What happens when our computers get smarter than we are? | Nick Bostrom

2,720,475 views ・ 2015-04-27

TED


請雙擊下方英文字幕播放視頻。

譯者: Jack Kuang-Che Kuo 審譯者: 杏儀 歐陽
00:12
I work with a bunch of mathematicians, philosophers and computer scientists,
0
12570
4207
我和一群數學家、 哲學家、 及電腦科學家一起工作。
00:16
and we sit around and think about the future of machine intelligence,
1
16777
5209
我們坐在一起 思考機器智慧的未來。
00:21
among other things.
2
21986
2044
以及其他問題。
00:24
Some people think that some of these things are sort of science fiction-y,
3
24030
4725
有些人可能認為 這是科幻小說的範疇,
00:28
far out there, crazy.
4
28755
3101
離我們很遙遠,很瘋狂。
00:31
But I like to say,
5
31856
1470
但是我要說,
00:33
okay, let's look at the modern human condition.
6
33326
3604
好,我們來看看 現代人類的狀況....
00:36
(Laughter)
7
36930
1692
(觀眾笑聲)
00:38
This is the normal way for things to be.
8
38622
2402
這是人類的常態。
00:41
But if we think about it,
9
41024
2285
但如果我們仔細想想,
00:43
we are actually recently arrived guests on this planet,
10
43309
3293
其實人類是剛剛才抵達地球的訪客
00:46
the human species.
11
46602
2082
00:48
Think about if Earth was created one year ago,
12
48684
4746
假設地球在一年前誕生,
00:53
the human species, then, would be 10 minutes old.
13
53430
3548
人類這個物種則僅存在了10分鐘。
00:56
The industrial era started two seconds ago.
14
56978
3168
工業革命在2秒鐘前開始。
另外一個角度是 看看這一萬年來的GDP增長
01:01
Another way to look at this is to think of world GDP over the last 10,000 years,
15
61276
5225
01:06
I've actually taken the trouble to plot this for you in a graph.
16
66501
3029
我花了時間作了張圖表,
01:09
It looks like this.
17
69530
1774
它長這個樣子
01:11
(Laughter)
18
71304
1363
(觀眾笑聲)
01:12
It's a curious shape for a normal condition.
19
72667
2151
對一個正常的狀態來說 這是個很有趣的形狀。
01:14
I sure wouldn't want to sit on it.
20
74818
1698
我可不想要坐在上面。
01:16
(Laughter)
21
76516
2551
(觀眾笑聲)
01:19
Let's ask ourselves, what is the cause of this current anomaly?
22
79067
4774
我們不禁問自己: 「是什麼造成了這種異態呢?」
01:23
Some people would say it's technology.
23
83841
2552
有些人會說是科技
01:26
Now it's true, technology has accumulated through human history,
24
86393
4668
這是對的, 科技在人類歷史上不斷累積,
01:31
and right now, technology advances extremely rapidly --
25
91061
4652
而現在科技正以飛快的速度進步。
01:35
that is the proximate cause,
26
95713
1565
這個是近因,
01:37
that's why we are currently so very productive.
27
97278
2565
這也是為什麼 我們現在的生產力很高。
01:40
But I like to think back further to the ultimate cause.
28
100473
3661
但是我想要進一步 回想到最終的原因
01:45
Look at these two highly distinguished gentlemen:
29
105114
3766
看看這兩位非常傑出的紳士:
01:48
We have Kanzi --
30
108880
1600
這位是坎茲先生
01:50
he's mastered 200 lexical tokens, an incredible feat.
31
110480
4643
他掌握了200個詞彙, 這是一個難以置信的壯舉。
01:55
And Ed Witten unleashed the second superstring revolution.
32
115123
3694
以及 愛德 維騰, 他掀起了第二次超弦革命。
01:58
If we look under the hood, this is what we find:
33
118817
2324
如果我們往腦袋瓜裡面看, 這是我們看到的:
02:01
basically the same thing.
34
121141
1570
基本上是一樣的東西。
02:02
One is a little larger,
35
122711
1813
一個稍微大一點,
02:04
it maybe also has a few tricks in the exact way it's wired.
36
124524
2758
它可能有一些特別的連結方法。
02:07
These invisible differences cannot be too complicated, however,
37
127282
3812
但是這些無形的差異不會太複雜,
02:11
because there have only been 250,000 generations
38
131094
4285
因為從我們共同的祖先以來,
02:15
since our last common ancestor.
39
135379
1732
只經過了25萬代。
02:17
We know that complicated mechanisms take a long time to evolve.
40
137111
3849
我們知道複雜的機制 需要很長的時間演化。
02:22
So a bunch of relatively minor changes
41
142000
2499
因此 一些相對微小的變化
02:24
take us from Kanzi to Witten,
42
144499
3067
將我們從坎茲先生變成了維騰,
02:27
from broken-off tree branches to intercontinental ballistic missiles.
43
147566
4543
從撿起掉落的樹枝當武器 到發射洲際彈道飛彈
02:32
So this then seems pretty obvious that everything we've achieved,
44
152839
3935
因此,顯而易見的是 至今我們所實現的所有事
02:36
and everything we care about,
45
156774
1378
以及我們關心的所有事物,
02:38
depends crucially on some relatively minor changes that made the human mind.
46
158152
5228
都取決於人腦中相對微小的改變。
02:44
And the corollary, of course, is that any further changes
47
164650
3662
由此而來的推論就是:在未來,
02:48
that could significantly change the substrate of thinking
48
168312
3477
任何能顯著地改變思想基體的變化
02:51
could have potentially enormous consequences.
49
171789
3202
都有可能會帶來巨大的後果。
02:56
Some of my colleagues think we're on the verge
50
176321
2905
我的一些同事覺得我們即將發現
02:59
of something that could cause a profound change in that substrate,
51
179226
3908
足以深刻的改變思想基體的科技
03:03
and that is machine superintelligence.
52
183134
3213
那就是超級機器智慧
03:06
Artificial intelligence used to be about putting commands in a box.
53
186347
4739
以前的人工智慧是 將指令輸入到一個箱子裡。
03:11
You would have human programmers
54
191086
1665
你需要程式設計師
03:12
that would painstakingly handcraft knowledge items.
55
192751
3135
精心的將知識設計成指令。
03:15
You build up these expert systems,
56
195886
2086
你建立這些專門系統,
03:17
and they were kind of useful for some purposes,
57
197972
2324
這些系統在某些特定的領域中有點用,
03:20
but they were very brittle, you couldn't scale them.
58
200296
2681
但是它們很生硬, 你無法延展這些系統。
03:22
Basically, you got out only what you put in.
59
202977
3433
基本上這些系統所輸出的東西 僅限於你事先輸入的範圍。
03:26
But since then,
60
206410
997
但是從那時起,
03:27
a paradigm shift has taken place in the field of artificial intelligence.
61
207407
3467
人工智慧的領域裡發生了模式的轉變。
03:30
Today, the action is really around machine learning.
62
210874
2770
現在主要的課題是機器的學習。
03:34
So rather than handcrafting knowledge representations and features,
63
214394
5387
因此,與其設計知識的表現及特點,
03:40
we create algorithms that learn, often from raw perceptual data.
64
220511
5554
我們寫出具有學習原始感官數據 的能力的程式碼。
03:46
Basically the same thing that the human infant does.
65
226065
4998
基本上和嬰兒所做的是一樣的。
03:51
The result is A.I. that is not limited to one domain --
66
231063
4207
結果就是不侷限於 某個領域的人工智慧 --
03:55
the same system can learn to translate between any pairs of languages,
67
235270
4631
同一個系統可以學習 在任何兩種語言之間翻譯
03:59
or learn to play any computer game on the Atari console.
68
239901
5437
或者學著玩雅達利系統上 的任何一款遊戲。
04:05
Now of course,
69
245338
1779
現在當然
04:07
A.I. is still nowhere near having the same powerful, cross-domain
70
247117
3999
人工智慧到現在 還未能達到像人類一樣
04:11
ability to learn and plan as a human being has.
71
251116
3219
具有強大的跨領域的學習能力。
04:14
The cortex still has some algorithmic tricks
72
254335
2126
人類大腦還具有一些運算技巧
04:16
that we don't yet know how to match in machines.
73
256461
2355
我們不知道如何將這些技巧 複製到機器中。
04:19
So the question is,
74
259886
1899
所以現在需要問的是:
04:21
how far are we from being able to match those tricks?
75
261785
3500
我們還要多久才能 在機器裡面複製這些技巧?
04:26
A couple of years ago,
76
266245
1083
在幾年前,
04:27
we did a survey of some of the world's leading A.I. experts,
77
267328
2888
我們對世界頂尖的人工智慧專家 做了一次問卷調查,
04:30
to see what they think, and one of the questions we asked was,
78
270216
3224
想要看看他們的想法, 其中的一個題目是:
04:33
"By which year do you think there is a 50 percent probability
79
273440
3353
"到哪一年你覺得 人類會有50%的機率
04:36
that we will have achieved human-level machine intelligence?"
80
276793
3482
能夠達成人類級的人工智慧?"
04:40
We defined human-level here as the ability to perform
81
280785
4183
我們把人類級的人工智慧 定義為有能力
04:44
almost any job at least as well as an adult human,
82
284968
2871
將任何任務至少執行得 像一名成年人一樣好,
04:47
so real human-level, not just within some limited domain.
83
287839
4005
所以是真正的人類級別, 而不是僅限於某些領域。
04:51
And the median answer was 2040 or 2050,
84
291844
3650
而答案的中位數是2040或2050年
04:55
depending on precisely which group of experts we asked.
85
295494
2806
取決於我們問的專家屬於什麼群體。
04:58
Now, it could happen much, much later, or sooner,
86
298300
4039
當然,這個有可能過很久才實現, 也有可能提早實現
05:02
the truth is nobody really knows.
87
302339
1940
沒有人知道確切的時間。
05:05
What we do know is that the ultimate limit to information processing
88
305259
4412
我們知道的是, 機器基體處理資訊能力的最終界限
05:09
in a machine substrate lies far outside the limits in biological tissue.
89
309671
4871
比生物組織的界限要大的多。
05:15
This comes down to physics.
90
315241
2378
這取決於物理原理。
05:17
A biological neuron fires, maybe, at 200 hertz, 200 times a second.
91
317619
4718
一個生物神經元發出脈衝的頻率 可能在200赫茲,每秒200次。
05:22
But even a present-day transistor operates at the Gigahertz.
92
322337
3594
但就算是現在的電晶體 都以千兆赫(GHz)的頻率運轉。
05:25
Neurons propagate slowly in axons, 100 meters per second, tops.
93
325931
5297
神經元在軸突中傳輸的速度 比較慢,頂多是每秒100公尺。
05:31
But in computers, signals can travel at the speed of light.
94
331228
3111
但在電腦裡面,信號是以光速傳播的。
05:35
There are also size limitations,
95
335079
1869
另外還有尺寸的限制
05:36
like a human brain has to fit inside a cranium,
96
336948
3027
就像人類的大腦 必需要放得進顱骨內。
05:39
but a computer can be the size of a warehouse or larger.
97
339975
4761
但是一部電腦可以 跟倉庫一樣大,甚至更大。
05:44
So the potential for superintelligence lies dormant in matter,
98
344736
5599
因此超級智慧的潛能 現在正潛伏在物質裡面,
05:50
much like the power of the atom lay dormant throughout human history,
99
350335
5712
就像是原子能 在人類的歷史中一直潛伏著,
05:56
patiently waiting there until 1945.
100
356047
4405
耐心的等著,一直到1945年。
06:00
In this century,
101
360452
1248
在這個世紀內,
06:01
scientists may learn to awaken the power of artificial intelligence.
102
361700
4118
科學家有可能會 將人工智慧的力量喚醒。
06:05
And I think we might then see an intelligence explosion.
103
365818
4008
屆時我覺得我們會 見證到智慧的大爆發。
06:10
Now most people, when they think about what is smart and what is dumb,
104
370406
3957
大部分的人,當他們在想 什麼是聰明什麼是愚笨的時候,
06:14
I think have in mind a picture roughly like this.
105
374363
3023
我想他們腦中浮現出的畫面 會是這樣的:
06:17
So at one end we have the village idiot,
106
377386
2598
在一邊是村裡的傻子,
06:19
and then far over at the other side
107
379984
2483
然後在另外一邊
06:22
we have Ed Witten, or Albert Einstein, or whoever your favorite guru is.
108
382467
4756
是 愛德 維騰 或愛因斯坦, 或你喜歡的某位大師。
06:27
But I think that from the point of view of artificial intelligence,
109
387223
3834
但是我覺得從人工智慧的觀點來看,
06:31
the true picture is actually probably more like this:
110
391057
3681
真正的畫面應該比較像這樣子:
06:35
AI starts out at this point here, at zero intelligence,
111
395258
3378
人工智慧從這一點開始,零智慧
06:38
and then, after many, many years of really hard work,
112
398636
3011
然後,在許多許多年 辛苦的研究以後,
06:41
maybe eventually we get to mouse-level artificial intelligence,
113
401647
3844
我們可能可以達到 老鼠級的人工智慧,
06:45
something that can navigate cluttered environments
114
405491
2430
它可以在凌亂的環境中找到路
06:47
as well as a mouse can.
115
407921
1987
就像一隻老鼠一樣。
06:49
And then, after many, many more years of really hard work, lots of investment,
116
409908
4313
然後,在更多年的辛苦研究 及投資了很多資源之後,
06:54
maybe eventually we get to chimpanzee-level artificial intelligence.
117
414221
4639
我們可能可以達到 黑猩猩級的人工智慧。
06:58
And then, after even more years of really, really hard work,
118
418860
3210
然後,在更加多年的辛苦研究之後,
07:02
we get to village idiot artificial intelligence.
119
422070
2913
我們達到村莊傻子級別的人工智慧。
07:04
And a few moments later, we are beyond Ed Witten.
120
424983
3272
然後過一小會兒後, 我們就超越了愛德維騰。
07:08
The train doesn't stop at Humanville Station.
121
428255
2970
這列火車並不會 在人類村這一站就停車。
07:11
It's likely, rather, to swoosh right by.
122
431225
3022
它比較可能會直接呼嘯而過。
07:14
Now this has profound implications,
123
434247
1984
這個具有深遠的寓意,
07:16
particularly when it comes to questions of power.
124
436231
3862
特別是在談到權力的問題。
07:20
For example, chimpanzees are strong --
125
440093
1899
舉例來說,黑猩猩很強壯 --
07:21
pound for pound, a chimpanzee is about twice as strong as a fit human male.
126
441992
5222
以體重比例來說, 一隻黑猩猩 比一個健康的男性人類要強壯兩倍。
07:27
And yet, the fate of Kanzi and his pals depends a lot more
127
447214
4614
然而,坎茲和他朋友們的命運 則很大的部分取決於
07:31
on what we humans do than on what the chimpanzees do themselves.
128
451828
4140
人類的作為, 而非黑猩猩們自己的作為。
07:37
Once there is superintelligence,
129
457228
2314
當超級智慧出現後,
07:39
the fate of humanity may depend on what the superintelligence does.
130
459542
3839
人類的命運可能會取決於 超級智慧的作為。
07:44
Think about it:
131
464451
1057
想想看:
07:45
Machine intelligence is the last invention that humanity will ever need to make.
132
465508
5044
機器智慧將會是人類所需要作出的 最後一個發明。
07:50
Machines will then be better at inventing than we are,
133
470552
2973
從那之後機器將會比人類更會發明,
07:53
and they'll be doing so on digital timescales.
134
473525
2540
他們也將會在"數位時間"裡 做出這些事。
07:56
What this means is basically a telescoping of the future.
135
476065
4901
這意味著未來到來的時間將被縮短。
08:00
Think of all the crazy technologies that you could have imagined
136
480966
3558
想想那些我們曾經想像過的瘋狂科技
08:04
maybe humans could have developed in the fullness of time:
137
484524
2798
人類可能在有足夠的時間下 可以發明出來:
08:07
cures for aging, space colonization,
138
487322
3258
防止衰老、殖民太空、
08:10
self-replicating nanobots or uploading of minds into computers,
139
490580
3731
自行複製的奈米機器人, 或將我們的頭腦上載到電腦裡,
08:14
all kinds of science fiction-y stuff
140
494311
2159
這一些僅存在科幻小說範疇,
08:16
that's nevertheless consistent with the laws of physics.
141
496470
2737
但同時還是符合物理法則的東西
08:19
All of this superintelligence could develop, and possibly quite rapidly.
142
499207
4212
超級智慧有辦法開發出這些東西, 而且速度可能很快。
08:24
Now, a superintelligence with such technological maturity
143
504449
3558
這麼成熟的超級智慧
08:28
would be extremely powerful,
144
508007
2179
將會非常的強大,
08:30
and at least in some scenarios, it would be able to get what it wants.
145
510186
4546
最少在某些場景它將有辦法 得到它想要的東西。
08:34
We would then have a future that would be shaped by the preferences of this A.I.
146
514732
5661
這樣以來我們的未來就將會 被這個超級智慧的偏好所影響。
08:41
Now a good question is, what are those preferences?
147
521855
3749
現在出現了一個好問題, 這些偏好是什麼呢?
08:46
Here it gets trickier.
148
526244
1769
這個問題更棘手。
08:48
To make any headway with this,
149
528013
1435
要在這個領域往前走,
08:49
we must first of all avoid anthropomorphizing.
150
529448
3276
我們必須避免 將機器智慧擬人化(人格化)。
08:53
And this is ironic because every newspaper article
151
533934
3301
這一點很諷刺因為 每一篇關於未來的人工智慧
08:57
about the future of A.I. has a picture of this:
152
537235
3855
的報導都會有這張照片:
09:02
So I think what we need to do is to conceive of the issue more abstractly,
153
542280
4134
所以我覺得我們必須要 更抽象的來想像這個議題,
09:06
not in terms of vivid Hollywood scenarios.
154
546414
2790
而非以好萊塢的鮮明場景來想像。
09:09
We need to think of intelligence as an optimization process,
155
549204
3617
我們需要把智慧看做是 一個優化的過程,
09:12
a process that steers the future into a particular set of configurations.
156
552821
5649
一個將未來指引到 特定的組態的過程。
09:18
A superintelligence is a really strong optimization process.
157
558470
3511
一個超級智慧 是一個很強大的優化過程。
09:21
It's extremely good at using available means to achieve a state
158
561981
4117
它將很會利用現有資源
09:26
in which its goal is realized.
159
566098
1909
去達到達成目標的狀態。
09:28
This means that there is no necessary connection between
160
568447
2672
這意味著有著高智慧以及
09:31
being highly intelligent in this sense,
161
571119
2734
擁有一個對人類來說 是有意義的目標之間
09:33
and having an objective that we humans would find worthwhile or meaningful.
162
573853
4662
並沒有必然的聯繫。
09:39
Suppose we give an A.I. the goal to make humans smile.
163
579321
3794
假設我們給予人工智慧的目標 是讓人類笑。
09:43
When the A.I. is weak, it performs useful or amusing actions
164
583115
2982
當人工智慧比較弱時, 它會做出有用的或是好笑的動作
09:46
that cause its user to smile.
165
586097
2517
以讓使用者笑出來。
09:48
When the A.I. becomes superintelligent,
166
588614
2417
當人工智慧演化成超級智慧的時後,
09:51
it realizes that there is a more effective way to achieve this goal:
167
591031
3523
它會體認到有更有效的方法 可以達到這個目標:
09:54
take control of the world
168
594554
1922
控制這個世界
09:56
and stick electrodes into the facial muscles of humans
169
596476
3162
然後在人類的臉部肌肉上連接電級
09:59
to cause constant, beaming grins.
170
599638
2941
以使這個人不斷的微笑。
10:02
Another example,
171
602579
1035
另外一個例子,
10:03
suppose we give A.I. the goal to solve a difficult mathematical problem.
172
603614
3383
假設我們給人工智慧的目標是 解出一個非常困難的數學問題。
10:06
When the A.I. becomes superintelligent,
173
606997
1937
當人工智慧變成超級智慧時,
10:08
it realizes that the most effective way to get the solution to this problem
174
608934
4171
它會體認到最有效的方法是
10:13
is by transforming the planet into a giant computer,
175
613105
2930
把整個地球轉化成 一部超大號的電腦,
10:16
so as to increase its thinking capacity.
176
616035
2246
進而增加它自己的運算能力。
10:18
And notice that this gives the A.I.s an instrumental reason
177
618281
2764
注意到這個模式 會給人工智慧理由去做
10:21
to do things to us that we might not approve of.
178
621045
2516
我們可能不認可的事情。
10:23
Human beings in this model are threats,
179
623561
1935
在這個模型裡面人類是威脅,
10:25
we could prevent the mathematical problem from being solved.
180
625496
2921
我們可能會在解開數學問題 的過程中成為阻礙。
10:29
Of course, perceivably things won't go wrong in these particular ways;
181
629207
3494
當然,在我們可預見的範圍內, 事情不會以這種方式出錯;
10:32
these are cartoon examples.
182
632701
1753
這些是誇大的例子。
10:34
But the general point here is important:
183
634454
1939
但是它指出的概念很重要:
10:36
if you create a really powerful optimization process
184
636393
2873
如果你創造了一個 非常強大的優化流程
10:39
to maximize for objective x,
185
639266
2234
要最大化目標X,
10:41
you better make sure that your definition of x
186
641500
2276
你最好確保你對目標X的定義
10:43
incorporates everything you care about.
187
643776
2469
包含了所有你所在意的事情。
10:46
This is a lesson that's also taught in many a myth.
188
646835
4384
這也是在很多神話故事中 教導的寓意。
10:51
King Midas wishes that everything he touches be turned into gold.
189
651219
5298
希臘神話中的米達斯國王希望 他碰到的所有東西都可以變成金子。
10:56
He touches his daughter, she turns into gold.
190
656517
2861
他碰到了他的女兒, 她變成了黃金。
10:59
He touches his food, it turns into gold.
191
659378
2553
他碰到了他的食物, 他的食物也變成了黃金。
11:01
This could become practically relevant,
192
661931
2589
這實際上跟我們的題目有關,
11:04
not just as a metaphor for greed,
193
664520
2070
不僅僅是對貪婪的隱喻,
11:06
but as an illustration of what happens
194
666590
1895
但也指出了如果你創造了 一個強大的優化流程
11:08
if you create a powerful optimization process
195
668485
2837
但同時給了它 不正確或不精確的目標後
11:11
and give it misconceived or poorly specified goals.
196
671322
4789
會發生什麼事。
11:16
Now you might say, if a computer starts sticking electrodes into people's faces,
197
676111
5189
你可能會說,如果電腦系統 開始在人臉上安裝電極,
11:21
we'd just shut it off.
198
681300
2265
我們可以直接把他關掉就好了。
11:24
A, this is not necessarily so easy to do if we've grown dependent on the system --
199
684555
5340
一、這並不一定容易做到,如果我們 已經對這個系統產生依賴性 ——
11:29
like, where is the off switch to the Internet?
200
689895
2732
比如:你知道網際網路的開關在哪裡嗎?
11:32
B, why haven't the chimpanzees flicked the off switch to humanity,
201
692627
5120
二、為什麼黑猩猩當初 沒有把人類的開關關掉?
11:37
or the Neanderthals?
202
697747
1551
或是尼安德特人?
11:39
They certainly had reasons.
203
699298
2666
他們有很明顯的理由要這麼做,
11:41
We have an off switch, for example, right here.
204
701964
2795
而我們的開關就在這裡:
11:44
(Choking)
205
704759
1554
(窒息聲)
11:46
The reason is that we are an intelligent adversary;
206
706313
2925
原因是人類是很聰明的敵人;
11:49
we can anticipate threats and plan around them.
207
709238
2728
我們可以預見威脅 並為其做出準備。
11:51
But so could a superintelligent agent,
208
711966
2504
但一個超級智慧也會,
11:54
and it would be much better at that than we are.
209
714470
3254
而且它的能力將比我們強大的多。
11:57
The point is, we should not be confident that we have this under control here.
210
717724
7187
我想要說的一點是,我們不應該 覺得一切都在我們的掌握之中。
12:04
And we could try to make our job a little bit easier by, say,
211
724911
3447
我們可能可以藉由 把AI放到一個盒子裡面
12:08
putting the A.I. in a box,
212
728358
1590
來給我們更多的掌握,
12:09
like a secure software environment,
213
729948
1796
就像是一個獨立的軟體環境,
12:11
a virtual reality simulation from which it cannot escape.
214
731744
3022
一個AI無法逃脫的虛擬實境。
12:14
But how confident can we be that the A.I. couldn't find a bug.
215
734766
4146
但是我們有多大的信心 這個AI不會找到漏洞?
12:18
Given that merely human hackers find bugs all the time,
216
738912
3169
就算只是人類駭客, 他們還經常找出漏洞。
12:22
I'd say, probably not very confident.
217
742081
3036
我想我們不是很有信心。
12:26
So we disconnect the ethernet cable to create an air gap,
218
746237
4548
那所以我們把網路線拔掉, 製造一個物理間隙,
12:30
but again, like merely human hackers
219
750785
2668
但同樣的,就算只是人類駭客
12:33
routinely transgress air gaps using social engineering.
220
753453
3381
也經常可以利用社交工程陷阱 來突破物理間隙。
12:36
Right now, as I speak,
221
756834
1259
現在,在我在台上說話的同時
12:38
I'm sure there is some employee out there somewhere
222
758093
2389
我確定在世界的某一個角落裡 有一名公司職員
12:40
who has been talked into handing out her account details
223
760482
3346
才剛剛被自稱來自IT部門 的人士說服(詐騙)
12:43
by somebody claiming to be from the I.T. department.
224
763828
2746
並交出了她的帳戶信息。
12:46
More creative scenarios are also possible,
225
766574
2127
更天馬行空的狀況也可能會發生,
12:48
like if you're the A.I.,
226
768701
1315
就像是如果你是AI,
12:50
you can imagine wiggling electrodes around in your internal circuitry
227
770016
3532
你可以想像藉由擺動你體內的電路
12:53
to create radio waves that you can use to communicate.
228
773548
3462
然後創造出無線電波, 用以與外界溝通。
12:57
Or maybe you could pretend to malfunction,
229
777010
2424
或這你可以假裝有故障,
12:59
and then when the programmers open you up to see what went wrong with you,
230
779434
3497
然後當程式設計師 把你打開檢查哪裡出錯時,
13:02
they look at the source code -- Bam! --
231
782931
1936
他們找出了原始碼 --梆--
13:04
the manipulation can take place.
232
784867
2447
你可以在此做出操控。
13:07
Or it could output the blueprint to a really nifty technology,
233
787314
3430
或這它可以做出一個 很巧妙的科技藍圖,
13:10
and when we implement it,
234
790744
1398
當我們實施這個藍圖後,
13:12
it has some surreptitious side effect that the A.I. had planned.
235
792142
4397
它會產生一些AI計劃好的 秘密副作用。
13:16
The point here is that we should not be confident in our ability
236
796539
3463
寓意是我們不能 對我們控制人工智慧的能力
13:20
to keep a superintelligent genie locked up in its bottle forever.
237
800002
3808
具有太大的信心
13:23
Sooner or later, it will out.
238
803810
2254
它終究會逃脫出來, 只是時間問題而已。
13:27
I believe that the answer here is to figure out
239
807034
3103
我覺得解方是我們需要弄清楚
13:30
how to create superintelligent A.I. such that even if -- when -- it escapes,
240
810137
5024
如何創造出一個超級智慧, 哪怕是它逃出來了,
13:35
it is still safe because it is fundamentally on our side
241
815161
3277
它還是安全的, 因為它是站在我們這一邊的
13:38
because it shares our values.
242
818438
1899
因為它擁有了我們的價值觀。
13:40
I see no way around this difficult problem.
243
820337
3210
我們沒有辦法避免這個艱難的問題。
13:44
Now, I'm actually fairly optimistic that this problem can be solved.
244
824557
3834
但是我覺得我們可以解決這個問題。
13:48
We wouldn't have to write down a long list of everything we care about,
245
828391
3903
我們並不需要把 我們在乎的所有事物寫下來,
13:52
or worse yet, spell it out in some computer language
246
832294
3643
或更麻煩的把這些事物 寫成電腦程式語言
13:55
like C++ or Python,
247
835937
1454
像是 C++或 Python,
13:57
that would be a task beyond hopeless.
248
837391
2767
這是個不可能完成的任務。
14:00
Instead, we would create an A.I. that uses its intelligence
249
840158
4297
與其,我們可以創造出 一個人工智慧,它用它自己的智慧
14:04
to learn what we value,
250
844455
2771
來學習我們的價值觀,
14:07
and its motivation system is constructed in such a way that it is motivated
251
847226
5280
它的激勵機制要設計成 會讓它想要
14:12
to pursue our values or to perform actions that it predicts we would approve of.
252
852506
5232
來追求我們的價值觀或者 去做它認為我們會贊成的事情。
14:17
We would thus leverage its intelligence as much as possible
253
857738
3414
藉此我們可以最大化地 利用到它們的智慧
14:21
to solve the problem of value-loading.
254
861152
2745
來解決這個價值觀的問題。
14:24
This can happen,
255
864727
1512
這個是有可能的,
14:26
and the outcome could be very good for humanity.
256
866239
3596
而且這個的結果 可對人類是非常有益的。
14:29
But it doesn't happen automatically.
257
869835
3957
但是它不會自動發生。
14:33
The initial conditions for the intelligence explosion
258
873792
2998
如果我們需要控制 這個智慧的大爆炸,
14:36
might need to be set up in just the right way
259
876790
2863
那智慧大爆炸的初始條件
14:39
if we are to have a controlled detonation.
260
879653
3530
需要被正確的建立起來。
14:43
The values that the A.I. has need to match ours,
261
883183
2618
人工智慧的價值觀 要和我們的一致,
14:45
not just in the familiar context,
262
885801
1760
並不只是在常見的狀況下,
14:47
like where we can easily check how the A.I. behaves,
263
887561
2438
比如我們可以 很簡單低檢查它的行為,
14:49
but also in all novel contexts that the A.I. might encounter
264
889999
3234
但也要在未來所有人工智慧 可能會遇到的情況下
14:53
in the indefinite future.
265
893233
1557
保持價值觀的一致。
14:54
And there are also some esoteric issues that would need to be solved, sorted out:
266
894790
4737
還有很多深奧的問題需要被解決:
14:59
the exact details of its decision theory,
267
899527
2089
它們決策概念的所有細節,
15:01
how to deal with logical uncertainty and so forth.
268
901616
2864
它如何面對解決 邏輯不確定性的情況等問題。
15:05
So the technical problems that need to be solved to make this work
269
905330
3102
所以技術上待解決的問題
15:08
look quite difficult --
270
908432
1113
讓這個任務看起來蠻難的 --
15:09
not as difficult as making a superintelligent A.I.,
271
909545
3380
還沒有像做出一個超級智慧 那樣的難,
15:12
but fairly difficult.
272
912925
2868
但還是挺難的。
15:15
Here is the worry:
273
915793
1695
我們所擔心的是:
15:17
Making superintelligent A.I. is a really hard challenge.
274
917488
4684
創造出一個超級智慧 是一個很難的挑戰。
15:22
Making superintelligent A.I. that is safe
275
922172
2548
創造出一個安全的超級智慧
15:24
involves some additional challenge on top of that.
276
924720
2416
是一個更大的挑戰。
15:28
The risk is that if somebody figures out how to crack the first challenge
277
928216
3487
最大的風險在於 有人想出了如何解決第一個難題
15:31
without also having cracked the additional challenge
278
931703
3001
但是沒有解決第二個問題
15:34
of ensuring perfect safety.
279
934704
1901
來確保安全性萬無一失。
15:37
So I think that we should work out a solution
280
937375
3331
所以我覺得我們應該先想出
15:40
to the control problem in advance,
281
940706
2822
如何"控制"的方法。
15:43
so that we have it available by the time it is needed.
282
943528
2660
這樣當我們需要的時候 我們可以用的到它。
15:46
Now it might be that we cannot solve the entire control problem in advance
283
946768
3507
現在也許我們無法 完全解決「控制」的問題
15:50
because maybe some elements can only be put in place
284
950275
3024
因為有時候你要了解 你所想要控制的架構後
15:53
once you know the details of the architecture where it will be implemented.
285
953299
3997
你才能知道如何實施。
15:57
But the more of the control problem that we solve in advance,
286
957296
3380
但是如果我們可以 事先解決更多的難題
16:00
the better the odds that the transition to the machine intelligence era
287
960676
4090
我們順利的進入到 機器智能時代的機率
16:04
will go well.
288
964766
1540
就會更高。
16:06
This to me looks like a thing that is well worth doing
289
966306
4644
這對我來說是一個值得挑戰的事情
16:10
and I can imagine that if things turn out okay,
290
970950
3332
而且我能想像到如果一切順利的話,
16:14
that people a million years from now look back at this century
291
974282
4658
我們的後代,幾百萬年以後的人類 回顧我們這個時代的時候
16:18
and it might well be that they say that the one thing we did that really mattered
292
978940
4002
他們可能會說我們 所做的最重要的事就是
16:22
was to get this thing right.
293
982942
1567
把這個事情弄對了。
16:24
Thank you.
294
984509
1689
謝謝
16:26
(Applause)
295
986198
2813
(觀眾掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog