What happens when our computers get smarter than we are? | Nick Bostrom

2,699,631 views ・ 2015-04-27

TED


请双击下面的英文字幕来播放视频。

翻译人员: Huazhe Xie 校对人员: Geoff Chen
00:12
I work with a bunch of mathematicians, philosophers and computer scientists,
0
12570
4207
我和一些数学家、 哲学家和电脑学家一起工作,
00:16
and we sit around and think about the future of machine intelligence,
1
16777
5209
我们会坐在一起思考未来的机械智能,
00:21
among other things.
2
21986
2044
和其他的一些事情。
00:24
Some people think that some of these things are sort of science fiction-y,
3
24030
4725
有的人认为这类事情只是科幻,
00:28
far out there, crazy.
4
28755
3101
不切实际,很疯狂。
00:31
But I like to say,
5
31856
1470
但是我想说,
00:33
okay, let's look at the modern human condition.
6
33326
3604
好吧,那我们来看看人类现状吧。
00:36
(Laughter)
7
36930
1692
(笑)
00:38
This is the normal way for things to be.
8
38622
2402
这是世间一种常态。
00:41
But if we think about it,
9
41024
2285
但是如果我们去思考,
00:43
we are actually recently arrived guests on this planet,
10
43309
3293
我们人类,其实相当晚才
00:46
the human species.
11
46602
2082
出现在这个星球上。
00:48
Think about if Earth was created one year ago,
12
48684
4746
想一想,如果地球是一年前才被创造的,
00:53
the human species, then, would be 10 minutes old.
13
53430
3548
人类,那么,10分钟前才出现。
00:56
The industrial era started two seconds ago.
14
56978
3168
然后工业时代两秒钟前刚刚开始。
01:01
Another way to look at this is to think of world GDP over the last 10,000 years,
15
61276
5225
另一种看待这件事的方式是去 想一下在过去一万年间的世界 GDP 状况。
01:06
I've actually taken the trouble to plot this for you in a graph.
16
66501
3029
我其实真的试着去做了一个统计图。
01:09
It looks like this.
17
69530
1774
就是这样。
01:11
(Laughter)
18
71304
1363
(笑)
01:12
It's a curious shape for a normal condition.
19
72667
2151
这是个令人好奇的形状,正常情况下。
01:14
I sure wouldn't want to sit on it.
20
74818
1698
我确定我不想坐在上面。
01:16
(Laughter)
21
76516
2551
(笑)
01:19
Let's ask ourselves, what is the cause of this current anomaly?
22
79067
4774
让我们扪心自问,到底是什么造成了 如此不寻常的现状?
01:23
Some people would say it's technology.
23
83841
2552
一些人会说,因为科技。
01:26
Now it's true, technology has accumulated through human history,
24
86393
4668
对于现在来说是对的,科技是人类历史 不断积累下来的果实。
01:31
and right now, technology advances extremely rapidly --
25
91061
4652
现在,科技发展十分迅速:
01:35
that is the proximate cause,
26
95713
1565
这是个直接原因,
01:37
that's why we are currently so very productive.
27
97278
2565
这就是为什么我们现在生产效率如此高。
01:40
But I like to think back further to the ultimate cause.
28
100473
3661
但是我想探究更远的在未来的终极原因。
01:45
Look at these two highly distinguished gentlemen:
29
105114
3766
看这两个非常不同的男士:
01:48
We have Kanzi --
30
108880
1600
这是 Kanzi,
01:50
he's mastered 200 lexical tokens, an incredible feat.
31
110480
4643
他已经掌握了 200 个词法标记, 一个难以置信的成就。
01:55
And Ed Witten unleashed the second superstring revolution.
32
115123
3694
Ed Witten 开创了第二个令人惊人的创新。
01:58
If we look under the hood, this is what we find:
33
118817
2324
如果我们去看这些事物的本质, 这是我们的发现:
02:01
basically the same thing.
34
121141
1570
全都是一样的。
02:02
One is a little larger,
35
122711
1813
一个稍微大了一点,
02:04
it maybe also has a few tricks in the exact way it's wired.
36
124524
2758
也许它有一些特殊的技巧。
02:07
These invisible differences cannot be too complicated, however,
37
127282
3812
但是,这些隐形的不同并没有很错综复杂,
02:11
because there have only been 250,000 generations
38
131094
4285
因为在我们和我们的祖先之间
02:15
since our last common ancestor.
39
135379
1732
只有 25 万代人。
02:17
We know that complicated mechanisms take a long time to evolve.
40
137111
3849
我们知道复杂的机制 需要很长的时间来进化得到。
02:22
So a bunch of relatively minor changes
41
142000
2499
所以,一些相对小的变化,
02:24
take us from Kanzi to Witten,
42
144499
3067
让我们从 Kanzi 变成了 Witten,
02:27
from broken-off tree branches to intercontinental ballistic missiles.
43
147566
4543
从捡起掉下的树枝作为武器, 到发射洲际导弹。
02:32
So this then seems pretty obvious that everything we've achieved,
44
152839
3935
因此,至今我们所办到的所有事情,
02:36
and everything we care about,
45
156774
1378
以及我们所关心的事情,
02:38
depends crucially on some relatively minor changes that made the human mind.
46
158152
5228
都取决于人大脑中细小的变化。
02:44
And the corollary, of course, is that any further changes
47
164650
3662
因此得出的结论是:在未来,
02:48
that could significantly change the substrate of thinking
48
168312
3477
任何显著的思考基体的变化,
02:51
could have potentially enormous consequences.
49
171789
3202
都能带来巨大的后果。
02:56
Some of my colleagues think we're on the verge
50
176321
2905
我的一些同事觉得我们即将会发明,
02:59
of something that could cause a profound change in that substrate,
51
179226
3908
足以深深地改变人类思考模式的科技。
03:03
and that is machine superintelligence.
52
183134
3213
就是超级机能智慧。
03:06
Artificial intelligence used to be about putting commands in a box.
53
186347
4739
以前的人工智慧 是把指令输入到一个箱子里。
03:11
You would have human programmers
54
191086
1665
你需要人类程序员,
03:12
that would painstakingly handcraft knowledge items.
55
192751
3135
来努力把知识转变成程序。
03:15
You build up these expert systems,
56
195886
2086
你会建立起一些专业系统,
03:17
and they were kind of useful for some purposes,
57
197972
2324
它们有时候会有帮助,
03:20
but they were very brittle, you couldn't scale them.
58
200296
2681
但是它们很生硬,你不能延展它们的功能。
03:22
Basically, you got out only what you put in.
59
202977
3433
基本上你只能得到你放进去的东西。
03:26
But since then,
60
206410
997
但是自从那时候开始,
03:27
a paradigm shift has taken place in the field of artificial intelligence.
61
207407
3467
人工智能的领域发生了巨大的改变。
03:30
Today, the action is really around machine learning.
62
210874
2770
现在主要的研究方向是机器的学习。
03:34
So rather than handcrafting knowledge representations and features,
63
214394
5387
所以,预期设计出知识的再现,
03:40
we create algorithms that learn, often from raw perceptual data.
64
220511
5554
我们写出具有从原始感官数据学习的程序,
03:46
Basically the same thing that the human infant does.
65
226065
4998
像婴儿一样。
03:51
The result is A.I. that is not limited to one domain --
66
231063
4207
结果就不会局限于某个领域的人工智能:
03:55
the same system can learn to translate between any pairs of languages,
67
235270
4631
同一个系统可以学习两种语言之间的翻译
03:59
or learn to play any computer game on the Atari console.
68
239901
5437
或者学着玩 Atari 的游戏。
04:05
Now of course,
69
245338
1779
当然,现在,
04:07
A.I. is still nowhere near having the same powerful, cross-domain
70
247117
3999
人工智能还未能达到向人类一样,
04:11
ability to learn and plan as a human being has.
71
251116
3219
具有强大的跨领域学习能力。
04:14
The cortex still has some algorithmic tricks
72
254335
2126
人类大脑还具有一些运算技巧,
04:16
that we don't yet know how to match in machines.
73
256461
2355
可是我们不知道如何 将这些技巧用于机器。
04:19
So the question is,
74
259886
1899
所以我们现在需要问:
04:21
how far are we from being able to match those tricks?
75
261785
3500
我们还要多久才可以 让机器复制这种能力?
04:26
A couple of years ago,
76
266245
1083
几年前,
04:27
we did a survey of some of the world's leading A.I. experts,
77
267328
2888
我们对世界顶尖的人工智能专家 做了一次问卷调查,
04:30
to see what they think, and one of the questions we asked was,
78
270216
3224
来收集他们的想法,其中一道题目是:
04:33
"By which year do you think there is a 50 percent probability
79
273440
3353
“到哪一年你觉得人类会有 50% 的可能性
04:36
that we will have achieved human-level machine intelligence?"
80
276793
3482
创造达到人类水平的人工智能?”
04:40
We defined human-level here as the ability to perform
81
280785
4183
我们把这样的人工智能定义为
04:44
almost any job at least as well as an adult human,
82
284968
2871
有能力将任何任务 完成得至少和一名成年人一样好。
04:47
so real human-level, not just within some limited domain.
83
287839
4005
所以是真正的人类级别, 而不是仅限于一些领域。
04:51
And the median answer was 2040 or 2050,
84
291844
3650
而答案的中位数是 2040 到 2050 年,
04:55
depending on precisely which group of experts we asked.
85
295494
2806
取决于这些专家的群体。
04:58
Now, it could happen much, much later, or sooner,
86
298300
4039
当然这个有可能要过很久才能实现, 也有可能提前实现。
05:02
the truth is nobody really knows.
87
302339
1940
没有人知道确切的时间。
05:05
What we do know is that the ultimate limit to information processing
88
305259
4412
我们知道的事, 处理信息的能力的最终点,
05:09
in a machine substrate lies far outside the limits in biological tissue.
89
309671
4871
比任何生物组织要大很多。
05:15
This comes down to physics.
90
315241
2378
这取决与物理原理。
05:17
A biological neuron fires, maybe, at 200 hertz, 200 times a second.
91
317619
4718
一个生物神经元所发出的脉冲频率 大约位于 200 赫兹,每秒 200 次。
05:22
But even a present-day transistor operates at the Gigahertz.
92
322337
3594
但是就算是现在的电晶体 都以千兆赫的频率运行。
05:25
Neurons propagate slowly in axons, 100 meters per second, tops.
93
325931
5297
神经元在轴突中传输的速度较慢, 最多 100 米每秒。
05:31
But in computers, signals can travel at the speed of light.
94
331228
3111
但在电脑里,信号是以光速传播的。
05:35
There are also size limitations,
95
335079
1869
另外还有尺寸的限制,
05:36
like a human brain has to fit inside a cranium,
96
336948
3027
就像人类的大脑只能有颅骨那么大,
05:39
but a computer can be the size of a warehouse or larger.
97
339975
4761
但是一个电脑可以和仓库一样大,甚至更大。
05:44
So the potential for superintelligence lies dormant in matter,
98
344736
5599
因此超级智慧的潜能正潜伏在物质之中,
05:50
much like the power of the atom lay dormant throughout human history,
99
350335
5712
就像原子能潜伏在人类历史中一样,
05:56
patiently waiting there until 1945.
100
356047
4405
直到 1945。
06:00
In this century,
101
360452
1248
在这个世纪里,
06:01
scientists may learn to awaken the power of artificial intelligence.
102
361700
4118
科学家可能能将人工智慧的力量唤醒。
06:05
And I think we might then see an intelligence explosion.
103
365818
4008
那时候我觉得我们会看到智慧大爆发。
06:10
Now most people, when they think about what is smart and what is dumb,
104
370406
3957
大部分的人,当他们想 什么是聪明什么是笨的时候,
06:14
I think have in mind a picture roughly like this.
105
374363
3023
他们脑子里的画面是这样的:
06:17
So at one end we have the village idiot,
106
377386
2598
一边是村子里的傻子,
06:19
and then far over at the other side
107
379984
2483
一边是
06:22
we have Ed Witten, or Albert Einstein, or whoever your favorite guru is.
108
382467
4756
Ed Witten 或 Albert Einstein, 或者其他大师。
06:27
But I think that from the point of view of artificial intelligence,
109
387223
3834
但是我觉得从人工智能的观点来看,
06:31
the true picture is actually probably more like this:
110
391057
3681
真正的画面也许是这样:
06:35
AI starts out at this point here, at zero intelligence,
111
395258
3378
人工智能从这一点开始,零智慧。
06:38
and then, after many, many years of really hard work,
112
398636
3011
然后,在许多许多辛劳工作后,
06:41
maybe eventually we get to mouse-level artificial intelligence,
113
401647
3844
也许最终我们能达到老鼠级别的智慧,
06:45
something that can navigate cluttered environments
114
405491
2430
能在混乱中找到开出一条道路,
06:47
as well as a mouse can.
115
407921
1987
像一只老鼠一样。
06:49
And then, after many, many more years of really hard work, lots of investment,
116
409908
4313
之后,在更多更多年的辛苦研究 和投资之后,
06:54
maybe eventually we get to chimpanzee-level artificial intelligence.
117
414221
4639
也许最终我们能到达黑猩猩级人工智能。
06:58
And then, after even more years of really, really hard work,
118
418860
3210
在后来,更多年的研究之后,
07:02
we get to village idiot artificial intelligence.
119
422070
2913
我们能够达到村里的傻子级别的人工智能。
07:04
And a few moments later, we are beyond Ed Witten.
120
424983
3272
在一段时间之后, 我们能超越 Ed Witten。
07:08
The train doesn't stop at Humanville Station.
121
428255
2970
这列火车不会在“人类站”就停下。
07:11
It's likely, rather, to swoosh right by.
122
431225
3022
它比较可能会呼啸而过。
07:14
Now this has profound implications,
123
434247
1984
现在这个有深远的寓意,
07:16
particularly when it comes to questions of power.
124
436231
3862
尤其是当我们谈到力量权利的时候。
07:20
For example, chimpanzees are strong --
125
440093
1899
比如,黑猩猩很强壮:
07:21
pound for pound, a chimpanzee is about twice as strong as a fit human male.
126
441992
5222
同等的体重,一个黑猩猩是 两个健康男性那么强壮。
07:27
And yet, the fate of Kanzi and his pals depends a lot more
127
447214
4614
然而,Kanzi 和他的朋友们的命运 更多取决于
07:31
on what we humans do than on what the chimpanzees do themselves.
128
451828
4140
我们人类能做到什么, 而不是猩猩能做到什么。
07:37
Once there is superintelligence,
129
457228
2314
当超级智慧出现的时候,
07:39
the fate of humanity may depend on what the superintelligence does.
130
459542
3839
人类的命运也许会取决于 那个超级智慧体要做什么。
07:44
Think about it:
131
464451
1057
想一想:
07:45
Machine intelligence is the last invention that humanity will ever need to make.
132
465508
5044
机器智慧是人类需要创造的最后一个东西。
07:50
Machines will then be better at inventing than we are,
133
470552
2973
机器在那之后会比我们更擅长创造,
07:53
and they'll be doing so on digital timescales.
134
473525
2540
他们也会在数位时间里这样做。
07:56
What this means is basically a telescoping of the future.
135
476065
4901
这个意味着一个被缩短的未来。
08:00
Think of all the crazy technologies that you could have imagined
136
480966
3558
想一下你曾想象过的所有的疯狂的科技,
08:04
maybe humans could have developed in the fullness of time:
137
484524
2798
也许人类可以在适当的时候完成:
08:07
cures for aging, space colonization,
138
487322
3258
终结衰老、宇宙殖民、
08:10
self-replicating nanobots or uploading of minds into computers,
139
490580
3731
自我复制的纳米机器人 和大脑到电脑的传输,
08:14
all kinds of science fiction-y stuff
140
494311
2159
诸如此类的看似仅存在于科幻
08:16
that's nevertheless consistent with the laws of physics.
141
496470
2737
却有同时符合物理法则的元素。
08:19
All of this superintelligence could develop, and possibly quite rapidly.
142
499207
4212
超级智慧有办法开发出这些东西,也许更快。
08:24
Now, a superintelligence with such technological maturity
143
504449
3558
现在,一个拥有如此成熟科技的超级智慧体
08:28
would be extremely powerful,
144
508007
2179
将会是非常强大,
08:30
and at least in some scenarios, it would be able to get what it wants.
145
510186
4546
至少在一些情况下, 它能得到它想要的东西。
08:34
We would then have a future that would be shaped by the preferences of this A.I.
146
514732
5661
我们的未来就将会被 这个超级智慧体的喜好所主宰。
08:41
Now a good question is, what are those preferences?
147
521855
3749
现在的问题就是, 这些喜好是什么呢?
08:46
Here it gets trickier.
148
526244
1769
这很棘手。
08:48
To make any headway with this,
149
528013
1435
要在这个领域取得进步,
08:49
we must first of all avoid anthropomorphizing.
150
529448
3276
我们必须避免将机器智慧人格化。
08:53
And this is ironic because every newspaper article
151
533934
3301
这一点很讽刺, 因为每一个关于人工智能的未来
08:57
about the future of A.I. has a picture of this:
152
537235
3855
的新闻报道,都会有这个图片:
09:02
So I think what we need to do is to conceive of the issue more abstractly,
153
542280
4134
所以我觉得我们必须 用更抽象的方法看待这个问题,
09:06
not in terms of vivid Hollywood scenarios.
154
546414
2790
而不是在好莱坞电影的叙事之下。
09:09
We need to think of intelligence as an optimization process,
155
549204
3617
我们需要把智慧看做是一个优化的过程,
09:12
a process that steers the future into a particular set of configurations.
156
552821
5649
一个能把未来引导至 一个特殊组合结构的过程。
09:18
A superintelligence is a really strong optimization process.
157
558470
3511
一个超级智慧体是一个 非常强大的优化过程。
09:21
It's extremely good at using available means to achieve a state
158
561981
4117
它将会擅长利用资源来
达到自己的目标。
09:26
in which its goal is realized.
159
566098
1909
09:28
This means that there is no necessary connection between
160
568447
2672
这意味着有着高智慧和
09:31
being highly intelligent in this sense,
161
571119
2734
拥有一个对人类来说有用的目标之间
09:33
and having an objective that we humans would find worthwhile or meaningful.
162
573853
4662
并没有必然的联系。
09:39
Suppose we give an A.I. the goal to make humans smile.
163
579321
3794
假设我们给予人工智慧的目的是让人笑,
09:43
When the A.I. is weak, it performs useful or amusing actions
164
583115
2982
当人工智能弱的时候, 它能做出有用或好笑的表演,
09:46
that cause its user to smile.
165
586097
2517
这样它的使用者就会笑了。
09:48
When the A.I. becomes superintelligent,
166
588614
2417
当人工智能变成超级智慧体的时候,
09:51
it realizes that there is a more effective way to achieve this goal:
167
591031
3523
它会意识到有一个更有效的办法 能达到这个效果:
09:54
take control of the world
168
594554
1922
控制世界,
09:56
and stick electrodes into the facial muscles of humans
169
596476
3162
在人类面部肌肉上插入电极
09:59
to cause constant, beaming grins.
170
599638
2941
来让人类不断地笑。
10:02
Another example,
171
602579
1035
另一个例子:
10:03
suppose we give A.I. the goal to solve a difficult mathematical problem.
172
603614
3383
假设我们给予人工智能的目标 是解出很难的数学题,
10:06
When the A.I. becomes superintelligent,
173
606997
1937
当人工智能变成超级智慧体的时候,
10:08
it realizes that the most effective way to get the solution to this problem
174
608934
4171
它意识到有一个更有效的办法来解出问题,
10:13
is by transforming the planet into a giant computer,
175
613105
2930
是把整个地球变成一个巨型电脑,
10:16
so as to increase its thinking capacity.
176
616035
2246
这样它的运算能力就变更强大了。
10:18
And notice that this gives the A.I.s an instrumental reason
177
618281
2764
注意到这个是 给予人工智能一个模式型的理由
10:21
to do things to us that we might not approve of.
178
621045
2516
来做我们也许并不认可的事情。
10:23
Human beings in this model are threats,
179
623561
1935
人类在这个模式中是威胁,
10:25
we could prevent the mathematical problem from being solved.
180
625496
2921
我们可以人为地 让这个数学问题不能被解出。
10:29
Of course, perceivably things won't go wrong in these particular ways;
181
629207
3494
当然了,我们预见 这种事情不会错到这样的地步,
10:32
these are cartoon examples.
182
632701
1753
这些是夸张的例子。
10:34
But the general point here is important:
183
634454
1939
但是它们所代表的主旨很重要:
10:36
if you create a really powerful optimization process
184
636393
2873
如果你创造了一个非常强大的优化过程
10:39
to maximize for objective x,
185
639266
2234
来最大化目标 X,
10:41
you better make sure that your definition of x
186
641500
2276
你最好保证你的意义上的 X
10:43
incorporates everything you care about.
187
643776
2469
包括了所有你在乎的事情。
10:46
This is a lesson that's also taught in many a myth.
188
646835
4384
这是一个很多神话故事中都在传递的寓意。
10:51
King Midas wishes that everything he touches be turned into gold.
189
651219
5298
(希腊神话中)的 Midas 国王 希望他碰到的所有东西都能变成金子。
10:56
He touches his daughter, she turns into gold.
190
656517
2861
他碰到了他的女儿,她于是变成了金子。
10:59
He touches his food, it turns into gold.
191
659378
2553
他碰到了食物,于是食物变成了金子。
11:01
This could become practically relevant,
192
661931
2589
这个故事和我们的话题息息相关,
11:04
not just as a metaphor for greed,
193
664520
2070
并不只是因为它隐藏在对贪婪的暗喻,
11:06
but as an illustration of what happens
194
666590
1895
也是因为他指出了
11:08
if you create a powerful optimization process
195
668485
2837
如果你创造出来一个强大的优化过程
11:11
and give it misconceived or poorly specified goals.
196
671322
4789
并且给他了一个错误的或者不精确的目标, 后果会是什么。
11:16
Now you might say, if a computer starts sticking electrodes into people's faces,
197
676111
5189
现在也许你会说, 如果一个电脑开始在人类脸上插电极,
11:21
we'd just shut it off.
198
681300
2265
我们会关掉它。
11:24
A, this is not necessarily so easy to do if we've grown dependent on the system --
199
684555
5340
第一,这不是一件容易事, 如果我们变得非常依赖这个系统:
11:29
like, where is the off switch to the Internet?
200
689895
2732
比如,你知道互联网的开关在哪吗?
11:32
B, why haven't the chimpanzees flicked the off switch to humanity,
201
692627
5120
第二,为什么当初黑猩猩 没有关掉人类的开关,
11:37
or the Neanderthals?
202
697747
1551
或者尼安德特人的开关?
11:39
They certainly had reasons.
203
699298
2666
他们肯定有理由。
11:41
We have an off switch, for example, right here.
204
701964
2795
我们有一个开关,比如,这里。
11:44
(Choking)
205
704759
1554
(窒息声)
11:46
The reason is that we are an intelligent adversary;
206
706313
2925
之所以我们是聪明的敌人,
11:49
we can anticipate threats and plan around them.
207
709238
2728
因为我们可以预见到威胁并且尝试避免它。
11:51
But so could a superintelligent agent,
208
711966
2504
但是一个超级智慧体也可以,
11:54
and it would be much better at that than we are.
209
714470
3254
而且会做得更好。
11:57
The point is, we should not be confident that we have this under control here.
210
717724
7187
我们不应该很自信地 表示我们能控制所有事情。
12:04
And we could try to make our job a little bit easier by, say,
211
724911
3447
为了把我们的工作变得更简单一点, 我们应该试着,比如,
12:08
putting the A.I. in a box,
212
728358
1590
把人工智能放进一个小盒子,
12:09
like a secure software environment,
213
729948
1796
想一个保险的软件环境,
12:11
a virtual reality simulation from which it cannot escape.
214
731744
3022
一个它无法逃脱的虚拟现实模拟器。
12:14
But how confident can we be that the A.I. couldn't find a bug.
215
734766
4146
但是我们有信心它不可能能发现一个漏洞, 能让它逃出的漏洞吗?
12:18
Given that merely human hackers find bugs all the time,
216
738912
3169
连人类黑客每时每刻都能发现网络漏洞,
12:22
I'd say, probably not very confident.
217
742081
3036
我会说,也许不是很有信心。
12:26
So we disconnect the ethernet cable to create an air gap,
218
746237
4548
所以我们断开以太网的链接来创建一个空隙,
12:30
but again, like merely human hackers
219
750785
2668
但是,重申一遍,人类黑客都可以
12:33
routinely transgress air gaps using social engineering.
220
753453
3381
一次又一次以社会工程跨越这样的空隙。
12:36
Right now, as I speak,
221
756834
1259
现在,在我说话的时候,
12:38
I'm sure there is some employee out there somewhere
222
758093
2389
我肯定在这边的某个雇员,
12:40
who has been talked into handing out her account details
223
760482
3346
曾近被要求交出他的账户明细,
12:43
by somebody claiming to be from the I.T. department.
224
763828
2746
给一个自称是电脑信息部门的人。
12:46
More creative scenarios are also possible,
225
766574
2127
其他的情况也有可能,
12:48
like if you're the A.I.,
226
768701
1315
比如如果你是人工智能,
12:50
you can imagine wiggling electrodes around in your internal circuitry
227
770016
3532
你可以想象你用在你的体内 环绕复杂缠绕的电极
12:53
to create radio waves that you can use to communicate.
228
773548
3462
创造出一种无线电波来交流。
12:57
Or maybe you could pretend to malfunction,
229
777010
2424
或者也许你可以假装你出了问题,
12:59
and then when the programmers open you up to see what went wrong with you,
230
779434
3497
然后程序师就把你打开看看哪里出错了,
13:02
they look at the source code -- Bam! --
231
782931
1936
他们找出了源代码——Bang!——
13:04
the manipulation can take place.
232
784867
2447
你就可以取得控制权了。
13:07
Or it could output the blueprint to a really nifty technology,
233
787314
3430
或者它可以做出一个 非常漂亮的科技蓝图,
13:10
and when we implement it,
234
790744
1398
当我们实现之后,
13:12
it has some surreptitious side effect that the A.I. had planned.
235
792142
4397
它有一些被人工智能计划好的 秘密的副作用。
13:16
The point here is that we should not be confident in our ability
236
796539
3463
所以我们不能 对我们能够永远控制
13:20
to keep a superintelligent genie locked up in its bottle forever.
237
800002
3808
一个超级智能体的能力 表示过度自信。
13:23
Sooner or later, it will out.
238
803810
2254
在不久后,它会逃脱出来。
13:27
I believe that the answer here is to figure out
239
807034
3103
我相信我们需要弄明白
13:30
how to create superintelligent A.I. such that even if -- when -- it escapes,
240
810137
5024
如何创造出超级人工智能体,哪怕它逃走了,
13:35
it is still safe because it is fundamentally on our side
241
815161
3277
它仍然是无害的,因为它是我们这一边的,
13:38
because it shares our values.
242
818438
1899
因为它有我们的价值观。
13:40
I see no way around this difficult problem.
243
820337
3210
我认为这是个不可避免的问题。
13:44
Now, I'm actually fairly optimistic that this problem can be solved.
244
824557
3834
现在,我对这个问题能否被解决保持乐观。
13:48
We wouldn't have to write down a long list of everything we care about,
245
828391
3903
我们不需要写下 所有我们在乎的事情,
13:52
or worse yet, spell it out in some computer language
246
832294
3643
或者,更糟地,把这些事情变成计算机语言,
13:55
like C++ or Python,
247
835937
1454
C++ 或者 Python,
13:57
that would be a task beyond hopeless.
248
837391
2767
这是个不可能的任务。
14:00
Instead, we would create an A.I. that uses its intelligence
249
840158
4297
而是,我们会创造出一个人工智能机器人, 用它自己的智慧
14:04
to learn what we value,
250
844455
2771
来学习我们的价值观,
14:07
and its motivation system is constructed in such a way that it is motivated
251
847226
5280
它的激励制度可以激励它
14:12
to pursue our values or to perform actions that it predicts we would approve of.
252
852506
5232
来追求我们的价值观 或者去做我们会赞成的事情。
14:17
We would thus leverage its intelligence as much as possible
253
857738
3414
我们会因此最大地提高它的智力,
14:21
to solve the problem of value-loading.
254
861152
2745
来解决富有价值的问题。
14:24
This can happen,
255
864727
1512
这是有可能的,
14:26
and the outcome could be very good for humanity.
256
866239
3596
结果可以使人类非常受益。
14:29
But it doesn't happen automatically.
257
869835
3957
但它不是自动发生的。
14:33
The initial conditions for the intelligence explosion
258
873792
2998
智慧大爆炸的初始条件
14:36
might need to be set up in just the right way
259
876790
2863
需要被正确地建立起来,
14:39
if we are to have a controlled detonation.
260
879653
3530
如果我们想要一切在掌握之中。
14:43
The values that the A.I. has need to match ours,
261
883183
2618
人工智能的价值观 要和我们的价值观相辅相成,
14:45
not just in the familiar context,
262
885801
1760
不只是在熟悉的情况下,
14:47
like where we can easily check how the A.I. behaves,
263
887561
2438
比如当我们能很容易检查它的行为的时候,
14:49
but also in all novel contexts that the A.I. might encounter
264
889999
3234
但也要在所有人工智能可能会遇到的 前所未有的情况下,
14:53
in the indefinite future.
265
893233
1557
在没有界限的未来, 与我们的价值观相辅相成。
14:54
And there are also some esoteric issues that would need to be solved, sorted out:
266
894790
4737
也有很多深奥的问题需要被分拣解决:
14:59
the exact details of its decision theory,
267
899527
2089
它如何做决定,
15:01
how to deal with logical uncertainty and so forth.
268
901616
2864
如何解决逻辑不确定性和类似的情况。
15:05
So the technical problems that need to be solved to make this work
269
905330
3102
所以技术上的待解决问题让这个任务
15:08
look quite difficult --
270
908432
1113
看起来有些困难:
15:09
not as difficult as making a superintelligent A.I.,
271
909545
3380
并没有像做出一个超级智慧体一样困难,
15:12
but fairly difficult.
272
912925
2868
但是还是很难。
15:15
Here is the worry:
273
915793
1695
这使我们所担心的:
15:17
Making superintelligent A.I. is a really hard challenge.
274
917488
4684
创造出一个超级智慧体确实是个很大的挑战。
15:22
Making superintelligent A.I. that is safe
275
922172
2548
创造出一个安全的超级智慧体,
15:24
involves some additional challenge on top of that.
276
924720
2416
是个更大的挑战。
15:28
The risk is that if somebody figures out how to crack the first challenge
277
928216
3487
风险是,如果有人有办法解决第一个难题,
15:31
without also having cracked the additional challenge
278
931703
3001
却无法解决第二个
15:34
of ensuring perfect safety.
279
934704
1901
确保安全性的挑战。
15:37
So I think that we should work out a solution
280
937375
3331
所以我认为我们应该预先想出
15:40
to the control problem in advance,
281
940706
2822
“控制性”的解决方法,
15:43
so that we have it available by the time it is needed.
282
943528
2660
这样我们就能在需要的时候用到它了。
15:46
Now it might be that we cannot solve the entire control problem in advance
283
946768
3507
现在也许我们并不能 预先解决全部的控制性问题,
15:50
because maybe some elements can only be put in place
284
950275
3024
因为有些因素需要你了解
15:53
once you know the details of the architecture where it will be implemented.
285
953299
3997
你要应用到的那个构架的细节才能实施。
15:57
But the more of the control problem that we solve in advance,
286
957296
3380
但如果我们能解决更多控制性的难题,
16:00
the better the odds that the transition to the machine intelligence era
287
960676
4090
当我们迈入机器智能时代后
16:04
will go well.
288
964766
1540
就能更加顺利。
16:06
This to me looks like a thing that is well worth doing
289
966306
4644
这对于我来说是个值得一试的东西,
16:10
and I can imagine that if things turn out okay,
290
970950
3332
而且我能想象,如果一切顺利,
16:14
that people a million years from now look back at this century
291
974282
4658
几百万年后的人类回首我们这个世纪,
16:18
and it might well be that they say that the one thing we did that really mattered
292
978940
4002
他们也许会说, 我们所做的最最重要的事情,
16:22
was to get this thing right.
293
982942
1567
就是做了这个正确的决定。
16:24
Thank you.
294
984509
1689
谢谢。
16:26
(Applause)
295
986198
2813
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7