How to take a picture of a black hole | Katie Bouman

3,372,581 views ・ 2017-04-28

TED


请双击下面的英文字幕来播放视频。

翻译人员: Anney Ye 校对人员: Yolanda Zhang
00:13
In the movie "Interstellar,"
0
13436
1860
在电影《星际穿越》中,
我们得以近距离观察一个超级黑洞。
00:15
we get an up-close look at a supermassive black hole.
1
15320
3327
00:18
Set against a backdrop of bright gas,
2
18671
2143
在明亮气体构成的背景下,
00:20
the black hole's massive gravitational pull
3
20838
2118
黑洞的巨大引力
00:22
bends light into a ring.
4
22980
1435
将光线弯曲成环形。
00:24
However, this isn't a real photograph,
5
24439
2109
但是,(电影中的)这一幕 并不是一张真正的照片,
00:26
but a computer graphic rendering --
6
26572
1786
而是电脑合成的效果——
00:28
an artistic interpretation of what a black hole might look like.
7
28382
3390
它只是一个对于黑洞 可能样子的艺术表现。
00:32
A hundred years ago,
8
32401
1166
一百多年前,
00:33
Albert Einstein first published his theory of general relativity.
9
33591
3601
阿尔伯特·爱因斯坦 第一次发表了广义相对论学说。
在之后的数年里,
00:37
In the years since then,
10
37216
1439
00:38
scientists have provided a lot of evidence in support of it.
11
38679
2973
科学家们又对此提供了许多佐证。
00:41
But one thing predicted from this theory, black holes,
12
41676
3084
但相对论中所预测的一点,黑洞,
00:44
still have not been directly observed.
13
44784
2350
却始终无法被直接观察到。
尽管我们大致知道一个黑洞 看起来应该是什么样,
00:47
Although we have some idea as to what a black hole might look like,
14
47158
3206
却从未真正拍摄过它。
00:50
we've never actually taken a picture of one before.
15
50388
2779
不过,这个现状可能很快就会改变。
00:53
However, you might be surprised to know that that may soon change.
16
53191
4279
00:57
We may be seeing our first picture of a black hole in the next couple years.
17
57494
4164
在接下来几年内,我们或许就能 见到第一张黑洞的图片。
01:01
Getting this first picture will come down to an international team of scientists,
18
61682
3958
这一重任会落在一个由 各国科学家组成的团队上,
01:05
an Earth-sized telescope
19
65664
1567
同时需要一个 地球大小的天文望远镜,
01:07
and an algorithm that puts together the final picture.
20
67255
2832
以及一个可以让我们合成出 最终图片的算法。
尽管今天我不能让你们 见到真正的黑洞图片,
01:10
Although I won't be able to show you a real picture of a black hole today,
21
70111
3528
01:13
I'd like to give you a brief glimpse into the effort involved
22
73663
2911
我还是想让你们大致了解一下
01:16
in getting that first picture.
23
76598
1613
得到第一张(黑洞)图片 所需要的努力。
01:19
My name is Katie Bouman,
24
79477
1437
我叫凯蒂·伯曼,
01:20
and I'm a PhD student at MIT.
25
80938
2566
是麻省理工学院的一名博士生。
01:23
I do research in a computer science lab
26
83528
2027
我在计算机科学实验室中进行
01:25
that works on making computers see through images and video.
27
85579
3298
让电脑解析图片和视频信息的研究。
01:28
But although I'm not an astronomer,
28
88901
2162
尽管我并不是个天文学家,
今天我还是想向大家展示
01:31
today I'd like to show you
29
91087
1285
我是怎样在这个项目中贡献 自己的一份力量的。
01:32
how I've been able to contribute to this exciting project.
30
92396
2903
01:35
If you go out past the bright city lights tonight,
31
95323
2831
如果你远离城市的灯光,
你可能有幸看到银河系
01:38
you may just be lucky enough to see a stunning view
32
98178
2436
01:40
of the Milky Way Galaxy.
33
100638
1493
那令人震撼的美景。
而如果你可以穿过百万星辰, 将镜头放大到
01:42
And if you could zoom past millions of stars,
34
102155
2462
01:44
26,000 light-years toward the heart of the spiraling Milky Way,
35
104641
3755
2.6万光年以外的银河系中心,
01:48
we'd eventually reach a cluster of stars right at the center.
36
108420
3521
我们就能抵达(银河系)中央的 一群恒星。
01:51
Peering past all the galactic dust with infrared telescopes,
37
111965
3206
天文学家们已经穿过星尘,使用红外望远镜
观察了这些恒星整整十六年。
01:55
astronomers have watched these stars for over 16 years.
38
115195
3867
但是天文学家们所看不到的东西 才是最为壮观的。
01:59
But it's what they don't see that is the most spectacular.
39
119086
3589
02:02
These stars seem to orbit an invisible object.
40
122699
3066
这些恒星似乎是在围绕一个 隐形的物体旋转。
02:05
By tracking the paths of these stars,
41
125789
2323
通过观测这些星星的移动路径,
天文学家们得出结论,
02:08
astronomers have concluded
42
128136
1294
02:09
that the only thing small and heavy enough to cause this motion
43
129454
3129
体积足够小,而质量又大到能导致 恒星们如此运动的唯一物体
02:12
is a supermassive black hole --
44
132607
1968
就是超级黑洞——
02:14
an object so dense that it sucks up anything that ventures too close --
45
134599
4178
它的密度极大,高到它能吸进 周围所有东西,
02:18
even light.
46
138801
1494
甚至光。
02:20
But what happens if we were to zoom in even further?
47
140319
3061
那么,如果我们继续放大下去, 会发生什么?
02:23
Is it possible to see something that, by definition, is impossible to see?
48
143404
4733
是不是就可能看见一些, 理论上不可能看到的东西呢?
02:28
Well, it turns out that if we were to zoom in at radio wavelengths,
49
148719
3244
事实上,如果我们以 无线电波长放大,
02:31
we'd expect to see a ring of light
50
151987
1682
我们会看到一圈光线,
02:33
caused by the gravitational lensing of hot plasma
51
153693
2411
是由围绕着黑洞的
等离子体引力透镜产生的。
02:36
zipping around the black hole.
52
156128
1829
02:37
In other words,
53
157981
1160
换句话说,
这个黑洞,在背后明亮物质的衬托下,
02:39
the black hole casts a shadow on this backdrop of bright material,
54
159165
3171
留下一个圆形的暗影。
02:42
carving out a sphere of darkness.
55
162360
1842
02:44
This bright ring reveals the black hole's event horizon,
56
164226
3339
而它周围那明亮的光环 指示了黑洞边境的位置。
02:47
where the gravitational pull becomes so great
57
167589
2400
在这里,引力作用变得无比巨大,
大到就连光线都无法逃离。
02:50
that not even light can escape.
58
170013
1626
02:51
Einstein's equations predict the size and shape of this ring,
59
171663
2859
爱因斯坦用公式推测了 这个环的大小和形状,
02:54
so taking a picture of it wouldn't only be really cool,
60
174546
3208
所以,给光环拍照不仅很酷,
02:57
it would also help to verify that these equations hold
61
177778
2618
还能帮助我们检验这些公式在
03:00
in the extreme conditions around the black hole.
62
180420
2466
黑洞周围的极端环境下是否成立。
03:02
However, this black hole is so far away from us,
63
182910
2558
不过,这个黑洞离我们太过遥远,
03:05
that from Earth, this ring appears incredibly small --
64
185492
3098
从地球上看,它非常,非常小——
03:08
the same size to us as an orange on the surface of the moon.
65
188614
3590
大概就和月球上的一个橘子一样大。
03:12
That makes taking a picture of it extremely difficult.
66
192758
2824
这导致给它拍照变得无比艰难。
03:16
Why is that?
67
196645
1302
为什么呢?
03:18
Well, it all comes down to a simple equation.
68
198512
3188
一切都源于一个简单的等式。
03:21
Due to a phenomenon called diffraction,
69
201724
2416
由于衍射现象,
我们所能看到的
03:24
there are fundamental limits
70
204164
1355
03:25
to the smallest objects that we can possibly see.
71
205543
2670
最小物体是有限制的。
03:28
This governing equation says that in order to see smaller and smaller,
72
208789
3672
这个等式指出,当想要看到的 东西越来越小时,
03:32
we need to make our telescope bigger and bigger.
73
212485
2587
望远镜需要变得更大。
但即使是地球上功能最强大的 光学望远镜,
03:35
But even with the most powerful optical telescopes here on Earth,
74
215096
3069
其分辨率甚至不足以
03:38
we can't even get close to the resolution necessary
75
218189
2419
03:40
to image on the surface of the moon.
76
220632
2198
让我们得到月球表面的图片。
03:42
In fact, here I show one of the highest resolution images ever taken
77
222854
3617
事实上,这里是一张有史以来 从地球上拍摄的最高清的
03:46
of the moon from Earth.
78
226495
1397
月球图片。
03:47
It contains roughly 13,000 pixels,
79
227916
2557
它包含约1.3万个像素,
03:50
and yet each pixel would contain over 1.5 million oranges.
80
230497
4050
而每一个像素里包含超过150万个橘子。
03:55
So how big of a telescope do we need
81
235396
1972
所以,我们需要多大的望远镜
03:57
in order to see an orange on the surface of the moon
82
237392
2765
才能看到月球表面的橘子,
以及,那个黑洞呢?
04:00
and, by extension, our black hole?
83
240181
2214
04:02
Well, it turns out that by crunching the numbers,
84
242419
2340
事实上,通过计算,
我们可以轻易得出所需的 望远镜的大小,
04:04
you can easily calculate that we would need a telescope
85
244783
2610
就和整个地球一样大。
04:07
the size of the entire Earth.
86
247417
1393
(笑声)
04:08
(Laughter)
87
248834
1024
而如果我们能够建造出这个 地球大小的望远镜,
04:09
If we could build this Earth-sized telescope,
88
249882
2119
就能够分辨出那指示着视界线的
04:12
we could just start to make out that distinctive ring of light
89
252025
2925
独特的光环。
04:14
indicative of the black hole's event horizon.
90
254974
2183
尽管在这张照片上,我们无法看到
04:17
Although this picture wouldn't contain all the detail we see
91
257181
2918
电脑合成图上的那些细节,
04:20
in computer graphic renderings,
92
260123
1506
它仍可以让我们对于
04:21
it would allow us to safely get our first glimpse
93
261653
2299
04:23
of the immediate environment around a black hole.
94
263976
2487
黑洞周围的环境有个大致的了解。
04:26
However, as you can imagine,
95
266487
1613
但是,正如你预料,
想建造一个地球大小的射电望远镜 是不可能的。
04:28
building a single-dish telescope the size of the Earth is impossible.
96
268124
3624
04:31
But in the famous words of Mick Jagger,
97
271772
1887
不过,米克·贾格尔有一句名言:
04:33
"You can't always get what you want,
98
273683
1791
“你不可能永远心想事成,
04:35
but if you try sometimes, you just might find
99
275498
2187
但如果你尝试了,说不定就 正好能找到
04:37
you get what you need."
100
277709
1215
你所需要的东西。”
04:38
And by connecting telescopes from around the world,
101
278948
2464
通过将遍布全世界的望远镜 连接起来,
04:41
an international collaboration called the Event Horizon Telescope
102
281436
3538
“视界线望远镜”, 一个国际合作项目,诞生了。
04:44
is creating a computational telescope the size of the Earth,
103
284998
3109
这个项目通过电脑制作一个 地球大小的望远镜,
能够帮助我们找到
04:48
capable of resolving structure
104
288131
1537
04:49
on the scale of a black hole's event horizon.
105
289692
2199
黑洞视界线的结构。
04:51
This network of telescopes is scheduled to take its very first picture
106
291915
3387
这个由无数小望远镜构成的网络 将会在明年拍下它的
04:55
of a black hole next year.
107
295326
1815
第一张黑洞图片。
在这个网络中,每一个望远镜 都与其他所有望远镜一同工作。
04:57
Each telescope in the worldwide network works together.
108
297165
3338
05:00
Linked through the precise timing of atomic clocks,
109
300527
2712
通过原子钟的准确时间相连,
05:03
teams of researchers at each of the sites freeze light
110
303263
2657
各地的研究团队们通过收集
05:05
by collecting thousands of terabytes of data.
111
305944
2962
上万千兆字节的数据来定位光线。
05:08
This data is then processed in a lab right here in Massachusetts.
112
308930
5017
接下来,这份数据会在 麻省的实验室进行处理。
05:13
So how does this even work?
113
313971
1794
那么,这一项目到底是 怎么运作的呢?
05:15
Remember if we want to see the black hole in the center of our galaxy,
114
315789
3403
大家是否记得,如果要看到 银河系中心的那个黑洞,
我们需要一个地球大小的望远镜?
05:19
we need to build this impossibly large Earth-sized telescope?
115
319216
2982
现在,先假设我们可以
05:22
For just a second, let's pretend we could build
116
322222
2232
05:24
a telescope the size of the Earth.
117
324478
1842
将这个望远镜建造出来。
05:26
This would be a little bit like turning the Earth
118
326344
2455
这可能有点像是把地球变成
一个巨大的球形迪斯科灯。
05:28
into a giant spinning disco ball.
119
328823
1747
05:30
Each individual mirror would collect light
120
330594
2200
每一面镜子都会收集光线,
05:32
that we could then combine together to make a picture.
121
332818
2597
然后,我们就可以将这些光线 组合成图片。
05:35
However, now let's say we remove most of those mirrors
122
335439
2661
但是,现在,假设我们将 大多数镜子移走,
只有几片留了下来。
05:38
so only a few remained.
123
338124
1972
我们仍可以尝试将信息合成图片,
05:40
We could still try to combine this information together,
124
340120
2877
但现在,图片中有很多洞。
05:43
but now there are a lot of holes.
125
343021
1993
这几片留下来的镜子就代表了 地球上的几处天文望远镜。
05:45
These remaining mirrors represent the locations where we have telescopes.
126
345038
4373
05:49
This is an incredibly small number of measurements to make a picture from.
127
349435
4079
这对于制成一张图片来说, 还远远不够。
05:53
But although we only collect light at a few telescope locations,
128
353538
3838
不过,尽管我们只在寥寥几处 地方收集光线,
05:57
as the Earth rotates, we get to see other new measurements.
129
357400
3423
每当地球旋转时,我们便可以 得到新的信息。
06:00
In other words, as the disco ball spins, those mirrors change locations
130
360847
3819
换言之,当迪斯科球旋转时, 镜子会改变位置,
06:04
and we get to observe different parts of the image.
131
364690
2899
而我们就可以看到图片的各个部分。
06:07
The imaging algorithms we develop fill in the missing gaps of the disco ball
132
367613
4018
我们开发的生成图片的算法 可以将迪斯科球上的空缺部分填满,
06:11
in order to reconstruct the underlying black hole image.
133
371655
3033
从而建造出隐藏的黑洞图片。
06:14
If we had telescopes located everywhere on the globe --
134
374712
2636
如果我们能在地球上每一处 都装上望远镜,
或者说能有整个迪斯科球,
06:17
in other words, the entire disco ball --
135
377372
1941
那么这个算法并不算重要。
06:19
this would be trivial.
136
379337
1284
06:20
However, we only see a few samples, and for that reason,
137
380645
3322
但现在我们只有少量的样本,
06:23
there are an infinite number of possible images
138
383991
2388
所以,可能有无数张图像
06:26
that are perfectly consistent with our telescope measurements.
139
386403
2964
符合望远镜所测量到的信息。
06:29
However, not all images are created equal.
140
389391
3016
但并不是每一张图片都一样。
06:32
Some of those images look more like what we think of as images than others.
141
392849
4458
有些图片,比其他一些 看起来更像我们想象中的图片。
06:37
And so, my role in helping to take the first image of a black hole
142
397331
3222
所以我在拍摄黑洞 这一项目中的任务是,
06:40
is to design algorithms that find the most reasonable image
143
400577
2932
开发一种既可以找到最合理图像,
06:43
that also fits the telescope measurements.
144
403533
2222
又能使图像符合望远镜 所测量到的信息的算法。
06:46
Just as a forensic sketch artist uses limited descriptions
145
406727
3942
就像法医素描师通过有限的信息,
06:50
to piece together a picture using their knowledge of face structure,
146
410693
3514
结合自己对于人脸结构的认知 画出一张画像一样,
我正在开发的图片算法, 是使用望远镜提供的有限数据
06:54
the imaging algorithms I develop use our limited telescope data
147
414231
3315
06:57
to guide us to a picture that also looks like stuff in our universe.
148
417570
4322
来生成一张看起来像是 宇宙里的东西的图片。
07:01
Using these algorithms, we're able to piece together pictures
149
421916
3651
通过这些算法,我们能从散乱 而充满干扰的数据中
07:05
from this sparse, noisy data.
150
425591
2180
合成一张图片。
07:07
So here I show a sample reconstruction done using simulated data,
151
427795
4529
这里是一个用模拟数据 进行重现的例子:
07:12
when we pretend to point our telescopes
152
432348
1933
我们假设将望远镜指向
银河系中心的黑洞。
07:14
to the black hole in the center of our galaxy.
153
434305
2585
07:16
Although this is just a simulation, reconstruction such as this give us hope
154
436914
4455
尽管这只是一个模拟,像这样的 重建工作给了我们
07:21
that we'll soon be able to reliably take the first image of a black hole
155
441393
3453
真正给黑洞拍摄可行照片的希望,
07:24
and from it, determine the size of its ring.
156
444870
2595
之后便可以决定其光环的大小。
虽然我很想继续描绘 这个算法的细节,
07:28
Although I'd love to go on about all the details of this algorithm,
157
448118
3199
07:31
luckily for you, I don't have the time.
158
451341
2174
但你们很幸运,我没有这个时间。
07:33
But I'd still like to give you a brief idea
159
453539
2001
可我仍然想大概让你们了解一下
07:35
of how we define what our universe looks like,
160
455564
2302
我们是怎样定义宇宙的样子,
07:37
and how we use this to reconstruct and verify our results.
161
457890
4466
以及是怎样以此来重建 和校验我们的结果的。
07:42
Since there are an infinite number of possible images
162
462380
2496
由于有无数种可以完美解释
07:44
that perfectly explain our telescope measurements,
163
464900
2365
望远镜测量结果的图片,
07:47
we have to choose between them in some way.
164
467289
2605
我们需要找到一个方式进行挑选。
07:49
We do this by ranking the images
165
469918
1838
我们会按照这些图片是
07:51
based upon how likely they are to be the black hole image,
166
471780
2834
真正黑洞图片的可能性进行排序,
07:54
and then choosing the one that's most likely.
167
474638
2482
然后选出可能性最高的那一张。
我这话到底是什么意思呢?
07:57
So what do I mean by this exactly?
168
477144
2195
07:59
Let's say we were trying to make a model
169
479862
1978
假设我们正在建立一个能够
08:01
that told us how likely an image were to appear on Facebook.
170
481864
3183
指出一张图出现在脸书上的 可能性的模型。
我们希望这个模型能指出
08:05
We'd probably want the model to say
171
485071
1701
08:06
it's pretty unlikely that someone would post this noise image on the left,
172
486796
3557
不太可能有人会上传最左边的图像,
而像右边那样的自拍照
08:10
and pretty likely that someone would post a selfie
173
490377
2419
08:12
like this one on the right.
174
492820
1334
画出一张图片一样,
中间那张图有点模糊,
08:14
The image in the middle is blurry,
175
494178
1639
08:15
so even though it's more likely we'd see it on Facebook
176
495841
2639
所以它被发表的可能性
比左边的噪点图像大,
08:18
compared to the noise image,
177
498504
1360
08:19
it's probably less likely we'd see it compared to the selfie.
178
499888
2960
但比右边自拍发表的可能性要小。
08:22
But when it comes to images from the black hole,
179
502872
2290
但是当模型的主角变成 黑洞的照片时,
一个难题出现了:我们从未 见过真正的黑洞。
08:25
we're posed with a real conundrum: we've never seen a black hole before.
180
505186
3502
08:28
In that case, what is a likely black hole image,
181
508712
2291
在这样的情况下, 什么样的图才更像黑洞,
而我们又该怎样假设黑洞的结构呢?
08:31
and what should we assume about the structure of black holes?
182
511027
2938
08:33
We could try to use images from simulations we've done,
183
513989
2632
我们或许能够使用模拟试验 得出的图片,
08:36
like the image of the black hole from "Interstellar,"
184
516645
2530
比如《星际穿越》里的那张黑洞图。
但这样做可能会引起 一些严重的问题。
08:39
but if we did this, it could cause some serious problems.
185
519199
2938
如果爱因斯坦的理论是错的怎么办?
08:42
What would happen if Einstein's theories didn't hold?
186
522161
3380
08:45
We'd still want to reconstruct an accurate picture of what was going on.
187
525565
3961
我们仍然想要得到一张 准确而真实的图片。
08:49
If we bake Einstein's equations too much into our algorithms,
188
529550
3371
而如果我们在算法中掺入太多 爱因斯坦的公式,
08:52
we'll just end up seeing what we expect to see.
189
532945
2755
最终只会看到我们所希望看到的。
08:55
In other words, we want to leave the option open
190
535724
2276
换句话说,我们想保留在银河系中心
看到一头大象这样的可能性。
08:58
for there being a giant elephant at the center of our galaxy.
191
538024
2923
09:00
(Laughter)
192
540971
1057
(笑声)
不同类型的照片拥有 完全不同的特征。
09:02
Different types of images have very distinct features.
193
542052
2989
我们可以轻松分辨出 一张黑洞模拟图
09:05
We can easily tell the difference between black hole simulation images
194
545065
3548
09:08
and images we take every day here on Earth.
195
548637
2276
和我们日常拍的照片的差别。
09:10
We need a way to tell our algorithms what images look like
196
550937
3104
我们需要在不过度提供某类图片 特征的情况下,
告诉我们的算法,一张正常的图片 应该是什么样。
09:14
without imposing one type of image's features too much.
197
554065
3249
09:17
One way we can try to get around this
198
557865
1893
做到这一点的一种方法是,
09:19
is by imposing the features of different kinds of images
199
559782
3062
向算法展示拥有不同特征的图片,
09:22
and seeing how the type of image we assume affects our reconstructions.
200
562868
4130
然后看看这些图片会怎样 影响重建的结果。
09:27
If all images' types produce a very similar-looking image,
201
567712
3491
如果不同类型的图片都产生出了 差不多的图像,
09:31
then we can start to become more confident
202
571227
2057
那么我们便可以更有信心了,
我们对图片的假设并没有 导致结果出现太大偏差。
09:33
that the image assumptions we're making are not biasing this picture that much.
203
573308
4173
09:37
This is a little bit like giving the same description
204
577505
2990
这就有点像让来自不同国家的 三个法医素描师
09:40
to three different sketch artists from all around the world.
205
580519
2996
根据同样的文字描述来作画。
09:43
If they all produce a very similar-looking face,
206
583539
2860
如果他们画出的脸都差不多,
09:46
then we can start to become confident
207
586423
1793
那么我们就能比较确信,
他们各自的文化背景 并没有影响到他们的画。
09:48
that they're not imposing their own cultural biases on the drawings.
208
588240
3616
09:51
One way we can try to impose different image features
209
591880
3315
将不同图片的特征赋予 (算法)的一个方法
就是使用现有的图片的碎片特征。
09:55
is by using pieces of existing images.
210
595219
2441
09:58
So we take a large collection of images,
211
598214
2160
所以,我们将大量的图像
10:00
and we break them down into their little image patches.
212
600398
2718
分解成无数小图片,
然后像拼图一样处理这些小图片。
10:03
We then can treat each image patch a little bit like pieces of a puzzle.
213
603140
4285
10:07
And we use commonly seen puzzle pieces to piece together an image
214
607449
4278
我们用其中常见的拼图碎片 来组合成一张
10:11
that also fits our telescope measurements.
215
611751
2452
符合望远镜所测量数据的完整图片。
不同类型的图片拥有 完全不同的拼图碎片。
10:15
Different types of images have very distinctive sets of puzzle pieces.
216
615040
3743
10:18
So what happens when we take the same data
217
618807
2806
所以,当我们使用相同的数据和
10:21
but we use different sets of puzzle pieces to reconstruct the image?
218
621637
4130
截然不同的拼图类型来 重现图像时,会发生什么呢?
10:25
Let's first start with black hole image simulation puzzle pieces.
219
625791
4766
我们先从黑洞模拟类的拼图开始。
10:30
OK, this looks reasonable.
220
630581
1591
这张图看起来还比较合理。
它比较符合我们预料中黑洞的样子。
10:32
This looks like what we expect a black hole to look like.
221
632196
2694
10:34
But did we just get it
222
634914
1193
但我们得到这个结果
是否仅仅是因为我们拿的是 黑洞模拟拼图呢?
10:36
because we just fed it little pieces of black hole simulation images?
223
636131
3314
10:39
Let's try another set of puzzle pieces
224
639469
1880
我们再来试试另一组拼图,
10:41
from astronomical, non-black hole objects.
225
641373
2509
这组拼图由宇宙中不是黑洞的 各种天体构成。
10:44
OK, we get a similar-looking image.
226
644914
2126
很好,我们得到了一幅相似的图片。
那如果我们拿日常照片的拼图 会怎么样呢,
10:47
And then how about pieces from everyday images,
227
647064
2236
10:49
like the images you take with your own personal camera?
228
649324
2785
就像你每天拿自己的相机 拍的那种照片?
10:53
Great, we see the same image.
229
653312
2115
太好了,我们看到了和之前 一样的图像。
10:55
When we get the same image from all different sets of puzzle pieces,
230
655451
3366
当我们通过不同类型的拼图 得出一样的图片时,
10:58
then we can start to become more confident
231
658841
2046
我们就有充足的自信说
11:00
that the image assumptions we're making
232
660911
1966
我们对图片进行的推测,
11:02
aren't biasing the final image we get too much.
233
662901
2921
并没有引起最终结果的太大偏差。
11:05
Another thing we can do is take the same set of puzzle pieces,
234
665846
3253
我们能做的另一件事是, 用同一组拼图,
比如源自日常图片的那一种,
11:09
such as the ones derived from everyday images,
235
669123
2489
11:11
and use them to reconstruct many different kinds of source images.
236
671636
3600
来得到不同类型的源图片。
11:15
So in our simulations,
237
675260
1271
所以,在我们的模拟试验中,
11:16
we pretend a black hole looks like astronomical non-black hole objects,
238
676555
3775
我们假设黑洞看起来像一个 非黑洞天体,
11:20
as well as everyday images like the elephant in the center of our galaxy.
239
680354
3849
以及在银河系中心的一头大象。
当下面一排算法算出的图片
11:24
When the results of our algorithms on the bottom look very similar
240
684227
3168
11:27
to the simulation's truth image on top,
241
687419
2096
看起来和上面一排实际图片 十分相似时,
11:29
then we can start to become more confident in our algorithms.
242
689539
3346
我们就能对我们的算法 有更多信心了。
11:32
And I really want to emphasize here
243
692909
1867
在这里我想强调,
11:34
that all of these pictures were created
244
694800
1934
此处所有的图片都是由
11:36
by piecing together little pieces of everyday photographs,
245
696758
2936
拼接日常照片而得出的,
11:39
like you'd take with your own personal camera.
246
699718
2215
就像你自己用相机拍的照片一样。
11:41
So an image of a black hole we've never seen before
247
701957
3276
所以,一张我们从未见过的 黑洞的照片,
11:45
may eventually be created by piecing together pictures we see all the time
248
705257
3943
最终却可能由我们日常 熟悉的图片构成:
11:49
of people, buildings, trees, cats and dogs.
249
709224
2745
人,楼房,树,小猫,小狗……
11:51
Imaging ideas like this will make it possible for us
250
711993
2645
想象这样的想法使拍摄第一张
11:54
to take our very first pictures of a black hole,
251
714662
2619
黑洞的图片成为可能,
11:57
and hopefully, verify those famous theories
252
717305
2447
同时使我们有望校验
11:59
on which scientists rely on a daily basis.
253
719776
2421
科学家们每天所依靠的著名理论。
12:02
But of course, getting imaging ideas like this working
254
722221
2608
但是,要想让如此充满想象力的 点子实际工作,
12:04
would never have been possible without the amazing team of researchers
255
724853
3322
离不开这些我有幸一同工作的
出色的研究者团队。
12:08
that I have the privilege to work with.
256
728199
1887
我仍然对此感到振奋:
12:10
It still amazes me
257
730110
1163
12:11
that although I began this project with no background in astrophysics,
258
731297
3351
虽然在项目开始时我没有任何 天文学背景知识,
12:14
what we have achieved through this unique collaboration
259
734672
2619
我们通过这一独特合作 所达成的成就,
可能导致世界上第一幅 黑洞照片的诞生。
12:17
could result in the very first images of a black hole.
260
737315
2759
像视界线望远镜这样大项目的成功
12:20
But big projects like the Event Horizon Telescope
261
740098
2698
12:22
are successful due to all the interdisciplinary expertise
262
742820
2814
是由来自不同学科的人们 用他们各自的专业知识,
12:25
different people bring to the table.
263
745658
1790
一起创造的结果。
12:27
We're a melting pot of astronomers,
264
747472
1706
我们是一个由天文学家,物理学家,
12:29
physicists, mathematicians and engineers.
265
749202
2232
数学家和工程学家构成的大熔炉。
12:31
This is what will make it soon possible
266
751458
2554
这就是我们能够很快达成
一个看起来不可能达成的 成就的原因。
12:34
to achieve something once thought impossible.
267
754036
2853
12:36
I'd like to encourage all of you to go out
268
756913
2256
在此我想鼓励你们所有人,走出去,
推动科学的边际,
12:39
and help push the boundaries of science,
269
759193
2096
12:41
even if it may at first seem as mysterious to you as a black hole.
270
761313
3901
尽管刚开始它看起来可能 和一个黑洞一样神秘。
12:45
Thank you.
271
765238
1174
谢谢大家。
12:46
(Applause)
272
766436
2397
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog