请双击下面的英文字幕来播放视频。
翻译人员: Anney Ye
校对人员: Yolanda Zhang
00:13
In the movie "Interstellar,"
0
13436
1860
在电影《星际穿越》中,
我们得以近距离观察一个超级黑洞。
00:15
we get an up-close look
at a supermassive black hole.
1
15320
3327
00:18
Set against a backdrop of bright gas,
2
18671
2143
在明亮气体构成的背景下,
00:20
the black hole's massive
gravitational pull
3
20838
2118
黑洞的巨大引力
00:22
bends light into a ring.
4
22980
1435
将光线弯曲成环形。
00:24
However, this isn't a real photograph,
5
24439
2109
但是,(电影中的)这一幕
并不是一张真正的照片,
00:26
but a computer graphic rendering --
6
26572
1786
而是电脑合成的效果——
00:28
an artistic interpretation
of what a black hole might look like.
7
28382
3390
它只是一个对于黑洞
可能样子的艺术表现。
00:32
A hundred years ago,
8
32401
1166
一百多年前,
00:33
Albert Einstein first published
his theory of general relativity.
9
33591
3601
阿尔伯特·爱因斯坦
第一次发表了广义相对论学说。
在之后的数年里,
00:37
In the years since then,
10
37216
1439
00:38
scientists have provided
a lot of evidence in support of it.
11
38679
2973
科学家们又对此提供了许多佐证。
00:41
But one thing predicted
from this theory, black holes,
12
41676
3084
但相对论中所预测的一点,黑洞,
00:44
still have not been directly observed.
13
44784
2350
却始终无法被直接观察到。
尽管我们大致知道一个黑洞
看起来应该是什么样,
00:47
Although we have some idea
as to what a black hole might look like,
14
47158
3206
却从未真正拍摄过它。
00:50
we've never actually taken
a picture of one before.
15
50388
2779
不过,这个现状可能很快就会改变。
00:53
However, you might be surprised to know
that that may soon change.
16
53191
4279
00:57
We may be seeing our first picture
of a black hole in the next couple years.
17
57494
4164
在接下来几年内,我们或许就能
见到第一张黑洞的图片。
01:01
Getting this first picture will come down
to an international team of scientists,
18
61682
3958
这一重任会落在一个由
各国科学家组成的团队上,
01:05
an Earth-sized telescope
19
65664
1567
同时需要一个
地球大小的天文望远镜,
01:07
and an algorithm that puts together
the final picture.
20
67255
2832
以及一个可以让我们合成出
最终图片的算法。
尽管今天我不能让你们
见到真正的黑洞图片,
01:10
Although I won't be able to show you
a real picture of a black hole today,
21
70111
3528
01:13
I'd like to give you a brief glimpse
into the effort involved
22
73663
2911
我还是想让你们大致了解一下
01:16
in getting that first picture.
23
76598
1613
得到第一张(黑洞)图片
所需要的努力。
01:19
My name is Katie Bouman,
24
79477
1437
我叫凯蒂·伯曼,
01:20
and I'm a PhD student at MIT.
25
80938
2566
是麻省理工学院的一名博士生。
01:23
I do research in a computer science lab
26
83528
2027
我在计算机科学实验室中进行
01:25
that works on making computers
see through images and video.
27
85579
3298
让电脑解析图片和视频信息的研究。
01:28
But although I'm not an astronomer,
28
88901
2162
尽管我并不是个天文学家,
今天我还是想向大家展示
01:31
today I'd like to show you
29
91087
1285
我是怎样在这个项目中贡献
自己的一份力量的。
01:32
how I've been able to contribute
to this exciting project.
30
92396
2903
01:35
If you go out past
the bright city lights tonight,
31
95323
2831
如果你远离城市的灯光,
你可能有幸看到银河系
01:38
you may just be lucky enough
to see a stunning view
32
98178
2436
01:40
of the Milky Way Galaxy.
33
100638
1493
那令人震撼的美景。
而如果你可以穿过百万星辰,
将镜头放大到
01:42
And if you could zoom past
millions of stars,
34
102155
2462
01:44
26,000 light-years toward the heart
of the spiraling Milky Way,
35
104641
3755
2.6万光年以外的银河系中心,
01:48
we'd eventually reach
a cluster of stars right at the center.
36
108420
3521
我们就能抵达(银河系)中央的
一群恒星。
01:51
Peering past all the galactic dust
with infrared telescopes,
37
111965
3206
天文学家们已经穿过星尘,使用红外望远镜
观察了这些恒星整整十六年。
01:55
astronomers have watched these stars
for over 16 years.
38
115195
3867
但是天文学家们所看不到的东西
才是最为壮观的。
01:59
But it's what they don't see
that is the most spectacular.
39
119086
3589
02:02
These stars seem to orbit
an invisible object.
40
122699
3066
这些恒星似乎是在围绕一个
隐形的物体旋转。
02:05
By tracking the paths of these stars,
41
125789
2323
通过观测这些星星的移动路径,
天文学家们得出结论,
02:08
astronomers have concluded
42
128136
1294
02:09
that the only thing small and heavy
enough to cause this motion
43
129454
3129
体积足够小,而质量又大到能导致
恒星们如此运动的唯一物体
02:12
is a supermassive black hole --
44
132607
1968
就是超级黑洞——
02:14
an object so dense that it sucks up
anything that ventures too close --
45
134599
4178
它的密度极大,高到它能吸进
周围所有东西,
02:18
even light.
46
138801
1494
甚至光。
02:20
But what happens if we were
to zoom in even further?
47
140319
3061
那么,如果我们继续放大下去,
会发生什么?
02:23
Is it possible to see something
that, by definition, is impossible to see?
48
143404
4733
是不是就可能看见一些,
理论上不可能看到的东西呢?
02:28
Well, it turns out that if we were
to zoom in at radio wavelengths,
49
148719
3244
事实上,如果我们以
无线电波长放大,
02:31
we'd expect to see a ring of light
50
151987
1682
我们会看到一圈光线,
02:33
caused by the gravitational
lensing of hot plasma
51
153693
2411
是由围绕着黑洞的
等离子体引力透镜产生的。
02:36
zipping around the black hole.
52
156128
1829
02:37
In other words,
53
157981
1160
换句话说,
这个黑洞,在背后明亮物质的衬托下,
02:39
the black hole casts a shadow
on this backdrop of bright material,
54
159165
3171
留下一个圆形的暗影。
02:42
carving out a sphere of darkness.
55
162360
1842
02:44
This bright ring reveals
the black hole's event horizon,
56
164226
3339
而它周围那明亮的光环
指示了黑洞边境的位置。
02:47
where the gravitational pull
becomes so great
57
167589
2400
在这里,引力作用变得无比巨大,
大到就连光线都无法逃离。
02:50
that not even light can escape.
58
170013
1626
02:51
Einstein's equations predict
the size and shape of this ring,
59
171663
2859
爱因斯坦用公式推测了
这个环的大小和形状,
02:54
so taking a picture of it
wouldn't only be really cool,
60
174546
3208
所以,给光环拍照不仅很酷,
02:57
it would also help to verify
that these equations hold
61
177778
2618
还能帮助我们检验这些公式在
03:00
in the extreme conditions
around the black hole.
62
180420
2466
黑洞周围的极端环境下是否成立。
03:02
However, this black hole
is so far away from us,
63
182910
2558
不过,这个黑洞离我们太过遥远,
03:05
that from Earth, this ring appears
incredibly small --
64
185492
3098
从地球上看,它非常,非常小——
03:08
the same size to us as an orange
on the surface of the moon.
65
188614
3590
大概就和月球上的一个橘子一样大。
03:12
That makes taking a picture of it
extremely difficult.
66
192758
2824
这导致给它拍照变得无比艰难。
03:16
Why is that?
67
196645
1302
为什么呢?
03:18
Well, it all comes down
to a simple equation.
68
198512
3188
一切都源于一个简单的等式。
03:21
Due to a phenomenon called diffraction,
69
201724
2416
由于衍射现象,
我们所能看到的
03:24
there are fundamental limits
70
204164
1355
03:25
to the smallest objects
that we can possibly see.
71
205543
2670
最小物体是有限制的。
03:28
This governing equation says
that in order to see smaller and smaller,
72
208789
3672
这个等式指出,当想要看到的
东西越来越小时,
03:32
we need to make our telescope
bigger and bigger.
73
212485
2587
望远镜需要变得更大。
但即使是地球上功能最强大的
光学望远镜,
03:35
But even with the most powerful
optical telescopes here on Earth,
74
215096
3069
其分辨率甚至不足以
03:38
we can't even get close
to the resolution necessary
75
218189
2419
03:40
to image on the surface of the moon.
76
220632
2198
让我们得到月球表面的图片。
03:42
In fact, here I show one of the highest
resolution images ever taken
77
222854
3617
事实上,这里是一张有史以来
从地球上拍摄的最高清的
03:46
of the moon from Earth.
78
226495
1397
月球图片。
03:47
It contains roughly 13,000 pixels,
79
227916
2557
它包含约1.3万个像素,
03:50
and yet each pixel would contain
over 1.5 million oranges.
80
230497
4050
而每一个像素里包含超过150万个橘子。
03:55
So how big of a telescope do we need
81
235396
1972
所以,我们需要多大的望远镜
03:57
in order to see an orange
on the surface of the moon
82
237392
2765
才能看到月球表面的橘子,
以及,那个黑洞呢?
04:00
and, by extension, our black hole?
83
240181
2214
04:02
Well, it turns out
that by crunching the numbers,
84
242419
2340
事实上,通过计算,
我们可以轻易得出所需的
望远镜的大小,
04:04
you can easily calculate
that we would need a telescope
85
244783
2610
就和整个地球一样大。
04:07
the size of the entire Earth.
86
247417
1393
(笑声)
04:08
(Laughter)
87
248834
1024
而如果我们能够建造出这个
地球大小的望远镜,
04:09
If we could build
this Earth-sized telescope,
88
249882
2119
就能够分辨出那指示着视界线的
04:12
we could just start to make out
that distinctive ring of light
89
252025
2925
独特的光环。
04:14
indicative of the black
hole's event horizon.
90
254974
2183
尽管在这张照片上,我们无法看到
04:17
Although this picture wouldn't contain
all the detail we see
91
257181
2918
电脑合成图上的那些细节,
04:20
in computer graphic renderings,
92
260123
1506
它仍可以让我们对于
04:21
it would allow us to safely get
our first glimpse
93
261653
2299
04:23
of the immediate environment
around a black hole.
94
263976
2487
黑洞周围的环境有个大致的了解。
04:26
However, as you can imagine,
95
266487
1613
但是,正如你预料,
想建造一个地球大小的射电望远镜
是不可能的。
04:28
building a single-dish telescope
the size of the Earth is impossible.
96
268124
3624
04:31
But in the famous words of Mick Jagger,
97
271772
1887
不过,米克·贾格尔有一句名言:
04:33
"You can't always get what you want,
98
273683
1791
“你不可能永远心想事成,
04:35
but if you try sometimes,
you just might find
99
275498
2187
但如果你尝试了,说不定就
正好能找到
04:37
you get what you need."
100
277709
1215
你所需要的东西。”
04:38
And by connecting telescopes
from around the world,
101
278948
2464
通过将遍布全世界的望远镜
连接起来,
04:41
an international collaboration
called the Event Horizon Telescope
102
281436
3538
“视界线望远镜”,
一个国际合作项目,诞生了。
04:44
is creating a computational telescope
the size of the Earth,
103
284998
3109
这个项目通过电脑制作一个
地球大小的望远镜,
能够帮助我们找到
04:48
capable of resolving structure
104
288131
1537
04:49
on the scale of a black
hole's event horizon.
105
289692
2199
黑洞视界线的结构。
04:51
This network of telescopes is scheduled
to take its very first picture
106
291915
3387
这个由无数小望远镜构成的网络
将会在明年拍下它的
04:55
of a black hole next year.
107
295326
1815
第一张黑洞图片。
在这个网络中,每一个望远镜
都与其他所有望远镜一同工作。
04:57
Each telescope in the worldwide
network works together.
108
297165
3338
05:00
Linked through the precise timing
of atomic clocks,
109
300527
2712
通过原子钟的准确时间相连,
05:03
teams of researchers at each
of the sites freeze light
110
303263
2657
各地的研究团队们通过收集
05:05
by collecting thousands
of terabytes of data.
111
305944
2962
上万千兆字节的数据来定位光线。
05:08
This data is then processed in a lab
right here in Massachusetts.
112
308930
5017
接下来,这份数据会在
麻省的实验室进行处理。
05:13
So how does this even work?
113
313971
1794
那么,这一项目到底是
怎么运作的呢?
05:15
Remember if we want to see the black hole
in the center of our galaxy,
114
315789
3403
大家是否记得,如果要看到
银河系中心的那个黑洞,
我们需要一个地球大小的望远镜?
05:19
we need to build this impossibly large
Earth-sized telescope?
115
319216
2982
现在,先假设我们可以
05:22
For just a second,
let's pretend we could build
116
322222
2232
05:24
a telescope the size of the Earth.
117
324478
1842
将这个望远镜建造出来。
05:26
This would be a little bit
like turning the Earth
118
326344
2455
这可能有点像是把地球变成
一个巨大的球形迪斯科灯。
05:28
into a giant spinning disco ball.
119
328823
1747
05:30
Each individual mirror would collect light
120
330594
2200
每一面镜子都会收集光线,
05:32
that we could then combine
together to make a picture.
121
332818
2597
然后,我们就可以将这些光线
组合成图片。
05:35
However, now let's say
we remove most of those mirrors
122
335439
2661
但是,现在,假设我们将
大多数镜子移走,
只有几片留了下来。
05:38
so only a few remained.
123
338124
1972
我们仍可以尝试将信息合成图片,
05:40
We could still try to combine
this information together,
124
340120
2877
但现在,图片中有很多洞。
05:43
but now there are a lot of holes.
125
343021
1993
这几片留下来的镜子就代表了
地球上的几处天文望远镜。
05:45
These remaining mirrors represent
the locations where we have telescopes.
126
345038
4373
05:49
This is an incredibly small number
of measurements to make a picture from.
127
349435
4079
这对于制成一张图片来说,
还远远不够。
05:53
But although we only collect light
at a few telescope locations,
128
353538
3838
不过,尽管我们只在寥寥几处
地方收集光线,
05:57
as the Earth rotates, we get to see
other new measurements.
129
357400
3423
每当地球旋转时,我们便可以
得到新的信息。
06:00
In other words, as the disco ball spins,
those mirrors change locations
130
360847
3819
换言之,当迪斯科球旋转时,
镜子会改变位置,
06:04
and we get to observe
different parts of the image.
131
364690
2899
而我们就可以看到图片的各个部分。
06:07
The imaging algorithms we develop
fill in the missing gaps of the disco ball
132
367613
4018
我们开发的生成图片的算法
可以将迪斯科球上的空缺部分填满,
06:11
in order to reconstruct
the underlying black hole image.
133
371655
3033
从而建造出隐藏的黑洞图片。
06:14
If we had telescopes located
everywhere on the globe --
134
374712
2636
如果我们能在地球上每一处
都装上望远镜,
或者说能有整个迪斯科球,
06:17
in other words, the entire disco ball --
135
377372
1941
那么这个算法并不算重要。
06:19
this would be trivial.
136
379337
1284
06:20
However, we only see a few samples,
and for that reason,
137
380645
3322
但现在我们只有少量的样本,
06:23
there are an infinite number
of possible images
138
383991
2388
所以,可能有无数张图像
06:26
that are perfectly consistent
with our telescope measurements.
139
386403
2964
符合望远镜所测量到的信息。
06:29
However, not all images are created equal.
140
389391
3016
但并不是每一张图片都一样。
06:32
Some of those images look more like
what we think of as images than others.
141
392849
4458
有些图片,比其他一些
看起来更像我们想象中的图片。
06:37
And so, my role in helping to take
the first image of a black hole
142
397331
3222
所以我在拍摄黑洞
这一项目中的任务是,
06:40
is to design algorithms that find
the most reasonable image
143
400577
2932
开发一种既可以找到最合理图像,
06:43
that also fits the telescope measurements.
144
403533
2222
又能使图像符合望远镜
所测量到的信息的算法。
06:46
Just as a forensic sketch artist
uses limited descriptions
145
406727
3942
就像法医素描师通过有限的信息,
06:50
to piece together a picture using
their knowledge of face structure,
146
410693
3514
结合自己对于人脸结构的认知
画出一张画像一样,
我正在开发的图片算法,
是使用望远镜提供的有限数据
06:54
the imaging algorithms I develop
use our limited telescope data
147
414231
3315
06:57
to guide us to a picture that also
looks like stuff in our universe.
148
417570
4322
来生成一张看起来像是
宇宙里的东西的图片。
07:01
Using these algorithms,
we're able to piece together pictures
149
421916
3651
通过这些算法,我们能从散乱
而充满干扰的数据中
07:05
from this sparse, noisy data.
150
425591
2180
合成一张图片。
07:07
So here I show a sample reconstruction
done using simulated data,
151
427795
4529
这里是一个用模拟数据
进行重现的例子:
07:12
when we pretend to point our telescopes
152
432348
1933
我们假设将望远镜指向
银河系中心的黑洞。
07:14
to the black hole
in the center of our galaxy.
153
434305
2585
07:16
Although this is just a simulation,
reconstruction such as this give us hope
154
436914
4455
尽管这只是一个模拟,像这样的
重建工作给了我们
07:21
that we'll soon be able to reliably take
the first image of a black hole
155
441393
3453
真正给黑洞拍摄可行照片的希望,
07:24
and from it, determine
the size of its ring.
156
444870
2595
之后便可以决定其光环的大小。
虽然我很想继续描绘
这个算法的细节,
07:28
Although I'd love to go on
about all the details of this algorithm,
157
448118
3199
07:31
luckily for you, I don't have the time.
158
451341
2174
但你们很幸运,我没有这个时间。
07:33
But I'd still like
to give you a brief idea
159
453539
2001
可我仍然想大概让你们了解一下
07:35
of how we define
what our universe looks like,
160
455564
2302
我们是怎样定义宇宙的样子,
07:37
and how we use this to reconstruct
and verify our results.
161
457890
4466
以及是怎样以此来重建
和校验我们的结果的。
07:42
Since there are an infinite number
of possible images
162
462380
2496
由于有无数种可以完美解释
07:44
that perfectly explain
our telescope measurements,
163
464900
2365
望远镜测量结果的图片,
07:47
we have to choose
between them in some way.
164
467289
2605
我们需要找到一个方式进行挑选。
07:49
We do this by ranking the images
165
469918
1838
我们会按照这些图片是
07:51
based upon how likely they are
to be the black hole image,
166
471780
2834
真正黑洞图片的可能性进行排序,
07:54
and then choosing the one
that's most likely.
167
474638
2482
然后选出可能性最高的那一张。
我这话到底是什么意思呢?
07:57
So what do I mean by this exactly?
168
477144
2195
07:59
Let's say we were trying to make a model
169
479862
1978
假设我们正在建立一个能够
08:01
that told us how likely an image
were to appear on Facebook.
170
481864
3183
指出一张图出现在脸书上的
可能性的模型。
我们希望这个模型能指出
08:05
We'd probably want the model to say
171
485071
1701
08:06
it's pretty unlikely that someone
would post this noise image on the left,
172
486796
3557
不太可能有人会上传最左边的图像,
而像右边那样的自拍照
08:10
and pretty likely that someone
would post a selfie
173
490377
2419
08:12
like this one on the right.
174
492820
1334
画出一张图片一样,
中间那张图有点模糊,
08:14
The image in the middle is blurry,
175
494178
1639
08:15
so even though it's more likely
we'd see it on Facebook
176
495841
2639
所以它被发表的可能性
比左边的噪点图像大,
08:18
compared to the noise image,
177
498504
1360
08:19
it's probably less likely we'd see it
compared to the selfie.
178
499888
2960
但比右边自拍发表的可能性要小。
08:22
But when it comes to images
from the black hole,
179
502872
2290
但是当模型的主角变成
黑洞的照片时,
一个难题出现了:我们从未
见过真正的黑洞。
08:25
we're posed with a real conundrum:
we've never seen a black hole before.
180
505186
3502
08:28
In that case, what is a likely
black hole image,
181
508712
2291
在这样的情况下,
什么样的图才更像黑洞,
而我们又该怎样假设黑洞的结构呢?
08:31
and what should we assume
about the structure of black holes?
182
511027
2938
08:33
We could try to use images
from simulations we've done,
183
513989
2632
我们或许能够使用模拟试验
得出的图片,
08:36
like the image of the black hole
from "Interstellar,"
184
516645
2530
比如《星际穿越》里的那张黑洞图。
但这样做可能会引起
一些严重的问题。
08:39
but if we did this,
it could cause some serious problems.
185
519199
2938
如果爱因斯坦的理论是错的怎么办?
08:42
What would happen
if Einstein's theories didn't hold?
186
522161
3380
08:45
We'd still want to reconstruct
an accurate picture of what was going on.
187
525565
3961
我们仍然想要得到一张
准确而真实的图片。
08:49
If we bake Einstein's equations
too much into our algorithms,
188
529550
3371
而如果我们在算法中掺入太多
爱因斯坦的公式,
08:52
we'll just end up seeing
what we expect to see.
189
532945
2755
最终只会看到我们所希望看到的。
08:55
In other words,
we want to leave the option open
190
535724
2276
换句话说,我们想保留在银河系中心
看到一头大象这样的可能性。
08:58
for there being a giant elephant
at the center of our galaxy.
191
538024
2923
09:00
(Laughter)
192
540971
1057
(笑声)
不同类型的照片拥有
完全不同的特征。
09:02
Different types of images have
very distinct features.
193
542052
2989
我们可以轻松分辨出
一张黑洞模拟图
09:05
We can easily tell the difference
between black hole simulation images
194
545065
3548
09:08
and images we take
every day here on Earth.
195
548637
2276
和我们日常拍的照片的差别。
09:10
We need a way to tell our algorithms
what images look like
196
550937
3104
我们需要在不过度提供某类图片
特征的情况下,
告诉我们的算法,一张正常的图片
应该是什么样。
09:14
without imposing one type
of image's features too much.
197
554065
3249
09:17
One way we can try to get around this
198
557865
1893
做到这一点的一种方法是,
09:19
is by imposing the features
of different kinds of images
199
559782
3062
向算法展示拥有不同特征的图片,
09:22
and seeing how the type of image we assume
affects our reconstructions.
200
562868
4130
然后看看这些图片会怎样
影响重建的结果。
09:27
If all images' types produce
a very similar-looking image,
201
567712
3491
如果不同类型的图片都产生出了
差不多的图像,
09:31
then we can start to become more confident
202
571227
2057
那么我们便可以更有信心了,
我们对图片的假设并没有
导致结果出现太大偏差。
09:33
that the image assumptions we're making
are not biasing this picture that much.
203
573308
4173
09:37
This is a little bit like
giving the same description
204
577505
2990
这就有点像让来自不同国家的
三个法医素描师
09:40
to three different sketch artists
from all around the world.
205
580519
2996
根据同样的文字描述来作画。
09:43
If they all produce
a very similar-looking face,
206
583539
2860
如果他们画出的脸都差不多,
09:46
then we can start to become confident
207
586423
1793
那么我们就能比较确信,
他们各自的文化背景
并没有影响到他们的画。
09:48
that they're not imposing their own
cultural biases on the drawings.
208
588240
3616
09:51
One way we can try to impose
different image features
209
591880
3315
将不同图片的特征赋予
(算法)的一个方法
就是使用现有的图片的碎片特征。
09:55
is by using pieces of existing images.
210
595219
2441
09:58
So we take a large collection of images,
211
598214
2160
所以,我们将大量的图像
10:00
and we break them down
into their little image patches.
212
600398
2718
分解成无数小图片,
然后像拼图一样处理这些小图片。
10:03
We then can treat each image patch
a little bit like pieces of a puzzle.
213
603140
4285
10:07
And we use commonly seen puzzle pieces
to piece together an image
214
607449
4278
我们用其中常见的拼图碎片
来组合成一张
10:11
that also fits our telescope measurements.
215
611751
2452
符合望远镜所测量数据的完整图片。
不同类型的图片拥有
完全不同的拼图碎片。
10:15
Different types of images have
very distinctive sets of puzzle pieces.
216
615040
3743
10:18
So what happens when we take the same data
217
618807
2806
所以,当我们使用相同的数据和
10:21
but we use different sets of puzzle pieces
to reconstruct the image?
218
621637
4130
截然不同的拼图类型来
重现图像时,会发生什么呢?
10:25
Let's first start with black hole
image simulation puzzle pieces.
219
625791
4766
我们先从黑洞模拟类的拼图开始。
10:30
OK, this looks reasonable.
220
630581
1591
这张图看起来还比较合理。
它比较符合我们预料中黑洞的样子。
10:32
This looks like what we expect
a black hole to look like.
221
632196
2694
10:34
But did we just get it
222
634914
1193
但我们得到这个结果
是否仅仅是因为我们拿的是
黑洞模拟拼图呢?
10:36
because we just fed it little pieces
of black hole simulation images?
223
636131
3314
10:39
Let's try another set of puzzle pieces
224
639469
1880
我们再来试试另一组拼图,
10:41
from astronomical, non-black hole objects.
225
641373
2509
这组拼图由宇宙中不是黑洞的
各种天体构成。
10:44
OK, we get a similar-looking image.
226
644914
2126
很好,我们得到了一幅相似的图片。
那如果我们拿日常照片的拼图
会怎么样呢,
10:47
And then how about pieces
from everyday images,
227
647064
2236
10:49
like the images you take
with your own personal camera?
228
649324
2785
就像你每天拿自己的相机
拍的那种照片?
10:53
Great, we see the same image.
229
653312
2115
太好了,我们看到了和之前
一样的图像。
10:55
When we get the same image
from all different sets of puzzle pieces,
230
655451
3366
当我们通过不同类型的拼图
得出一样的图片时,
10:58
then we can start to become more confident
231
658841
2046
我们就有充足的自信说
11:00
that the image assumptions we're making
232
660911
1966
我们对图片进行的推测,
11:02
aren't biasing the final
image we get too much.
233
662901
2921
并没有引起最终结果的太大偏差。
11:05
Another thing we can do is take
the same set of puzzle pieces,
234
665846
3253
我们能做的另一件事是,
用同一组拼图,
比如源自日常图片的那一种,
11:09
such as the ones derived
from everyday images,
235
669123
2489
11:11
and use them to reconstruct
many different kinds of source images.
236
671636
3600
来得到不同类型的源图片。
11:15
So in our simulations,
237
675260
1271
所以,在我们的模拟试验中,
11:16
we pretend a black hole looks like
astronomical non-black hole objects,
238
676555
3775
我们假设黑洞看起来像一个
非黑洞天体,
11:20
as well as everyday images like
the elephant in the center of our galaxy.
239
680354
3849
以及在银河系中心的一头大象。
当下面一排算法算出的图片
11:24
When the results of our algorithms
on the bottom look very similar
240
684227
3168
11:27
to the simulation's truth image on top,
241
687419
2096
看起来和上面一排实际图片
十分相似时,
11:29
then we can start to become
more confident in our algorithms.
242
689539
3346
我们就能对我们的算法
有更多信心了。
11:32
And I really want to emphasize here
243
692909
1867
在这里我想强调,
11:34
that all of these pictures were created
244
694800
1934
此处所有的图片都是由
11:36
by piecing together little pieces
of everyday photographs,
245
696758
2936
拼接日常照片而得出的,
11:39
like you'd take with your own
personal camera.
246
699718
2215
就像你自己用相机拍的照片一样。
11:41
So an image of a black hole
we've never seen before
247
701957
3276
所以,一张我们从未见过的
黑洞的照片,
11:45
may eventually be created by piecing
together pictures we see all the time
248
705257
3943
最终却可能由我们日常
熟悉的图片构成:
11:49
of people, buildings,
trees, cats and dogs.
249
709224
2745
人,楼房,树,小猫,小狗……
11:51
Imaging ideas like this
will make it possible for us
250
711993
2645
想象这样的想法使拍摄第一张
11:54
to take our very first pictures
of a black hole,
251
714662
2619
黑洞的图片成为可能,
11:57
and hopefully, verify
those famous theories
252
717305
2447
同时使我们有望校验
11:59
on which scientists rely on a daily basis.
253
719776
2421
科学家们每天所依靠的著名理论。
12:02
But of course, getting
imaging ideas like this working
254
722221
2608
但是,要想让如此充满想象力的
点子实际工作,
12:04
would never have been possible
without the amazing team of researchers
255
724853
3322
离不开这些我有幸一同工作的
出色的研究者团队。
12:08
that I have the privilege to work with.
256
728199
1887
我仍然对此感到振奋:
12:10
It still amazes me
257
730110
1163
12:11
that although I began this project
with no background in astrophysics,
258
731297
3351
虽然在项目开始时我没有任何
天文学背景知识,
12:14
what we have achieved
through this unique collaboration
259
734672
2619
我们通过这一独特合作
所达成的成就,
可能导致世界上第一幅
黑洞照片的诞生。
12:17
could result in the very first
images of a black hole.
260
737315
2759
像视界线望远镜这样大项目的成功
12:20
But big projects like
the Event Horizon Telescope
261
740098
2698
12:22
are successful due to all
the interdisciplinary expertise
262
742820
2814
是由来自不同学科的人们
用他们各自的专业知识,
12:25
different people bring to the table.
263
745658
1790
一起创造的结果。
12:27
We're a melting pot of astronomers,
264
747472
1706
我们是一个由天文学家,物理学家,
12:29
physicists, mathematicians and engineers.
265
749202
2232
数学家和工程学家构成的大熔炉。
12:31
This is what will make it soon possible
266
751458
2554
这就是我们能够很快达成
一个看起来不可能达成的
成就的原因。
12:34
to achieve something
once thought impossible.
267
754036
2853
12:36
I'd like to encourage all of you to go out
268
756913
2256
在此我想鼓励你们所有人,走出去,
推动科学的边际,
12:39
and help push the boundaries of science,
269
759193
2096
12:41
even if it may at first seem
as mysterious to you as a black hole.
270
761313
3901
尽管刚开始它看起来可能
和一个黑洞一样神秘。
12:45
Thank you.
271
765238
1174
谢谢大家。
12:46
(Applause)
272
766436
2397
(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。