一起工作,
00:16
and we sit around and think about the future of machine intelligence,
1
16777
5209
我们会坐在一起思考未来的机械智能,
00:21
among other things.
2
21986
2044
和其他的一些事情。
00:24
Some people think that some of these things are sort of science fiction-y,
3
24030
4725
有的人认为这类事情只是科幻,
00:28
far out there, crazy.
4
28755
3101
不切实际,很疯狂。
00:31
But I like to say,
5
31856
1470
但是我想说,
00:33
okay, let's look at the modern human condition.
6
33326
3604
好吧,那我们来看看人类现状吧。
00:36
(Laughter)
7
36930
1692
(笑)
00:38
This is the normal way for things to be.
8
38622
2402
这是世间一种常态。
00:41
But if we think about it,
9
41024
2285
但是如果我们去思考,
00:43
we are actually recently arrived guests on this planet,
10
43309
3293
我们人类,其实相当晚才
00:46
the human species.
11
46602
2082
出现在这个星球上。
00:48
Think about if Earth was created one year ago,
12
48684
4746
想一想,如果地球是一年前才被创造的,
00:53
the human species, then, would be 10 minutes old.
13
53430
3548
人类,那么,10分钟前才出现。
00:56
The industrial era started two seconds ago.
14
56978
3168
然后工业时代两秒钟前刚刚开始。
01:01
Another way to look at this is to think of world GDP over the last 10,000 years,
15
61276
5225
另一种看待这件事的方式是去 想一下在过去一万年间的世界 GDP 状况。
01:06
I've actually taken the trouble to plot this for you in a graph.
16
66501
3029
我其实真的试着去做了一个统计图。
01:09
It looks like this.
17
69530
1774
就是这样。
01:11
(Laughter)
18
71304
1363
(笑)
01:12
It's a curious shape for a normal condition.
19
72667
2151
这是个令人好奇的形状,正常情况下。
01:14
I sure wouldn't want to sit on it.
20
74818
1698
我确定我不想坐在上面。
01:16
(Laughter)
21
76516
2551
(笑)
01:19
Let's ask ourselves, what is the cause of this current anomaly?
22
79067
4774
让我们扪心自问,到底是什么造成了 如此不寻常的现状?
01:23
Some people would say it's technology.
23
83841
2552
一些人会说,因为科技。
01:26
Now it's true, technology has accumulated through human history,
24
86393
4668
对于现在来说是对的,科技是人类历史 不断积累下来的果实。
01:31
and right now, technology advances extremely rapidly --
25
91061
4652
现在,科技发展十分迅速:
01:35
that is the proximate cause,
26
95713
1565
这是个直接原因,
01:37
that's why we are currently so very productive.
27
97278
2565
这就是为什么我们现在生产效率如此高。
01:40
But I like to think back further to the ultimate cause.
28
100473
3661
但是我想探究更远的在未来的终极原因。
01:45
Look at these two highly distinguished gentlemen:
29
105114
3766
看这两个非常不同的男士:
01:48
We have Kanzi --
30
108880
1600
这是 Kanzi,
01:50
he's mastered 200 lexical tokens, an incredible feat.
31
110480
4643
他已经掌握了 200 个词法标记, 一个难以置信的成就。
01:55
And Ed Witten unleashed the second superstring revolution.
32
115123
3694
Ed Witten 开创了第二个令人惊人的创新。
01:58
If we look under the hood, this is what we find:
33
118817
2324
如果我们去看这些事物的本质, 这是我们的发现:
02:01
basically the same thing.
34
121141
1570
全都是一样的。
02:02
One is a little larger,
35
122711
1813
一个稍微大了一点,
02:04
it maybe also has a few tricks in the exact way it's wired.
36
124524
2758
也许它有一些特殊的技巧。
02:07
These invisible differences cannot be too complicated, however,
37
127282
3812
但是,这些隐形的不同并没有很错综复杂,
02:11
because there have only been 250,000 generations
38
131094
4285
因为在我们和我们的祖先之间
02:15
since our last common ancestor.
39
135379
1732
只有 25 万代人。
02:17
We know that complicated mechanisms take a long time to evolve.
40
137111
3849
我们知道复杂的机制 需要很长的时间来进化得到。
02:22
So a bunch of relatively minor changes
41
142000
2499
所以,一些相对小的变化,
02:24
take us from Kanzi to Witten,
42
144499
3067
让我们从 Kanzi 变成了 Witten,
02:27
from broken-off tree branches to intercontinental ballistic missiles.
43
147566
4543
从捡起掉下的树枝作为武器, 到发射洲际导弹。
02:32
So this then seems pretty obvious that everything we've achieved,
44
152839
3935
因此,至今我们所办到的所有事情,
02:36
and everything we care about,
45
156774
1378
以及我们所关心的事情,
02:38
depends crucially on some relatively minor changes that made the human mind.
46
158152
5228
都取决于人大脑中细小的变化。
02:44
And the corollary, of course, is that any further changes
47
164650
3662
因此得出的结论是:在未来,
02:48
that could significantly change the substrate of thinking
48
168312
3477
任何显著的思考基体的变化,
02:51
could have potentially enormous consequences.
49
171789
3202
都能带来巨大的后果。
02:56
Some of my colleagues think we're on the verge
50
176321
2905
我的一些同事觉得我们即将会发明,
02:59
of something that could cause a profound change in that substrate,
51
179226
3908
足以深深地改变人类思考模式的科技。
03:03
and that is machine superintelligence.
52
183134
3213
就是超级机能智慧。
03:06
Artificial intelligence used to be about putting commands in a box.
53
186347
4739
以前的人工智慧 是把指令输入到一个箱子里。
03:11
You would have human programmers
54
191086
1665
你需要人类程序员,
03:12
that would painstakingly handcraft knowledge items.
55
192751
3135
来努力把知识转变成程序。
03:15
You build up these expert systems,
56
195886
2086
你会建立起一些专业系统,
03:17
and they were kind of useful for some purposes,
57
197972
2324
它们有时候会有帮助,
03:20
but they were very brittle, you couldn't scale them.
58
200296
2681
但是它们很生硬,你不能延展它们的功能。
03:22
Basically, you got out only what you put in.
59
202977
3433
基本上你只能得到你放进去的东西。
03:26
But since then,
60
206410
997
但是自从那时候开始,
03:27
a paradigm shift has taken place in the field of artificial intelligence.
61
207407
3467
人工智能的领域发生了巨大的改变。
03:30
Today, the action is really around machine learning.
62
210874
2770
现在主要的研究方向是机器的学习。
03:34
So rather than handcrafting knowledge representations and features,
63
214394
5387
所以,预期设计出知识的再现,
03:40
we create algorithms that learn, often from raw perceptual data.
64
220511
5554
我们写出具有从原始感官数据学习的程序,
03:46
Basically the same thing that the human infant does.
65
226065
4998
像婴儿一样。
03:51
The result is A.I. that is not limited to one domain --
66
231063
4207
结果就不会局限于某个领域的人工智能:
03:55
the same system can learn to translate between any pairs of languages,
67
235270
4631
同一个系统可以学习两种语言之间的翻译
03:59
or learn to play any computer game on the Atari console.
68
239901
5437
或者学着玩 Atari 的游戏。
04:05
Now of course,
69
245338
1779
当然,现在,
04:07
A.I. is still nowhere near having the same powerful, cross-domain
70
247117
3999
人工智能还未能达到向人类一样,
04:11
ability to learn and plan as a human being has.
71
251116
3219
具有强大的跨领域学习能力。
04:14
The cortex still has some algorithmic tricks
72
254335
2126
人类大脑还具有一些运算技巧,
04:16
that we don't yet know how to match in machines.
73
256461
2355
可是我们不知道如何 将这些技巧用于机器。
04:19
So the question is,
74
259886
1899
所以我们现在需要问:
04:21
how far are we from being able to match those tricks?
75
261785
3500
我们还要多久才可以 让机器复制这种能力?
04:26
A couple of years ago,
76
266245
1083
几年前,
04:27
we did a survey of some of the world's leading A.I. experts,
77
267328
2888
我们对世界顶尖的人工智能专家 做了一次问卷调查,
04:30
to see what they think, and one of the questions we asked was,
78
270216
3224
来收集他们的想法,其中一道题目是:
04:33
"By which year do you think there is a 50 percent probability
79
273440
3353
“到哪一年你觉得人类会有 50% 的可能性
04:36
that we will have achieved human-level machine intelligence?"
80
276793
3482
创造达到人类水平的人工智能?”
04:40
We defined human-level here as the ability to perform
81
280785
4183
我们把这样的人工智能定义为
04:44
almost any job at least as well as an adult human,
82
284968
2871
有能力将任何任务 完成得至少和一名成年人一样好。
04:47
so real human-level, not just within some limited domain.
83
287839
4005
所以是真正的人类级别, 而不是仅限于一些领域。
04:51
And the median answer was 2040 or 2050,
84
291844
3650
而答案的中位数是 2040 到 2050 年,
04:55
depending on precisely which group of experts we asked.
85
295494
2806
取决于这些专家的群体。
04:58
Now, it could happen much, much later, or sooner,
86
298300
4039
当然这个有可能要过很久才能实现, 也有可能提前实现。
05:02
the truth is nobody really knows.
87
302339
1940
没有人知道确切的时间。
05:05
What we do know is that the ultimate limit to information processing
88
305259
4412
我们知道的事, 处理信息的能力的最终点,
05:09
in a machine substrate lies far outside the limits in biological tissue.
89
309671
4871
比任何生物组织要大很多。
05:15
This comes down to physics.
90
315241
2378
这取决与物理原理。
05:17
A biological neuron fires, maybe, at 200 hertz, 200 times a second.
91
317619
4718
一个生物神经元所发出的脉冲频率 大约位于 200 赫兹,每秒 200 次。
05:22
But even a present-day transistor operates at the Gigahertz.
92
322337
3594
但是就算是现在的电晶体 都以千兆赫的频率运行。
05:25
Neurons propagate slowly in axons, 100 meters per second, tops.
93
325931
5297
神经元在轴突中传输的速度较慢, 最多 100 米每秒。
05:31
But in computers, signals can travel at the speed of light.
94
331228
3111
但在电脑里,信号是以光速传播的。
05:35
There are also size limitations,
95
335079
1869
另外还有尺寸的限制,
05:36
like a human brain has to fit inside a cranium,
96
336948
3027
就像人类的大脑只能有颅骨那么大,
05:39
but a computer can be the size of a warehouse or larger.
97
339975
4761
但是一个电脑可以和仓库一样大,甚至更大。
05:44
So the potential for superintelligence lies dormant in matter,
98
344736
5599
因此超级智慧的潜能正潜伏在物质之中,
05:50
much like the power of the atom lay dormant throughout human history,
99
350335
5712
就像原子能潜伏在人类历史中一样,
05:56
patiently waiting there until 1945.
100
356047
4405
直到 1945。
06:00
In this century,
101
360452
1248
在这个世纪里,
06:01
scientists may learn to awaken the power of artificial intelligence.
102
361700
4118
科学家可能能将人工智慧的力量唤醒。
06:05
And I think we might then see an intelligence explosion.
103
365818
4008
那时候我觉得我们会看到智慧大爆发。
06:10
Now most people, when they think about what is smart and what is dumb,
104
370406
3957
大部分的人,当他们想 什么是聪明什么是笨的时候,
06:14
I think have in mind a picture roughly like this.
105
374363
3023
他们脑子里的画面是这样的:
06:17
So at one end we have the village idiot,
106
377386
2598
一边是村子里的傻子,
06:19
and then far over at the other side
107
379984
2483
一边是
06:22
we have Ed Witten, or Albert Einstein, or whoever your favorite guru is.
108
382467
4756
Ed Witten 或 Albert Einstein, 或者其他大师。
06:27
But I think that from the point of view of artificial intelligence,
109
387223
3834
但是我觉得从人工智能的观点来看,
06:31
the true picture is actually probably more like this:
110
391057
3681
真正的画面也许是这样:
06:35
AI starts out at this point here, at zero intelligence,
111
395258
3378
人工智能从这一点开始,零智慧。
06:38
and then, after many, many years of really hard work,
112
398636
3011
然后,在许多许多辛劳工作后,
06:41
maybe eventually we get to mouse-level artificial intelligence,
113
401647
3844
也许最终我们能达到老鼠级别的智慧,
06:45
something that can navigate cluttered environments
114
405491
2430
能在混乱中找到开出一条道路,
06:47
as well as a mouse can.
115
407921
1987
像一只老鼠一样。
06:49
And then, after many, many more years of really hard work, lots of investment,
116
409908
4313
之后,在更多更多年的辛苦研究 和投资之后,
06:54
maybe eventually we get to chimpanzee-level artificial intelligence.
117
414221
4639
也许最终我们能到达黑猩猩级人工智能。
06:58
And then, after even more years of really, really hard work,
118
418860
3210
在后来,更多年的研究之后,
07:02
we get to village idiot artificial intelligence.
119
422070
2913
我们能够达到村里的傻子级别的人工智能。
07:04
And a few moments later, we are beyond Ed Witten.
120
424983
3272
在一段时间之后, 我们能超越 Ed Witten。
07:08
The train doesn't stop at Humanville Station.
121
428255
2970
这列火车不会在“人类站”就停下。
07:11
It's likely, rather, to swoosh right by.
122
431225
3022
它比较可能会呼啸而过。
07:14
Now this has profound implications,
123
434247
1984
现在这个有深远的寓意,
07:16
particularly when it comes to questions of power.
124
436231
3862
尤其是当我们谈到力量权利的时候。
07:20
For example, chimpanzees are strong --
125
440093
1899
比如,黑猩猩很强壮:
07:21
pound for pound, a chimpanzee is about twice as strong as a fit human male.
126
441992
5222
同等的体重,一个黑猩猩是 两个健康男性那么强壮。
07:27
And yet, the fate of Kanzi and his pals depends a lot more
127
447214
4614
然而,Kanzi 和他的朋友们的命运 更多取决于
07:31
on what we humans do than on what the chimpanzees do themselves.
128
451828
4140
我们人类能做到什么, 而不是猩猩能做到什么。
07:37
Once there is superintelligence,
129
457228
2314
当超级智慧出现的时候,
07:39
the fate of humanity may depend on what the superintelligence does.
130
459542
3839
人类的命运也许会取决于 那个超级智慧体要做什么。
07:44
Think about it:
131
464451
1057
想一想:
07:45
Machine intelligence is the last invention that humanity will ever need to make.
132
465508
5044
机器智慧是人类需要创造的最后一个东西。
07:50
Machines will then be better at inventing than we are,
133
470552
2973
机器在那之后会比我们更擅长创造,
07:53
and they'll be doing so on digital timescales.
134
473525
2540
他们也会在数位时间里这样做。
07:56
What this means is basically a telescoping of the future.
135
476065
4901
这个意味着一个被缩短的未来。
08:00
Think of all the crazy technologies that you could have imagined
136
480966
3558
想一下你曾想象过的所有的疯狂的科技,
08:04
maybe humans could have developed in the fullness of time:
137
484524
2798
也许人类可以在适当的时候完成:
08:07
cures for aging, space colonization,
138
487322
3258
终结衰老、宇宙殖民、
08:10
self-replicating nanobots or uploading of minds into computers,
139
490580
3731
自我复制的纳米机器人 和大脑到电脑的传输,
08:14
all kinds of science fiction-y stuff
140
494311
2159
诸如此类的看似仅存在于科幻
08:16
that's nevertheless consistent with the laws of physics.
141
496470
2737
却有同时符合物理法则的元素。
08:19
All of this superintelligence could develop, and possibly quite rapidly.
142
499207
4212
超级智慧有办法开发出这些东西,也许更快。
08:24
Now, a superintelligence with such technological maturity
143
504449
3558
现在,一个拥有如此成熟科技的超级智慧体
08:28
would be extremely powerful,
144
508007
2179
将会是非常强大,
08:30
and at least in some scenarios, it would be able to get what it wants.
145
510186
4546
至少在一些情况下, 它能得到它想要的东西。
08:34
We would then have a future that would be shaped by the preferences of this A.I.
146
514732
5661
我们的未来就将会被 这个超级智慧体的喜好所主宰。
08:41
Now a good question is, what are those preferences?
147
521855
3749
现在的问题就是, 这些喜好是什么呢?
08:46
Here it gets trickier.
148
526244
1769
这很棘手。
08:48
To make any headway with this,
149
528013
1435
要在这个领域取得进步,
08:49
we must first of all avoid anthropomorphizing.
150
529448
3276
我们必须避免将机器智慧人格化。
08:53
And this is ironic because every newspaper article
151
533934
3301
这一点很讽刺, 因为每一个关于人工智能的未来
08:57
about the future of A.I. has a picture of this:
152
537235
3855
的新闻报道,都会有这个图片:
09:02
So I think what we need to do is to conceive of the issue more abstractly,
153
542280
4134
所以我觉得我们必须 用更抽象的方法看待这个问题,
09:06
not in terms of vivid Hollywood scenarios.
154
546414
2790
而不是在好莱坞电影的叙事之下。
09:09
We need to think of intelligence as an optimization process,
155
549204
3617
我们需要把智慧看做是一个优化的过程,
09:12
a process that steers the future into a particular set of configurations.
156
552821
5649
一个能把未来引导至 一个特殊组合结构的过程。
09:18
A superintelligence is a really strong optimization process.
157
558470
3511
一个超级智慧体是一个 非常强大的优化过程。
09:21
It's extremely good at using available means to achieve a state
158
561981
4117
它将会擅长利用资源来
达到自己的目标。
09:26
in which its goal is realized.
159
566098
1909
09:28
This means that there is no necessary connection between
160
568447
2672
这意味着有着高智慧和
09:31
being highly intelligent in this sense,
161
571119
2734
拥有一个对人类来说有用的目标之间
09:33
and having an objective that we humans would find worthwhile or meaningful.
162
573853
4662
并没有必然的联系。
09:39
Suppose we give an A.I. the goal to make humans smile.
163
579321
3794
假设我们给予人工智慧的目的是让人笑,
09:43
When the A.I. is weak, it performs useful or amusing actions
164
583115
2982
当人工智能弱的时候, 它能做出有用或好笑的表演,
09:46
that cause its user to smile.
165
586097
2517
这样它的使用者就会笑了。
09:48
When the A.I. becomes superintelligent,
166
588614
2417
当人工智能变成超级智慧体的时候,
09:51
it realizes that there is a more effective way to achieve this goal:
167
591031
3523
它会意识到有一个更有效的办法 能达到这个效果:
09:54
take control of the world
168
594554
1922
控制世界,
09:56
and stick electrodes into the facial muscles of humans
169
596476
3162
在人类面部肌肉上插入电极
09:59
to cause constant, beaming grins.
170
599638
2941
来让人类不断地笑。
10:02
Another example,
171
602579
1035
另一个例子:
10:03
suppose we give A.I. the goal to solve a difficult mathematical problem.
172
603614
3383
假设我们给予人工智能的目标 是解出很难的数学题,
10:06
When the A.I. becomes superintelligent,
173
606997
1937
当人工智能变成超级智慧体的时候,
10:08
it realizes that the most effective way to get the solution to this problem
174
608934
4171
它意识到有一个更有效的办法来解出问题,
10:13
is by transforming the planet into a giant computer,
175
613105
2930
是把整个地球变成一个巨型电脑,
10:16
so as to increase its thinking capacity.
176
616035
2246
这样它的运算能力就变更强大了。
10:18
And notice that this gives the A.I.s an instrumental reason
177
618281
2764
注意到这个是 给予人工智能一个模式型的理由
10:21
to do things to us that we might not approve of.
178
621045
2516
来做我们也许并不认可的事情。
10:23
Human beings in this model are threats,
179
623561
1935
人类在这个模式中是威胁,
10:25
we could prevent the mathematical problem from being solved.
180
625496
2921
我们可以人为地 让这个数学问题不能被解出。
10:29
Of course, perceivably things won't go wrong in these particular ways;
181
629207
3494
当然了,我们预见 这种事情不会错到这样的地步,
10:32
these are cartoon examples.
182
632701
1753
这些是夸张的例子。
10:34
But the general point here is important:
183
634454
1939
但是它们所代表的主旨很重要:
10:36
if you create a really powerful optimization process
184
636393
2873
如果你创造了一个非常强大的优化过程
10:39
to maximize for objective x,
185
639266
2234
来最大化目标 X,
10:41
you better make sure that your definition of x
186
641500
2276
你最好保证你的意义上的 X
10:43
incorporates everything you care about.
187
643776
2469
包括了所有你在乎的事情。
10:46
This is a lesson that's also taught in many a myth.
188
646835
4384
这是一个很多神话故事中都在传递的寓意。
10:51
King Midas wishes that everything he touches be turned into gold.
189
651219
5298
(希腊神话中)的 Midas 国王 希望他碰到的所有东西都能变成金子。
10:56
He touches his daughter, she turns into gold.
190
656517
2861
他碰到了他的女儿,她于是变成了金子。
10:59
He touches his food, it turns into gold.
191
659378
2553
他碰到了食物,于是食物变成了金子。
11:01
This could become practically relevant,
192
661931
2589
这个故事和我们的话题息息相关,
11:04
not just as a metaphor for greed,
193
664520
2070
并不只是因为它隐藏在对贪婪的暗喻,
11:06
but as an illustration of what happens
194
666590
1895
也是因为他指出了
11:08
if you create a powerful optimization process
195
668485
2837
如果你创造出来一个强大的优化过程
11:11
and give it misconceived or poorly specified goals.
196
671322
4789
并且给他了一个错误的或者不精确的目标, 后果会是什么。
11:16
Now you might say, if a computer starts sticking electrodes into people's faces,
197
676111
5189
现在也许你会说, 如果一个电脑开始在人类脸上插电极,
11:21
we'd just shut it off.
198
681300
2265
我们会关掉它。
11:24
A, this is not necessarily so easy to do if we've grown dependent on the system --
199
684555
5340
第一,这不是一件容易事, 如果我们变得非常依赖这个系统:
11:29
like, where is the off switch to the Internet?
200
689895
2732
比如,你知道互联网的开关在哪吗?
11:32
B, why haven't the chimpanzees flicked the off switch to humanity,
201
692627
5120
第二,为什么当初黑猩猩 没有关掉人类的开关,
11:37
or the Neanderthals?
202
697747
1551
或者尼安德特人的开关?
11:39
They certainly had reasons.
203
699298
2666
他们肯定有理由。
11:41
We have an off switch, for example, right here.
204
701964
2795
我们有一个开关,比如,这里。
11:44
(Choking)
205
704759
1554
(窒息声)
11:46
The reason is that we are an intelligent adversary;
206
706313
2925
之所以我们是聪明的敌人,
11:49
we can anticipate threats and plan around them.
207
709238
2728
因为我们可以预见到威胁并且尝试避免它。
11:51
But so could a superintelligent agent,
208
711966
2504
但是一个超级智慧体也可以,
11:54
and it would be much better at that than we are.
209
714470
3254
而且会做得更好。
11:57
The point is, we should not be confident that we have this under control here.
210
717724
7187
我们不应该很自信地 表示我们能控制所有事情。
12:04
And we could try to make our job a little bit easier by, say,
211
724911
3447
为了把我们的工作变得更简单一点, 我们应该试着,比如,
12:08
putting the A.I. in a box,
212
728358
1590
把人工智能放进一个小盒子,
12:09
like a secure software environment,
213
729948
1796
想一个保险的软件环境,
12:11
a virtual reality simulation from which it cannot escape.
214
731744
3022
一个它无法逃脱的虚拟现实模拟器。
12:14
But how confident can we be that the A.I. couldn't find a bug.
215
734766
4146
但是我们有信心它不可能能发现一个漏洞, 能让它逃出的漏洞吗?
12:18
Given that merely human hackers find bugs all the time,
216
738912
3169
连人类黑客每时每刻都能发现网络漏洞,
12:22
I'd say, probably not very confident.
217
742081
3036
我会说,也许不是很有信心。
12:26
So we disconnect the ethernet cable to create an air gap,
218
746237
4548
所以我们断开以太网的链接来创建一个空隙,
12:30
but again, like merely human hackers
219
750785
2668
但是,重申一遍,人类黑客都可以
12:33
routinely transgress air gaps using social engineering.
220
753453
3381
一次又一次以社会工程跨越这样的空隙。
12:36
Right now, as I speak,
221
756834
1259
现在,在我说话的时候,
12:38
I'm sure there is some employee out there somewhere
222
758093
2389
我肯定在这边的某个雇员,
12:40
who has been talked into handing out her account details
223
760482
3346
曾近被要求交出他的账户明细,
12:43
by somebody claiming to be from the I.T. department.
224
763828
2746
给一个自称是电脑信息部门的人。
12:46
More creative scenarios are also possible,
225
766574
2127
其他的情况也有可能,
12:48
like if you're the A.I.,
226
768701
1315
比如如果你是人工智能,
12:50
you can imagine wiggling electrodes around in your internal circuitry
227
770016
3532
你可以想象你用在你的体内 环绕复杂缠绕的电极
12:53
to create radio waves that you can use to communicate.
228
773548
3462
创造出一种无线电波来交流。
12:57
Or maybe you could pretend to malfunction,
229
777010
2424
或者也许你可以假装你出了问题,
12:59
and then when the programmers open you up to see what went wrong with you,
230
779434
3497
然后程序师就把你打开看看哪里出错了,
13:02
they look at the source code -- Bam! --
231
782931
1936
他们找出了源代码——Bang!——
13:04
the manipulation can take place.
232
784867
2447
你就可以取得控制权了。
13:07
Or it could output the blueprint to a really nifty technology,
233
787314
3430
或者它可以做出一个 非常漂亮的科技蓝图,
13:10
and when we implement it,
234
790744
1398
当我们实现之后,
13:12
it has some surreptitious side effect that the A.I. had planned.
235
792142
4397
它有一些被人工智能计划好的 秘密的副作用。
13:16
The point here is that we should not be confident in our ability
236
796539
3463
所以我们不能 对我们能够永远控制
13:20
to keep a superintelligent genie locked up in its bottle forever.
237
800002
3808
一个超级智能体的能力 表示过度自信。
13:23
Sooner or later, it will out.
238
803810
2254
在不久后,它会逃脱出来。
13:27
I believe that the answer here is to figure out
239
807034
3103
我相信我们需要弄明白
13:30
how to create superintelligent A.I. such that even if -- when -- it escapes,
240
810137
5024
如何创造出超级人工智能体,哪怕它逃走了,
13:35
it is still safe because it is fundamentally on our side
241
815161
3277
它仍然是无害的,因为它是我们这一边的,
13:38
because it shares our values.
242
818438
1899
因为它有我们的价值观。
13:40
I see no way around this difficult problem.
243
820337
3210
我认为这是个不可避免的问题。
13:44
Now, I'm actually fairly optimistic that this problem can be solved.
244
824557
3834
现在,我对这个问题能否被解决保持乐观。
13:48
We wouldn't have to write down a long list of everything we care about,
245
828391
3903
我们不需要写下 所有我们在乎的事情,
13:52
or worse yet, spell it out in some computer language
246
832294
3643
或者,更糟地,把这些事情变成计算机语言,
13:55
like C++ or Python,
247
835937
1454
C++ 或者 Python,
13:57
that would be a task beyond hopeless.
248
837391
2767
这是个不可能的任务。
14:00
Instead, we would create an A.I. that uses its intelligence
249
840158
4297
而是,我们会创造出一个人工智能机器人, 用它自己的智慧
14:04
to learn what we value,
250
844455
2771
来学习我们的价值观,
14:07
and its motivation system is constructed in such a way that it is motivated
251
847226
5280
它的激励制度可以激励它
14:12
to pursue our values or to perform actions that it predicts we would approve of.
252
852506
5232
来追求我们的价值观 或者去做我们会赞成的事情。
14:17
We would thus leverage its intelligence as much as possible
253
857738
3414
我们会因此最大地提高它的智力,
14:21
to solve the problem of value-loading.
254
861152
2745
来解决富有价值的问题。
14:24
This can happen,
255
864727
1512
这是有可能的,
14:26
and the outcome could be very good for humanity.
256
866239
3596
结果可以使人类非常受益。
14:29
But it doesn't happen automatically.
257
869835
3957
但它不是自动发生的。
14:33
The initial conditions for the intelligence explosion
258
873792
2998
智慧大爆炸的初始条件
14:36
might need to be set up in just the right way
259
876790
2863
需要被正确地建立起来,
14:39
if we are to have a controlled detonation.
260
879653
3530
如果我们想要一切在掌握之中。
14:43
The values that the A.I. has need to match ours,
261
883183
2618
人工智能的价值观 要和我们的价值观相辅相成,
14:45
not just in the familiar context,
262
885801
1760
不只是在熟悉的情况下,
14:47
like where we can easily check how the A.I. behaves,
263
887561
2438
比如当我们能很容易检查它的行为的时候,
14:49
but also in all novel contexts that the A.I. might encounter
264
889999
3234
但也要在所有人工智能可能会遇到的 前所未有的情况下,
14:53
in the indefinite future.
265
893233
1557
在没有界限的未来, 与我们的价值观相辅相成。
14:54
And there are also some esoteric issues that would need to be solved, sorted out:
266
894790
4737
也有很多深奥的问题需要被分拣解决:
14:59
the exact details of its decision theory,
267
899527
2089
它如何做决定,
15:01
how to deal with logical uncertainty and so forth.
268
901616
2864
如何解决逻辑不确定性和类似的情况。
15:05
So the technical problems that need to be solved to make this work
269
905330
3102
所以技术上的待解决问题让这个任务
15:08
look quite difficult --
270
908432
1113
看起来有些困难:
15:09
not as difficult as making a superintelligent A.I.,
271
909545
3380
并没有像做出一个超级智慧体一样困难,
15:12
but fairly difficult.
272
912925
2868
但是还是很难。
15:15
Here is the worry:
273
915793
1695
这使我们所担心的:
15:17
Making superintelligent A.I. is a really hard challenge.
274
917488
4684
创造出一个超级智慧体确实是个很大的挑战。
15:22
Making superintelligent A.I. that is safe
275
922172
2548
创造出一个安全的超级智慧体,
15:24
involves some additional challenge on top of that.
276
924720
2416
是个更大的挑战。
15:28
The risk is that if somebody figures out how to crack the first challenge
277
928216
3487
风险是,如果有人有办法解决第一个难题,
15:31
without also having cracked the additional challenge
278
931703
3001
却无法解决第二个
15:34
of ensuring perfect safety.
279
934704
1901
确保安全性的挑战。
15:37
So I think that we should work out a solution
280
937375
3331
所以我认为我们应该预先想出
15:40
to the control problem in advance,
281
940706
2822
“控制性”的解决方法,
15:43
so that we have it available by the time it is needed.
282
943528
2660
这样我们就能在需要的时候用到它了。
15:46
Now it might be that we cannot solve the entire control problem in advance
283
946768
3507
现在也许我们并不能 预先解决全部的控制性问题,
15:50
because maybe some elements can only be put in place
284
950275
3024
因为有些因素需要你了解
15:53
once you know the details of the architecture where it will be implemented.
285
953299
3997
你要应用到的那个构架的细节才能实施。
15:57
But the more of the control problem that we solve in advance,
286
957296
3380
但如果我们能解决更多控制性的难题,
16:00
the better the odds that the transition to the machine intelligence era
287
960676
4090
当我们迈入机器智能时代后
16:04
will go well.
288
964766
1540
就能更加顺利。
16:06
This to me looks like a thing that is well worth doing
289
966306
4644
这对于我来说是个值得一试的东西,
16:10
and I can imagine that if things turn out okay,
290
970950
3332
而且我能想象,如果一切顺利,
16:14
that people a million years from now look back at this century
291
974282
4658
几百万年后的人类回首我们这个世纪,
16:18
and it might well be that they say that the one thing we did that really mattered
292
978940
4002
他们也许会说, 我们所做的最最重要的事情,
16:22
was to get this thing right.
293
982942
1567
就是做了这个正确的决定。
16:24
Thank you.
294
984509
1689
谢谢。
16:26
(Applause)
295
986198
2813
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog