What happens when our computers get smarter than we are? | Nick Bostrom
2,699,631 views ・ 2015-04-27
請雙擊下方英文字幕播放視頻。
譯者: Jack Kuang-Che Kuo
審譯者: 杏儀 歐陽
00:12
I work with a bunch of mathematicians,
philosophers and computer scientists,
0
12570
4207
我和一群數學家、 哲學家、
及電腦科學家一起工作。
00:16
and we sit around and think about
the future of machine intelligence,
1
16777
5209
我們坐在一起
思考機器智慧的未來。
00:21
among other things.
2
21986
2044
以及其他問題。
00:24
Some people think that some of these
things are sort of science fiction-y,
3
24030
4725
有些人可能認為
這是科幻小說的範疇,
00:28
far out there, crazy.
4
28755
3101
離我們很遙遠,很瘋狂。
00:31
But I like to say,
5
31856
1470
但是我要說,
00:33
okay, let's look at the modern
human condition.
6
33326
3604
好,我們來看看
現代人類的狀況....
00:36
(Laughter)
7
36930
1692
(觀眾笑聲)
00:38
This is the normal way for things to be.
8
38622
2402
這是人類的常態。
00:41
But if we think about it,
9
41024
2285
但如果我們仔細想想,
00:43
we are actually recently arrived
guests on this planet,
10
43309
3293
其實人類是剛剛才抵達地球的訪客
00:46
the human species.
11
46602
2082
00:48
Think about if Earth
was created one year ago,
12
48684
4746
假設地球在一年前誕生,
00:53
the human species, then,
would be 10 minutes old.
13
53430
3548
人類這個物種則僅存在了10分鐘。
00:56
The industrial era started
two seconds ago.
14
56978
3168
工業革命在2秒鐘前開始。
另外一個角度是
看看這一萬年來的GDP增長
01:01
Another way to look at this is to think of
world GDP over the last 10,000 years,
15
61276
5225
01:06
I've actually taken the trouble
to plot this for you in a graph.
16
66501
3029
我花了時間作了張圖表,
01:09
It looks like this.
17
69530
1774
它長這個樣子
01:11
(Laughter)
18
71304
1363
(觀眾笑聲)
01:12
It's a curious shape
for a normal condition.
19
72667
2151
對一個正常的狀態來說
這是個很有趣的形狀。
01:14
I sure wouldn't want to sit on it.
20
74818
1698
我可不想要坐在上面。
01:16
(Laughter)
21
76516
2551
(觀眾笑聲)
01:19
Let's ask ourselves, what is the cause
of this current anomaly?
22
79067
4774
我們不禁問自己:
「是什麼造成了這種異態呢?」
01:23
Some people would say it's technology.
23
83841
2552
有些人會說是科技
01:26
Now it's true, technology has accumulated
through human history,
24
86393
4668
這是對的,
科技在人類歷史上不斷累積,
01:31
and right now, technology
advances extremely rapidly --
25
91061
4652
而現在科技正以飛快的速度進步。
01:35
that is the proximate cause,
26
95713
1565
這個是近因,
01:37
that's why we are currently
so very productive.
27
97278
2565
這也是為什麼
我們現在的生產力很高。
01:40
But I like to think back further
to the ultimate cause.
28
100473
3661
但是我想要進一步
回想到最終的原因
01:45
Look at these two highly
distinguished gentlemen:
29
105114
3766
看看這兩位非常傑出的紳士:
01:48
We have Kanzi --
30
108880
1600
這位是坎茲先生
01:50
he's mastered 200 lexical
tokens, an incredible feat.
31
110480
4643
他掌握了200個詞彙,
這是一個難以置信的壯舉。
01:55
And Ed Witten unleashed the second
superstring revolution.
32
115123
3694
以及 愛德 維騰,
他掀起了第二次超弦革命。
01:58
If we look under the hood,
this is what we find:
33
118817
2324
如果我們往腦袋瓜裡面看,
這是我們看到的:
02:01
basically the same thing.
34
121141
1570
基本上是一樣的東西。
02:02
One is a little larger,
35
122711
1813
一個稍微大一點,
02:04
it maybe also has a few tricks
in the exact way it's wired.
36
124524
2758
它可能有一些特別的連結方法。
02:07
These invisible differences cannot
be too complicated, however,
37
127282
3812
但是這些無形的差異不會太複雜,
02:11
because there have only
been 250,000 generations
38
131094
4285
因為從我們共同的祖先以來,
02:15
since our last common ancestor.
39
135379
1732
只經過了25萬代。
02:17
We know that complicated mechanisms
take a long time to evolve.
40
137111
3849
我們知道複雜的機制
需要很長的時間演化。
02:22
So a bunch of relatively minor changes
41
142000
2499
因此 一些相對微小的變化
02:24
take us from Kanzi to Witten,
42
144499
3067
將我們從坎茲先生變成了維騰,
02:27
from broken-off tree branches
to intercontinental ballistic missiles.
43
147566
4543
從撿起掉落的樹枝當武器
到發射洲際彈道飛彈
02:32
So this then seems pretty obvious
that everything we've achieved,
44
152839
3935
因此,顯而易見的是
至今我們所實現的所有事
02:36
and everything we care about,
45
156774
1378
以及我們關心的所有事物,
02:38
depends crucially on some relatively minor
changes that made the human mind.
46
158152
5228
都取決於人腦中相對微小的改變。
02:44
And the corollary, of course,
is that any further changes
47
164650
3662
由此而來的推論就是:在未來,
02:48
that could significantly change
the substrate of thinking
48
168312
3477
任何能顯著地改變思想基體的變化
02:51
could have potentially
enormous consequences.
49
171789
3202
都有可能會帶來巨大的後果。
02:56
Some of my colleagues
think we're on the verge
50
176321
2905
我的一些同事覺得我們即將發現
02:59
of something that could cause
a profound change in that substrate,
51
179226
3908
足以深刻的改變思想基體的科技
03:03
and that is machine superintelligence.
52
183134
3213
那就是超級機器智慧
03:06
Artificial intelligence used to be
about putting commands in a box.
53
186347
4739
以前的人工智慧是
將指令輸入到一個箱子裡。
03:11
You would have human programmers
54
191086
1665
你需要程式設計師
03:12
that would painstakingly
handcraft knowledge items.
55
192751
3135
精心的將知識設計成指令。
03:15
You build up these expert systems,
56
195886
2086
你建立這些專門系統,
03:17
and they were kind of useful
for some purposes,
57
197972
2324
這些系統在某些特定的領域中有點用,
03:20
but they were very brittle,
you couldn't scale them.
58
200296
2681
但是它們很生硬,
你無法延展這些系統。
03:22
Basically, you got out only
what you put in.
59
202977
3433
基本上這些系統所輸出的東西
僅限於你事先輸入的範圍。
03:26
But since then,
60
206410
997
但是從那時起,
03:27
a paradigm shift has taken place
in the field of artificial intelligence.
61
207407
3467
人工智慧的領域裡發生了模式的轉變。
03:30
Today, the action is really
around machine learning.
62
210874
2770
現在主要的課題是機器的學習。
03:34
So rather than handcrafting knowledge
representations and features,
63
214394
5387
因此,與其設計知識的表現及特點,
03:40
we create algorithms that learn,
often from raw perceptual data.
64
220511
5554
我們寫出具有學習原始感官數據
的能力的程式碼。
03:46
Basically the same thing
that the human infant does.
65
226065
4998
基本上和嬰兒所做的是一樣的。
03:51
The result is A.I. that is not
limited to one domain --
66
231063
4207
結果就是不侷限於
某個領域的人工智慧 --
03:55
the same system can learn to translate
between any pairs of languages,
67
235270
4631
同一個系統可以學習
在任何兩種語言之間翻譯
03:59
or learn to play any computer game
on the Atari console.
68
239901
5437
或者學著玩雅達利系統上
的任何一款遊戲。
04:05
Now of course,
69
245338
1779
現在當然
04:07
A.I. is still nowhere near having
the same powerful, cross-domain
70
247117
3999
人工智慧到現在
還未能達到像人類一樣
04:11
ability to learn and plan
as a human being has.
71
251116
3219
具有強大的跨領域的學習能力。
04:14
The cortex still has some
algorithmic tricks
72
254335
2126
人類大腦還具有一些運算技巧
04:16
that we don't yet know
how to match in machines.
73
256461
2355
我們不知道如何將這些技巧
複製到機器中。
04:19
So the question is,
74
259886
1899
所以現在需要問的是:
04:21
how far are we from being able
to match those tricks?
75
261785
3500
我們還要多久才能
在機器裡面複製這些技巧?
04:26
A couple of years ago,
76
266245
1083
在幾年前,
04:27
we did a survey of some of the world's
leading A.I. experts,
77
267328
2888
我們對世界頂尖的人工智慧專家
做了一次問卷調查,
04:30
to see what they think,
and one of the questions we asked was,
78
270216
3224
想要看看他們的想法,
其中的一個題目是:
04:33
"By which year do you think
there is a 50 percent probability
79
273440
3353
"到哪一年你覺得
人類會有50%的機率
04:36
that we will have achieved
human-level machine intelligence?"
80
276793
3482
能夠達成人類級的人工智慧?"
04:40
We defined human-level here
as the ability to perform
81
280785
4183
我們把人類級的人工智慧
定義為有能力
04:44
almost any job at least as well
as an adult human,
82
284968
2871
將任何任務至少執行得
像一名成年人一樣好,
04:47
so real human-level, not just
within some limited domain.
83
287839
4005
所以是真正的人類級別,
而不是僅限於某些領域。
04:51
And the median answer was 2040 or 2050,
84
291844
3650
而答案的中位數是2040或2050年
04:55
depending on precisely which
group of experts we asked.
85
295494
2806
取決於我們問的專家屬於什麼群體。
04:58
Now, it could happen much,
much later, or sooner,
86
298300
4039
當然,這個有可能過很久才實現,
也有可能提早實現
05:02
the truth is nobody really knows.
87
302339
1940
沒有人知道確切的時間。
05:05
What we do know is that the ultimate
limit to information processing
88
305259
4412
我們知道的是,
機器基體處理資訊能力的最終界限
05:09
in a machine substrate lies far outside
the limits in biological tissue.
89
309671
4871
比生物組織的界限要大的多。
05:15
This comes down to physics.
90
315241
2378
這取決於物理原理。
05:17
A biological neuron fires, maybe,
at 200 hertz, 200 times a second.
91
317619
4718
一個生物神經元發出脈衝的頻率
可能在200赫茲,每秒200次。
05:22
But even a present-day transistor
operates at the Gigahertz.
92
322337
3594
但就算是現在的電晶體
都以千兆赫(GHz)的頻率運轉。
05:25
Neurons propagate slowly in axons,
100 meters per second, tops.
93
325931
5297
神經元在軸突中傳輸的速度
比較慢,頂多是每秒100公尺。
05:31
But in computers, signals can travel
at the speed of light.
94
331228
3111
但在電腦裡面,信號是以光速傳播的。
05:35
There are also size limitations,
95
335079
1869
另外還有尺寸的限制
05:36
like a human brain has
to fit inside a cranium,
96
336948
3027
就像人類的大腦
必需要放得進顱骨內。
05:39
but a computer can be the size
of a warehouse or larger.
97
339975
4761
但是一部電腦可以
跟倉庫一樣大,甚至更大。
05:44
So the potential for superintelligence
lies dormant in matter,
98
344736
5599
因此超級智慧的潛能
現在正潛伏在物質裡面,
05:50
much like the power of the atom
lay dormant throughout human history,
99
350335
5712
就像是原子能
在人類的歷史中一直潛伏著,
05:56
patiently waiting there until 1945.
100
356047
4405
耐心的等著,一直到1945年。
06:00
In this century,
101
360452
1248
在這個世紀內,
06:01
scientists may learn to awaken
the power of artificial intelligence.
102
361700
4118
科學家有可能會
將人工智慧的力量喚醒。
06:05
And I think we might then see
an intelligence explosion.
103
365818
4008
屆時我覺得我們會
見證到智慧的大爆發。
06:10
Now most people, when they think
about what is smart and what is dumb,
104
370406
3957
大部分的人,當他們在想
什麼是聰明什麼是愚笨的時候,
06:14
I think have in mind a picture
roughly like this.
105
374363
3023
我想他們腦中浮現出的畫面
會是這樣的:
06:17
So at one end we have the village idiot,
106
377386
2598
在一邊是村裡的傻子,
06:19
and then far over at the other side
107
379984
2483
然後在另外一邊
06:22
we have Ed Witten, or Albert Einstein,
or whoever your favorite guru is.
108
382467
4756
是 愛德 維騰 或愛因斯坦,
或你喜歡的某位大師。
06:27
But I think that from the point of view
of artificial intelligence,
109
387223
3834
但是我覺得從人工智慧的觀點來看,
06:31
the true picture is actually
probably more like this:
110
391057
3681
真正的畫面應該比較像這樣子:
06:35
AI starts out at this point here,
at zero intelligence,
111
395258
3378
人工智慧從這一點開始,零智慧
06:38
and then, after many, many
years of really hard work,
112
398636
3011
然後,在許多許多年
辛苦的研究以後,
06:41
maybe eventually we get to
mouse-level artificial intelligence,
113
401647
3844
我們可能可以達到
老鼠級的人工智慧,
06:45
something that can navigate
cluttered environments
114
405491
2430
它可以在凌亂的環境中找到路
06:47
as well as a mouse can.
115
407921
1987
就像一隻老鼠一樣。
06:49
And then, after many, many more years
of really hard work, lots of investment,
116
409908
4313
然後,在更多年的辛苦研究
及投資了很多資源之後,
06:54
maybe eventually we get to
chimpanzee-level artificial intelligence.
117
414221
4639
我們可能可以達到
黑猩猩級的人工智慧。
06:58
And then, after even more years
of really, really hard work,
118
418860
3210
然後,在更加多年的辛苦研究之後,
07:02
we get to village idiot
artificial intelligence.
119
422070
2913
我們達到村莊傻子級別的人工智慧。
07:04
And a few moments later,
we are beyond Ed Witten.
120
424983
3272
然後過一小會兒後,
我們就超越了愛德維騰。
07:08
The train doesn't stop
at Humanville Station.
121
428255
2970
這列火車並不會
在人類村這一站就停車。
07:11
It's likely, rather, to swoosh right by.
122
431225
3022
它比較可能會直接呼嘯而過。
07:14
Now this has profound implications,
123
434247
1984
這個具有深遠的寓意,
07:16
particularly when it comes
to questions of power.
124
436231
3862
特別是在談到權力的問題。
07:20
For example, chimpanzees are strong --
125
440093
1899
舉例來說,黑猩猩很強壯 --
07:21
pound for pound, a chimpanzee is about
twice as strong as a fit human male.
126
441992
5222
以體重比例來說, 一隻黑猩猩
比一個健康的男性人類要強壯兩倍。
07:27
And yet, the fate of Kanzi
and his pals depends a lot more
127
447214
4614
然而,坎茲和他朋友們的命運
則很大的部分取決於
07:31
on what we humans do than on
what the chimpanzees do themselves.
128
451828
4140
人類的作為,
而非黑猩猩們自己的作為。
07:37
Once there is superintelligence,
129
457228
2314
當超級智慧出現後,
07:39
the fate of humanity may depend
on what the superintelligence does.
130
459542
3839
人類的命運可能會取決於
超級智慧的作為。
07:44
Think about it:
131
464451
1057
想想看:
07:45
Machine intelligence is the last invention
that humanity will ever need to make.
132
465508
5044
機器智慧將會是人類所需要作出的
最後一個發明。
07:50
Machines will then be better
at inventing than we are,
133
470552
2973
從那之後機器將會比人類更會發明,
07:53
and they'll be doing so
on digital timescales.
134
473525
2540
他們也將會在"數位時間"裡
做出這些事。
07:56
What this means is basically
a telescoping of the future.
135
476065
4901
這意味著未來到來的時間將被縮短。
08:00
Think of all the crazy technologies
that you could have imagined
136
480966
3558
想想那些我們曾經想像過的瘋狂科技
08:04
maybe humans could have developed
in the fullness of time:
137
484524
2798
人類可能在有足夠的時間下
可以發明出來:
08:07
cures for aging, space colonization,
138
487322
3258
防止衰老、殖民太空、
08:10
self-replicating nanobots or uploading
of minds into computers,
139
490580
3731
自行複製的奈米機器人,
或將我們的頭腦上載到電腦裡,
08:14
all kinds of science fiction-y stuff
140
494311
2159
這一些僅存在科幻小說範疇,
08:16
that's nevertheless consistent
with the laws of physics.
141
496470
2737
但同時還是符合物理法則的東西
08:19
All of this superintelligence could
develop, and possibly quite rapidly.
142
499207
4212
超級智慧有辦法開發出這些東西,
而且速度可能很快。
08:24
Now, a superintelligence with such
technological maturity
143
504449
3558
這麼成熟的超級智慧
08:28
would be extremely powerful,
144
508007
2179
將會非常的強大,
08:30
and at least in some scenarios,
it would be able to get what it wants.
145
510186
4546
最少在某些場景它將有辦法
得到它想要的東西。
08:34
We would then have a future that would
be shaped by the preferences of this A.I.
146
514732
5661
這樣以來我們的未來就將會
被這個超級智慧的偏好所影響。
08:41
Now a good question is,
what are those preferences?
147
521855
3749
現在出現了一個好問題,
這些偏好是什麼呢?
08:46
Here it gets trickier.
148
526244
1769
這個問題更棘手。
08:48
To make any headway with this,
149
528013
1435
要在這個領域往前走,
08:49
we must first of all
avoid anthropomorphizing.
150
529448
3276
我們必須避免
將機器智慧擬人化(人格化)。
08:53
And this is ironic because
every newspaper article
151
533934
3301
這一點很諷刺因為
每一篇關於未來的人工智慧
08:57
about the future of A.I.
has a picture of this:
152
537235
3855
的報導都會有這張照片:
09:02
So I think what we need to do is
to conceive of the issue more abstractly,
153
542280
4134
所以我覺得我們必須要
更抽象的來想像這個議題,
09:06
not in terms of vivid Hollywood scenarios.
154
546414
2790
而非以好萊塢的鮮明場景來想像。
09:09
We need to think of intelligence
as an optimization process,
155
549204
3617
我們需要把智慧看做是
一個優化的過程,
09:12
a process that steers the future
into a particular set of configurations.
156
552821
5649
一個將未來指引到
特定的組態的過程。
09:18
A superintelligence is
a really strong optimization process.
157
558470
3511
一個超級智慧
是一個很強大的優化過程。
09:21
It's extremely good at using
available means to achieve a state
158
561981
4117
它將很會利用現有資源
09:26
in which its goal is realized.
159
566098
1909
去達到達成目標的狀態。
09:28
This means that there is no necessary
connection between
160
568447
2672
這意味著有著高智慧以及
09:31
being highly intelligent in this sense,
161
571119
2734
擁有一個對人類來說
是有意義的目標之間
09:33
and having an objective that we humans
would find worthwhile or meaningful.
162
573853
4662
並沒有必然的聯繫。
09:39
Suppose we give an A.I. the goal
to make humans smile.
163
579321
3794
假設我們給予人工智慧的目標
是讓人類笑。
09:43
When the A.I. is weak, it performs useful
or amusing actions
164
583115
2982
當人工智慧比較弱時,
它會做出有用的或是好笑的動作
09:46
that cause its user to smile.
165
586097
2517
以讓使用者笑出來。
09:48
When the A.I. becomes superintelligent,
166
588614
2417
當人工智慧演化成超級智慧的時後,
09:51
it realizes that there is a more
effective way to achieve this goal:
167
591031
3523
它會體認到有更有效的方法
可以達到這個目標:
09:54
take control of the world
168
594554
1922
控制這個世界
09:56
and stick electrodes into the facial
muscles of humans
169
596476
3162
然後在人類的臉部肌肉上連接電級
09:59
to cause constant, beaming grins.
170
599638
2941
以使這個人不斷的微笑。
10:02
Another example,
171
602579
1035
另外一個例子,
10:03
suppose we give A.I. the goal to solve
a difficult mathematical problem.
172
603614
3383
假設我們給人工智慧的目標是
解出一個非常困難的數學問題。
10:06
When the A.I. becomes superintelligent,
173
606997
1937
當人工智慧變成超級智慧時,
10:08
it realizes that the most effective way
to get the solution to this problem
174
608934
4171
它會體認到最有效的方法是
10:13
is by transforming the planet
into a giant computer,
175
613105
2930
把整個地球轉化成
一部超大號的電腦,
10:16
so as to increase its thinking capacity.
176
616035
2246
進而增加它自己的運算能力。
10:18
And notice that this gives the A.I.s
an instrumental reason
177
618281
2764
注意到這個模式
會給人工智慧理由去做
10:21
to do things to us that we
might not approve of.
178
621045
2516
我們可能不認可的事情。
10:23
Human beings in this model are threats,
179
623561
1935
在這個模型裡面人類是威脅,
10:25
we could prevent the mathematical
problem from being solved.
180
625496
2921
我們可能會在解開數學問題
的過程中成為阻礙。
10:29
Of course, perceivably things won't
go wrong in these particular ways;
181
629207
3494
當然,在我們可預見的範圍內,
事情不會以這種方式出錯;
10:32
these are cartoon examples.
182
632701
1753
這些是誇大的例子。
10:34
But the general point here is important:
183
634454
1939
但是它指出的概念很重要:
10:36
if you create a really powerful
optimization process
184
636393
2873
如果你創造了一個
非常強大的優化流程
10:39
to maximize for objective x,
185
639266
2234
要最大化目標X,
10:41
you better make sure
that your definition of x
186
641500
2276
你最好確保你對目標X的定義
10:43
incorporates everything you care about.
187
643776
2469
包含了所有你所在意的事情。
10:46
This is a lesson that's also taught
in many a myth.
188
646835
4384
這也是在很多神話故事中
教導的寓意。
10:51
King Midas wishes that everything
he touches be turned into gold.
189
651219
5298
希臘神話中的米達斯國王希望
他碰到的所有東西都可以變成金子。
10:56
He touches his daughter,
she turns into gold.
190
656517
2861
他碰到了他的女兒,
她變成了黃金。
10:59
He touches his food, it turns into gold.
191
659378
2553
他碰到了他的食物,
他的食物也變成了黃金。
11:01
This could become practically relevant,
192
661931
2589
這實際上跟我們的題目有關,
11:04
not just as a metaphor for greed,
193
664520
2070
不僅僅是對貪婪的隱喻,
11:06
but as an illustration of what happens
194
666590
1895
但也指出了如果你創造了
一個強大的優化流程
11:08
if you create a powerful
optimization process
195
668485
2837
但同時給了它
不正確或不精確的目標後
11:11
and give it misconceived
or poorly specified goals.
196
671322
4789
會發生什麼事。
11:16
Now you might say, if a computer starts
sticking electrodes into people's faces,
197
676111
5189
你可能會說,如果電腦系統
開始在人臉上安裝電極,
11:21
we'd just shut it off.
198
681300
2265
我們可以直接把他關掉就好了。
11:24
A, this is not necessarily so easy to do
if we've grown dependent on the system --
199
684555
5340
一、這並不一定容易做到,如果我們
已經對這個系統產生依賴性 ——
11:29
like, where is the off switch
to the Internet?
200
689895
2732
比如:你知道網際網路的開關在哪裡嗎?
11:32
B, why haven't the chimpanzees
flicked the off switch to humanity,
201
692627
5120
二、為什麼黑猩猩當初
沒有把人類的開關關掉?
11:37
or the Neanderthals?
202
697747
1551
或是尼安德特人?
11:39
They certainly had reasons.
203
699298
2666
他們有很明顯的理由要這麼做,
11:41
We have an off switch,
for example, right here.
204
701964
2795
而我們的開關就在這裡:
11:44
(Choking)
205
704759
1554
(窒息聲)
11:46
The reason is that we are
an intelligent adversary;
206
706313
2925
原因是人類是很聰明的敵人;
11:49
we can anticipate threats
and plan around them.
207
709238
2728
我們可以預見威脅
並為其做出準備。
11:51
But so could a superintelligent agent,
208
711966
2504
但一個超級智慧也會,
11:54
and it would be much better
at that than we are.
209
714470
3254
而且它的能力將比我們強大的多。
11:57
The point is, we should not be confident
that we have this under control here.
210
717724
7187
我想要說的一點是,我們不應該
覺得一切都在我們的掌握之中。
12:04
And we could try to make our job
a little bit easier by, say,
211
724911
3447
我們可能可以藉由
把AI放到一個盒子裡面
12:08
putting the A.I. in a box,
212
728358
1590
來給我們更多的掌握,
12:09
like a secure software environment,
213
729948
1796
就像是一個獨立的軟體環境,
12:11
a virtual reality simulation
from which it cannot escape.
214
731744
3022
一個AI無法逃脫的虛擬實境。
12:14
But how confident can we be that
the A.I. couldn't find a bug.
215
734766
4146
但是我們有多大的信心
這個AI不會找到漏洞?
12:18
Given that merely human hackers
find bugs all the time,
216
738912
3169
就算只是人類駭客,
他們還經常找出漏洞。
12:22
I'd say, probably not very confident.
217
742081
3036
我想我們不是很有信心。
12:26
So we disconnect the ethernet cable
to create an air gap,
218
746237
4548
那所以我們把網路線拔掉,
製造一個物理間隙,
12:30
but again, like merely human hackers
219
750785
2668
但同樣的,就算只是人類駭客
12:33
routinely transgress air gaps
using social engineering.
220
753453
3381
也經常可以利用社交工程陷阱
來突破物理間隙。
12:36
Right now, as I speak,
221
756834
1259
現在,在我在台上說話的同時
12:38
I'm sure there is some employee
out there somewhere
222
758093
2389
我確定在世界的某一個角落裡
有一名公司職員
12:40
who has been talked into handing out
her account details
223
760482
3346
才剛剛被自稱來自IT部門
的人士說服(詐騙)
12:43
by somebody claiming to be
from the I.T. department.
224
763828
2746
並交出了她的帳戶信息。
12:46
More creative scenarios are also possible,
225
766574
2127
更天馬行空的狀況也可能會發生,
12:48
like if you're the A.I.,
226
768701
1315
就像是如果你是AI,
12:50
you can imagine wiggling electrodes
around in your internal circuitry
227
770016
3532
你可以想像藉由擺動你體內的電路
12:53
to create radio waves that you
can use to communicate.
228
773548
3462
然後創造出無線電波,
用以與外界溝通。
12:57
Or maybe you could pretend to malfunction,
229
777010
2424
或這你可以假裝有故障,
12:59
and then when the programmers open
you up to see what went wrong with you,
230
779434
3497
然後當程式設計師
把你打開檢查哪裡出錯時,
13:02
they look at the source code -- Bam! --
231
782931
1936
他們找出了原始碼 --梆--
13:04
the manipulation can take place.
232
784867
2447
你可以在此做出操控。
13:07
Or it could output the blueprint
to a really nifty technology,
233
787314
3430
或這它可以做出一個
很巧妙的科技藍圖,
13:10
and when we implement it,
234
790744
1398
當我們實施這個藍圖後,
13:12
it has some surreptitious side effect
that the A.I. had planned.
235
792142
4397
它會產生一些AI計劃好的
秘密副作用。
13:16
The point here is that we should
not be confident in our ability
236
796539
3463
寓意是我們不能
對我們控制人工智慧的能力
13:20
to keep a superintelligent genie
locked up in its bottle forever.
237
800002
3808
具有太大的信心
13:23
Sooner or later, it will out.
238
803810
2254
它終究會逃脫出來,
只是時間問題而已。
13:27
I believe that the answer here
is to figure out
239
807034
3103
我覺得解方是我們需要弄清楚
13:30
how to create superintelligent A.I.
such that even if -- when -- it escapes,
240
810137
5024
如何創造出一個超級智慧,
哪怕是它逃出來了,
13:35
it is still safe because it is
fundamentally on our side
241
815161
3277
它還是安全的,
因為它是站在我們這一邊的
13:38
because it shares our values.
242
818438
1899
因為它擁有了我們的價值觀。
13:40
I see no way around
this difficult problem.
243
820337
3210
我們沒有辦法避免這個艱難的問題。
13:44
Now, I'm actually fairly optimistic
that this problem can be solved.
244
824557
3834
但是我覺得我們可以解決這個問題。
13:48
We wouldn't have to write down
a long list of everything we care about,
245
828391
3903
我們並不需要把
我們在乎的所有事物寫下來,
13:52
or worse yet, spell it out
in some computer language
246
832294
3643
或更麻煩的把這些事物
寫成電腦程式語言
13:55
like C++ or Python,
247
835937
1454
像是 C++或 Python,
13:57
that would be a task beyond hopeless.
248
837391
2767
這是個不可能完成的任務。
14:00
Instead, we would create an A.I.
that uses its intelligence
249
840158
4297
與其,我們可以創造出
一個人工智慧,它用它自己的智慧
14:04
to learn what we value,
250
844455
2771
來學習我們的價值觀,
14:07
and its motivation system is constructed
in such a way that it is motivated
251
847226
5280
它的激勵機制要設計成
會讓它想要
14:12
to pursue our values or to perform actions
that it predicts we would approve of.
252
852506
5232
來追求我們的價值觀或者
去做它認為我們會贊成的事情。
14:17
We would thus leverage
its intelligence as much as possible
253
857738
3414
藉此我們可以最大化地
利用到它們的智慧
14:21
to solve the problem of value-loading.
254
861152
2745
來解決這個價值觀的問題。
14:24
This can happen,
255
864727
1512
這個是有可能的,
14:26
and the outcome could be
very good for humanity.
256
866239
3596
而且這個的結果
可對人類是非常有益的。
14:29
But it doesn't happen automatically.
257
869835
3957
但是它不會自動發生。
14:33
The initial conditions
for the intelligence explosion
258
873792
2998
如果我們需要控制
這個智慧的大爆炸,
14:36
might need to be set up
in just the right way
259
876790
2863
那智慧大爆炸的初始條件
14:39
if we are to have a controlled detonation.
260
879653
3530
需要被正確的建立起來。
14:43
The values that the A.I. has
need to match ours,
261
883183
2618
人工智慧的價值觀
要和我們的一致,
14:45
not just in the familiar context,
262
885801
1760
並不只是在常見的狀況下,
14:47
like where we can easily check
how the A.I. behaves,
263
887561
2438
比如我們可以
很簡單低檢查它的行為,
14:49
but also in all novel contexts
that the A.I. might encounter
264
889999
3234
但也要在未來所有人工智慧
可能會遇到的情況下
14:53
in the indefinite future.
265
893233
1557
保持價值觀的一致。
14:54
And there are also some esoteric issues
that would need to be solved, sorted out:
266
894790
4737
還有很多深奧的問題需要被解決:
14:59
the exact details of its decision theory,
267
899527
2089
它們決策概念的所有細節,
15:01
how to deal with logical
uncertainty and so forth.
268
901616
2864
它如何面對解決
邏輯不確定性的情況等問題。
15:05
So the technical problems that need
to be solved to make this work
269
905330
3102
所以技術上待解決的問題
15:08
look quite difficult --
270
908432
1113
讓這個任務看起來蠻難的 --
15:09
not as difficult as making
a superintelligent A.I.,
271
909545
3380
還沒有像做出一個超級智慧
那樣的難,
15:12
but fairly difficult.
272
912925
2868
但還是挺難的。
15:15
Here is the worry:
273
915793
1695
我們所擔心的是:
15:17
Making superintelligent A.I.
is a really hard challenge.
274
917488
4684
創造出一個超級智慧
是一個很難的挑戰。
15:22
Making superintelligent A.I. that is safe
275
922172
2548
創造出一個安全的超級智慧
15:24
involves some additional
challenge on top of that.
276
924720
2416
是一個更大的挑戰。
15:28
The risk is that if somebody figures out
how to crack the first challenge
277
928216
3487
最大的風險在於
有人想出了如何解決第一個難題
15:31
without also having cracked
the additional challenge
278
931703
3001
但是沒有解決第二個問題
15:34
of ensuring perfect safety.
279
934704
1901
來確保安全性萬無一失。
15:37
So I think that we should
work out a solution
280
937375
3331
所以我覺得我們應該先想出
15:40
to the control problem in advance,
281
940706
2822
如何"控制"的方法。
15:43
so that we have it available
by the time it is needed.
282
943528
2660
這樣當我們需要的時候
我們可以用的到它。
15:46
Now it might be that we cannot solve
the entire control problem in advance
283
946768
3507
現在也許我們無法
完全解決「控制」的問題
15:50
because maybe some elements
can only be put in place
284
950275
3024
因為有時候你要了解
你所想要控制的架構後
15:53
once you know the details of the
architecture where it will be implemented.
285
953299
3997
你才能知道如何實施。
15:57
But the more of the control problem
that we solve in advance,
286
957296
3380
但是如果我們可以
事先解決更多的難題
16:00
the better the odds that the transition
to the machine intelligence era
287
960676
4090
我們順利的進入到
機器智能時代的機率
16:04
will go well.
288
964766
1540
就會更高。
16:06
This to me looks like a thing
that is well worth doing
289
966306
4644
這對我來說是一個值得挑戰的事情
16:10
and I can imagine that if
things turn out okay,
290
970950
3332
而且我能想像到如果一切順利的話,
16:14
that people a million years from now
look back at this century
291
974282
4658
我們的後代,幾百萬年以後的人類
回顧我們這個時代的時候
16:18
and it might well be that they say that
the one thing we did that really mattered
292
978940
4002
他們可能會說我們
所做的最重要的事就是
16:22
was to get this thing right.
293
982942
1567
把這個事情弄對了。
16:24
Thank you.
294
984509
1689
謝謝
16:26
(Applause)
295
986198
2813
(觀眾掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。