請雙擊下方英文字幕播放視頻。
譯者: Debra Liu
審譯者: Wilde Luo
00:13
In the movie "Interstellar,"
0
13436
1860
在「星際效應」這部電影中,
00:15
we get an up-close look
at a supermassive black hole.
1
15320
3327
我們更近距離地看到了
超質量黑洞。
00:18
Set against a backdrop of bright gas,
2
18671
2143
在明亮氣體的背景下,
00:20
the black hole's massive
gravitational pull
3
20838
2118
黑洞的巨大引力
00:22
bends light into a ring.
4
22980
1435
使光線形成戒指般的環狀。
00:24
However, this isn't a real photograph,
5
24439
2109
但是,這不是張真實的照片,
00:26
but a computer graphic rendering --
6
26572
1786
而是電腦圖像的呈現,
00:28
an artistic interpretation
of what a black hole might look like.
7
28382
3390
是對黑洞可能的呈像的
藝術化的演繹。
00:32
A hundred years ago,
8
32401
1166
一百年前,
00:33
Albert Einstein first published
his theory of general relativity.
9
33591
3601
愛因斯坦首先發表了他的相對論。
00:37
In the years since then,
10
37216
1439
那之後的幾年,
00:38
scientists have provided
a lot of evidence in support of it.
11
38679
2973
科學家提供了很多證據支持他的理論。
00:41
But one thing predicted
from this theory, black holes,
12
41676
3084
但是從他的理論中預測到的黑洞
00:44
still have not been directly observed.
13
44784
2350
仍然無法有直接證據證實。
00:47
Although we have some idea
as to what a black hole might look like,
14
47158
3206
雖然我們對於黑洞的呈像有一些想法,
00:50
we've never actually taken
a picture of one before.
15
50388
2779
但是我們從來沒有真正
拍攝過一張黑洞的相片。
00:53
However, you might be surprised to know
that that may soon change.
16
53191
4279
也許你會驚訝於這種困境即將改變。
00:57
We may be seeing our first picture
of a black hole in the next couple years.
17
57494
4164
我們在未來幾年內也許
可以得到第一張黑洞的相片。
01:01
Getting this first picture will come down
to an international team of scientists,
18
61682
3958
國際的科學家團隊
將會獲得這第一張圖片,
01:05
an Earth-sized telescope
19
65664
1567
透過地球大小般的望遠鏡,
01:07
and an algorithm that puts together
the final picture.
20
67255
2832
和一個演算方法,獲得最後這張圖片。
01:10
Although I won't be able to show you
a real picture of a black hole today,
21
70111
3528
雖然,我今天無法讓大家看到
黑洞真正的照片,
01:13
I'd like to give you a brief glimpse
into the effort involved
22
73663
2911
但是,我想要簡單地向各位說明一下
01:16
in getting that first picture.
23
76598
1613
獲得這首張照片所付出的努力。
01:19
My name is Katie Bouman,
24
79477
1437
我是 Katie Bouman ,
01:20
and I'm a PhD student at MIT.
25
80938
2566
一名麻省理工學院博士生。
01:23
I do research in a computer science lab
26
83528
2027
我在電腦科學實驗室做研究,
01:25
that works on making computers
see through images and video.
27
85579
3298
讓電腦透過影像及影片,
能夠「看見」、識別。
01:28
But although I'm not an astronomer,
28
88901
2162
雖然我不是天文學家,
01:31
today I'd like to show you
29
91087
1285
但是,我現在要讓大家看的是
01:32
how I've been able to contribute
to this exciting project.
30
92396
2903
我如何投入這令人興奮的專案。
01:35
If you go out past
the bright city lights tonight,
31
95323
2831
如果今晚你們離開了城市明亮的燈光,
01:38
you may just be lucky enough
to see a stunning view
32
98178
2436
可能運氣夠好,
可以看到銀河系美麗的影像。
01:40
of the Milky Way Galaxy.
33
100638
1493
01:42
And if you could zoom past
millions of stars,
34
102155
2462
如果你的視野能夠穿越數百萬顆星星,
01:44
26,000 light-years toward the heart
of the spiraling Milky Way,
35
104641
3755
向着銀河的螺旋中心前進 26,000 光年,
01:48
we'd eventually reach
a cluster of stars right at the center.
36
108420
3521
最後會在中心點遇到一群星星。
01:51
Peering past all the galactic dust
with infrared telescopes,
37
111965
3206
天文學家使用紅外線望遠鏡
透過銀河系塵埃
01:55
astronomers have watched these stars
for over 16 years.
38
115195
3867
觀察這些星星,
已經超過了 16 年。
01:59
But it's what they don't see
that is the most spectacular.
39
119086
3589
但是,最為壯觀的東西,
卻是他們無法看見的。
02:02
These stars seem to orbit
an invisible object.
40
122699
3066
這些星星似乎繞著一個
隱形的物體運轉著。
02:05
By tracking the paths of these stars,
41
125789
2323
藉由追蹤這些星星的軌跡,
02:08
astronomers have concluded
42
128136
1294
天文學家得到一個結論:
02:09
that the only thing small and heavy
enough to cause this motion
43
129454
3129
只有一個又小又重的物體
才能夠造成這樣的運動軌跡,
02:12
is a supermassive black hole --
44
132607
1968
那就是超質量黑洞,
02:14
an object so dense that it sucks up
anything that ventures too close --
45
134599
4178
它的密度高到能夠吸收
所有敢於近距離靠近它的東西,
02:18
even light.
46
138801
1494
連光線也不例外。
02:20
But what happens if we were
to zoom in even further?
47
140319
3061
但是,如果我們將影像放大,
會發生什麼事呢?
02:23
Is it possible to see something
that, by definition, is impossible to see?
48
143404
4733
有沒有可能看到那些
原本被定義為看不見的東西呢?
02:28
Well, it turns out that if we were
to zoom in at radio wavelengths,
49
148719
3244
事實顯示,如果我們
以無線電波長的尺度放大,
02:31
we'd expect to see a ring of light
50
151987
1682
我們預期可以看到一個光環,
02:33
caused by the gravitational
lensing of hot plasma
51
153693
2411
它是由黑洞旁
高速移動的熱離子體的
02:36
zipping around the black hole.
52
156128
1829
「引力透鏡」效應形成。
02:37
In other words,
53
157981
1160
換句話說,
02:39
the black hole casts a shadow
on this backdrop of bright material,
54
159165
3171
黑洞在明亮物質的背景下投射出陰影,
02:42
carving out a sphere of darkness.
55
162360
1842
刻畫出黑色的球體。
02:44
This bright ring reveals
the black hole's event horizon,
56
164226
3339
這個光環揭露了黑洞的表面界限,
02:47
where the gravitational pull
becomes so great
57
167589
2400
在那個地方,引力拉扯的力量很大,
02:50
that not even light can escape.
58
170013
1626
連光線都無法逃脫。
02:51
Einstein's equations predict
the size and shape of this ring,
59
171663
2859
愛因斯坦方程式預測了
這個光環的大小與形狀,
02:54
so taking a picture of it
wouldn't only be really cool,
60
174546
3208
所以拍攝黑洞的相片不只是很酷,
02:57
it would also help to verify
that these equations hold
61
177778
2618
它也有助於驗證這些方程式
03:00
in the extreme conditions
around the black hole.
62
180420
2466
能在黑洞附近這樣的
極端環境下成立。
03:02
However, this black hole
is so far away from us,
63
182910
2558
但是,這個黑洞距離我們非常遙遠,
03:05
that from Earth, this ring appears
incredibly small --
64
185492
3098
從地球看過去,
這個光環是不可思議的小,
03:08
the same size to us as an orange
on the surface of the moon.
65
188614
3590
就像是月球表面的
一個橘子那樣的小。
03:12
That makes taking a picture of it
extremely difficult.
66
192758
2824
所以拍攝黑洞的相片是極其困難的。
03:16
Why is that?
67
196645
1302
為什麼呢?
03:18
Well, it all comes down
to a simple equation.
68
198512
3188
因為,這所有的一切
可以歸結於一個簡單的方程式。
03:21
Due to a phenomenon called diffraction,
69
201724
2416
由於「衍射」現象,
03:24
there are fundamental limits
70
204164
1355
我們所能觀察到的最小物體,
03:25
to the smallest objects
that we can possibly see.
71
205543
2670
是有限小的,
我們無法洞察更小的結構。
03:28
This governing equation says
that in order to see smaller and smaller,
72
208789
3672
這個方程式說,
為了要看到越來越小的物體,
03:32
we need to make our telescope
bigger and bigger.
73
212485
2587
我們必須製作越來越大的望遠鏡。
03:35
But even with the most powerful
optical telescopes here on Earth,
74
215096
3069
但是,即使透過地球上
最強大的光學望遠鏡,
03:38
we can't even get close
to the resolution necessary
75
218189
2419
我們還是遠遠達不到
03:40
to image on the surface of the moon.
76
220632
2198
拍攝月球表面的影像所需要的解析度。
03:42
In fact, here I show one of the highest
resolution images ever taken
77
222854
3617
事實上,請大家看看這張從地球拍攝的
解析度最高的月球照片之一,
03:46
of the moon from Earth.
78
226495
1397
03:47
It contains roughly 13,000 pixels,
79
227916
2557
這張相片大約有一萬三千像素,
03:50
and yet each pixel would contain
over 1.5 million oranges.
80
230497
4050
而每一個像素可包含
超過 150 萬個橘子。
03:55
So how big of a telescope do we need
81
235396
1972
那麼,為了要看到月球表面的橘子,
03:57
in order to see an orange
on the surface of the moon
82
237392
2765
我們需要多大的望遠鏡呢?
04:00
and, by extension, our black hole?
83
240181
2214
再者,為了要看到黑洞?
04:02
Well, it turns out
that by crunching the numbers,
84
242419
2340
事實證明,透過大量運算,
04:04
you can easily calculate
that we would need a telescope
85
244783
2610
我們可以很容易地計算出
我們所需要的望遠鏡
04:07
the size of the entire Earth.
86
247417
1393
必須是整個地球那麼大。
04:08
(Laughter)
87
248834
1024
(笑聲)
04:09
If we could build
this Earth-sized telescope,
88
249882
2119
如果我們建造出地球般大小的望遠鏡,
04:12
we could just start to make out
that distinctive ring of light
89
252025
2925
我們馬上就可以探測出一個獨特光環,
04:14
indicative of the black
hole's event horizon.
90
254974
2183
它表明了黑洞的表面界限。
04:17
Although this picture wouldn't contain
all the detail we see
91
257181
2918
雖然這張相片沒有包含所有細節,
04:20
in computer graphic renderings,
92
260123
1506
像我們在電腦圖形渲染上看到的那樣,
04:21
it would allow us to safely get
our first glimpse
93
261653
2299
但是,至少我們可以安全地
04:23
of the immediate environment
around a black hole.
94
263976
2487
對黑洞附近的環境瞥上一眼。
04:26
However, as you can imagine,
95
266487
1613
然而,如同大家想像的,
04:28
building a single-dish telescope
the size of the Earth is impossible.
96
268124
3624
建造一個地球大小的
單碟望遠鏡是不可能的。
04:31
But in the famous words of Mick Jagger,
97
271772
1887
但是在 Mick Jagger 的名言中:
04:33
"You can't always get what you want,
98
273683
1791
「你無法一直得到你所想要的,
04:35
but if you try sometimes,
you just might find
99
275498
2187
但是如果你去嘗試,你可能會發現
04:37
you get what you need."
100
277709
1215
你得到了你所需要的。」
04:38
And by connecting telescopes
from around the world,
101
278948
2464
藉由連結世界各地的望遠鏡,
04:41
an international collaboration
called the Event Horizon Telescope
102
281436
3538
名為「事件視界望遠鏡」的國際組織
04:44
is creating a computational telescope
the size of the Earth,
103
284998
3109
正著手創建一個地球大小的
計算型望遠鏡,
04:48
capable of resolving structure
104
288131
1537
它能夠解析黑洞的
04:49
on the scale of a black
hole's event horizon.
105
289692
2199
表面界限的結構。
04:51
This network of telescopes is scheduled
to take its very first picture
106
291915
3387
這個望遠鏡網路預計明年
04:55
of a black hole next year.
107
295326
1815
拍攝黑洞的第一張相片。
04:57
Each telescope in the worldwide
network works together.
108
297165
3338
世界各地的望遠鏡網路同時運作。
05:00
Linked through the precise timing
of atomic clocks,
109
300527
2712
透過原子鐘的精準時間鏈結,
05:03
teams of researchers at each
of the sites freeze light
110
303263
2657
每個地點的研究團隊
藉由蒐集數千兆兆字節的數據
05:05
by collecting thousands
of terabytes of data.
111
305944
2962
將光線「定格」。
05:08
This data is then processed in a lab
right here in Massachusetts.
112
308930
5017
麻薩諸塞州這裡的實驗室
接下來處理這些資料。
05:13
So how does this even work?
113
313971
1794
那麼,這些資料是如何運作的呢?
05:15
Remember if we want to see the black hole
in the center of our galaxy,
114
315789
3403
還記得嗎?如果我們想要
看清在銀河中間的黑洞,
05:19
we need to build this impossibly large
Earth-sized telescope?
115
319216
2982
我們就需要建造地球大小的
望遠鏡,這是不現實的。
05:22
For just a second,
let's pretend we could build
116
322222
2232
等一下,假設我們能夠建造
05:24
a telescope the size of the Earth.
117
324478
1842
地球般大小的望遠鏡。
05:26
This would be a little bit
like turning the Earth
118
326344
2455
就有點像將地球
05:28
into a giant spinning disco ball.
119
328823
1747
想像成舞廳裡的迪斯可旋轉球。
05:30
Each individual mirror would collect light
120
330594
2200
每一面鏡子會蒐集光線,
05:32
that we could then combine
together to make a picture.
121
332818
2597
然後我們能將這些
影像整合成一張圖片。
05:35
However, now let's say
we remove most of those mirrors
122
335439
2661
但是,現在讓我們
移除大多數的鏡子,
05:38
so only a few remained.
123
338124
1972
只剩下少數幾個。
05:40
We could still try to combine
this information together,
124
340120
2877
我們仍可試著整合這些資訊,
05:43
but now there are a lot of holes.
125
343021
1993
但是,現在只能看到很多「孔洞」。
05:45
These remaining mirrors represent
the locations where we have telescopes.
126
345038
4373
這些剩下的鏡子代表
那些有望遠鏡的地方。
05:49
This is an incredibly small number
of measurements to make a picture from.
127
349435
4079
測量數據少之又少,
甚至無法形成一張圖片。
05:53
But although we only collect light
at a few telescope locations,
128
353538
3838
雖然我們只在少數
有望遠鏡的地方蒐集光線,
05:57
as the Earth rotates, we get to see
other new measurements.
129
357400
3423
地球旋轉時,我們可以
獲得一些新的測量數據。
06:00
In other words, as the disco ball spins,
those mirrors change locations
130
360847
3819
換句話說,就像迪斯可球旋轉時,
那些鏡子也會改變位置,
06:04
and we get to observe
different parts of the image.
131
364690
2899
我們得以觀察不同面向的影像。
06:07
The imaging algorithms we develop
fill in the missing gaps of the disco ball
132
367613
4018
我們所開發的成像算法填補了
「迪斯可球」的不可見縫隙,
06:11
in order to reconstruct
the underlying black hole image.
133
371655
3033
目的在重建黑洞的相片。
06:14
If we had telescopes located
everywhere on the globe --
134
374712
2636
如果地球的每個地方都有望遠鏡,
06:17
in other words, the entire disco ball --
135
377372
1941
也就是整個迪斯可球佈滿了鏡子,
06:19
this would be trivial.
136
379337
1284
這是最簡潔、理想的情況。
06:20
However, we only see a few samples,
and for that reason,
137
380645
3322
但是,我們只看得到
某些局部的成像,因此,
06:23
there are an infinite number
of possible images
138
383991
2388
有無數可能的相片
06:26
that are perfectly consistent
with our telescope measurements.
139
386403
2964
可以與現有望遠鏡的
局部成像相吻合。
06:29
However, not all images are created equal.
140
389391
3016
當然,並不是每一張「相片」的
優先級別都相同。
06:32
Some of those images look more like
what we think of as images than others.
141
392849
4458
有些相片比別的
更近似我們所想像的。
06:37
And so, my role in helping to take
the first image of a black hole
142
397331
3222
因此,為了協助拍攝黑洞
第一張相片,我的任務就是
06:40
is to design algorithms that find
the most reasonable image
143
400577
2932
設計發現最合理影像的演算法,
06:43
that also fits the telescope measurements.
144
403533
2222
當然也必須符合望遠鏡的量測數據。
06:46
Just as a forensic sketch artist
uses limited descriptions
145
406727
3942
就像法庭的素描家一樣,
利用有限的相貌描述以及
06:50
to piece together a picture using
their knowledge of face structure,
146
410693
3514
他們對於臉部結構的知識,
將表現相貌特點的圖片拼湊出來,
06:54
the imaging algorithms I develop
use our limited telescope data
147
414231
3315
我開發的影像演算法
使用有限的望遠鏡資料
06:57
to guide us to a picture that also
looks like stuff in our universe.
148
417570
4322
為我們生成這種影像:
類似於宇宙中的事物的影像。
07:01
Using these algorithms,
we're able to piece together pictures
149
421916
3651
利用這些演算法,
讓我們能夠利用零零散散的資料
07:05
from this sparse, noisy data.
150
425591
2180
拼湊出黑洞可能的樣子。
07:07
So here I show a sample reconstruction
done using simulated data,
151
427795
4529
在這裡,讓大家看一個利用模擬資料
重建的影像樣本,
07:12
when we pretend to point our telescopes
152
432348
1933
這是我們假設將望遠鏡指向
07:14
to the black hole
in the center of our galaxy.
153
434305
2585
銀河系中心的黑洞時所得到的。
07:16
Although this is just a simulation,
reconstruction such as this give us hope
154
436914
4455
雖然這只是一個模擬,
但是這讓我們充滿了希望:
07:21
that we'll soon be able to reliably take
the first image of a black hole
155
441393
3453
我們能夠仰賴這樣的模擬演算法,
很快地得到黑洞的第一張相片,
07:24
and from it, determine
the size of its ring.
156
444870
2595
同時也能計算「光環」的大小。
07:28
Although I'd love to go on
about all the details of this algorithm,
157
448118
3199
雖然我很樂意繼續說明
這個演算法的所有細節,
07:31
luckily for you, I don't have the time.
158
451341
2174
但由於時間不夠,所以
你們也不用費腦子聽了。
07:33
But I'd still like
to give you a brief idea
159
453539
2001
但是,我還是很樂意
跟大家做個簡短的說明:
07:35
of how we define
what our universe looks like,
160
455564
2302
我們如何定義宇宙看起來像什麼?
07:37
and how we use this to reconstruct
and verify our results.
161
457890
4466
以及我們如何
利用這個演算法重建並驗證結果。
07:42
Since there are an infinite number
of possible images
162
462380
2496
因為有無數可能的影像
07:44
that perfectly explain
our telescope measurements,
163
464900
2365
與地球上望遠鏡的量測完全符合,
07:47
we have to choose
between them in some way.
164
467289
2605
我們必須在它們之間
找個方法進行挑選。
07:49
We do this by ranking the images
165
469918
1838
我們對影像進行打分,
07:51
based upon how likely they are
to be the black hole image,
166
471780
2834
打分的根據是:看起來有多像黑洞,
07:54
and then choosing the one
that's most likely.
167
474638
2482
然後選擇最像的影像。
07:57
So what do I mean by this exactly?
168
477144
2195
那麼,這到底是什麼意思呢?
07:59
Let's say we were trying to make a model
169
479862
1978
假設我們試著建立一個模型,
08:01
that told us how likely an image
were to appear on Facebook.
170
481864
3183
它告訴我們這個影像在
Facebook 上出現的可能性。
08:05
We'd probably want the model to say
171
485071
1701
我們希望這個模型會這樣判斷:
08:06
it's pretty unlikely that someone
would post this noise image on the left,
172
486796
3557
大家應該不太可能會上傳
像左邊這張亂亂的圖,
08:10
and pretty likely that someone
would post a selfie
173
490377
2419
而比較可能會上傳自拍照,
08:12
like this one on the right.
174
492820
1334
像右邊這張。
08:14
The image in the middle is blurry,
175
494178
1639
中間這張圖像片是模糊的,
08:15
so even though it's more likely
we'd see it on Facebook
176
495841
2639
即使模糊,和亂亂的圖像比較的話,
我們還是很有可能
08:18
compared to the noise image,
177
498504
1360
在 Facebook 上看到,
08:19
it's probably less likely we'd see it
compared to the selfie.
178
499888
2960
只不過不如自拍照那樣常見。
08:22
But when it comes to images
from the black hole,
179
502872
2290
但是,如果是黑洞的影像,
08:25
we're posed with a real conundrum:
we've never seen a black hole before.
180
505186
3502
我們遇到一個真正的難題:
我們從來沒見過黑洞的樣子。
08:28
In that case, what is a likely
black hole image,
181
508712
2291
在這種情況下,
黑洞可能的影像是什麼?
08:31
and what should we assume
about the structure of black holes?
182
511027
2938
我們應該假設黑洞的結構是什麼?
08:33
We could try to use images
from simulations we've done,
183
513989
2632
我們可能會試著使用
之前生成的模擬結果,
08:36
like the image of the black hole
from "Interstellar,"
184
516645
2530
像「星際效應」裡的黑洞影像,
08:39
but if we did this,
it could cause some serious problems.
185
519199
2938
但是,如果這樣做的話,
可能會造成一些嚴重的問題。
08:42
What would happen
if Einstein's theories didn't hold?
186
522161
3380
如果愛因斯坦的理論不適用的話,
會發生什麼事?
08:45
We'd still want to reconstruct
an accurate picture of what was going on.
187
525565
3961
我們還是想要重建
一個準確的圖像。
08:49
If we bake Einstein's equations
too much into our algorithms,
188
529550
3371
如果將太多愛因斯坦的方程式
融入我們的演算法中,
08:52
we'll just end up seeing
what we expect to see.
189
532945
2755
最後只會得到我們期望的結果,
而不一定是事實。
08:55
In other words,
we want to leave the option open
190
535724
2276
換句話說,我們不能
貿然確定實際情況如何,
08:58
for there being a giant elephant
at the center of our galaxy.
191
538024
2923
因為銀河系中央有一隻巨象。
09:00
(Laughter)
192
540971
1057
(笑聲)
09:02
Different types of images have
very distinct features.
193
542052
2989
不同類型的影像有著
各自非常顯著的特徵。
09:05
We can easily tell the difference
between black hole simulation images
194
545065
3548
我們可以很容易地區分
黑洞模擬影像
09:08
and images we take
every day here on Earth.
195
548637
2276
以及我們在地球上日常生活中的照片。
09:10
We need a way to tell our algorithms
what images look like
196
550937
3104
我們需要一種方法來告訴演算法
影像看起來像什麼,
09:14
without imposing one type
of image's features too much.
197
554065
3249
而不是去強加特定一種影像的特徵給它。
09:17
One way we can try to get around this
198
557865
1893
我們可以用一個方法
試著解決這個問題:
09:19
is by imposing the features
of different kinds of images
199
559782
3062
通過導入不同類型影像的特徵
讓演算法重建影像,
09:22
and seeing how the type of image we assume
affects our reconstructions.
200
562868
4130
然後觀察預先假設的影像類型
如何影響我們重建的影像。
09:27
If all images' types produce
a very similar-looking image,
201
567712
3491
如果所有不同類型的影像特徵
產生的結果都很類似,
09:31
then we can start to become more confident
202
571227
2057
那麼我們可以充滿信心地說:
09:33
that the image assumptions we're making
are not biasing this picture that much.
203
573308
4173
對於這個影像所做的假設
沒有與事實偏差太多。
09:37
This is a little bit like
giving the same description
204
577505
2990
這有點像是將相同的相貌描述
09:40
to three different sketch artists
from all around the world.
205
580519
2996
提供給三個來自世界各地不同的素描家,
09:43
If they all produce
a very similar-looking face,
206
583539
2860
如果他們都畫出很相像的臉,
09:46
then we can start to become confident
207
586423
1793
那麼我們可以充滿信心地說:
09:48
that they're not imposing their own
cultural biases on the drawings.
208
588240
3616
他們的作品沒有受到
本人的文化偏見的影響。
09:51
One way we can try to impose
different image features
209
591880
3315
我們導入不同類型影像
的特徵的一個方法
09:55
is by using pieces of existing images.
210
595219
2441
就是藉由現存的影像去拼湊。
09:58
So we take a large collection of images,
211
598214
2160
所以我們要蒐集大量的影像,
10:00
and we break them down
into their little image patches.
212
600398
2718
然後將它們分解成許多碎片。
10:03
We then can treat each image patch
a little bit like pieces of a puzzle.
213
603140
4285
之後我們可以把這些碎片
當作拼圖的碎片。
10:07
And we use commonly seen puzzle pieces
to piece together an image
214
607449
4278
我們使用常見的「碎片」拼湊成圖片,
10:11
that also fits our telescope measurements.
215
611751
2452
這張圖片當然也要
符合望遠鏡的量測數據。
10:15
Different types of images have
very distinctive sets of puzzle pieces.
216
615040
3743
不同類型的影像有其獨特的拼圖碎片。
10:18
So what happens when we take the same data
217
618807
2806
所以,當我們利用相同的數據資料
10:21
but we use different sets of puzzle pieces
to reconstruct the image?
218
621637
4130
卻使用不同類型的拼圖碎片
來重建這個影像,會發生什麼事?
10:25
Let's first start with black hole
image simulation puzzle pieces.
219
625791
4766
讓我們先從黑洞模擬
圖像的拼圖碎片開始。
10:30
OK, this looks reasonable.
220
630581
1591
好的,這看起來很合理。
10:32
This looks like what we expect
a black hole to look like.
221
632196
2694
這看起來像我們
所期待的黑洞的樣子。
10:34
But did we just get it
222
634914
1193
但是,僅僅是導入了
一些些黑洞模擬影像的碎片,
10:36
because we just fed it little pieces
of black hole simulation images?
223
636131
3314
我們就得出了結果嗎?
10:39
Let's try another set of puzzle pieces
224
639469
1880
讓我們來試試另一組拼圖,
10:41
from astronomical, non-black hole objects.
225
641373
2509
這些是天文學影像的拼圖,不是黑洞的。
10:44
OK, we get a similar-looking image.
226
644914
2126
沒錯,我們得到一個類似的影像。
10:47
And then how about pieces
from everyday images,
227
647064
2236
那麼如果是日常生活的影像呢?
10:49
like the images you take
with your own personal camera?
228
649324
2785
就像用相機所照的照片一樣?
10:53
Great, we see the same image.
229
653312
2115
很好,我們得到相同的影像。
10:55
When we get the same image
from all different sets of puzzle pieces,
230
655451
3366
當我們從不同類型的拼圖
得到相同的影像,
10:58
then we can start to become more confident
231
658841
2046
我們更有信心了,
11:00
that the image assumptions we're making
232
660911
1966
我們所假定的影像
11:02
aren't biasing the final
image we get too much.
233
662901
2921
和我們最後得到的影像
並沒有差距太多。
11:05
Another thing we can do is take
the same set of puzzle pieces,
234
665846
3253
我們可以做的另一件事
就是使用同一組拼圖,
11:09
such as the ones derived
from everyday images,
235
669123
2489
比如日常生活中的影像碎片,
11:11
and use them to reconstruct
many different kinds of source images.
236
671636
3600
並利用它們來重組
各種不同素材來源的影像。
11:15
So in our simulations,
237
675260
1271
那麼,在模擬實驗當中,
11:16
we pretend a black hole looks like
astronomical non-black hole objects,
238
676555
3775
我們假設黑洞看起來就像是
天文學裡那些非黑洞的物體,
11:20
as well as everyday images like
the elephant in the center of our galaxy.
239
680354
3849
或者又把它看成「銀河系中央的大象」
這樣的日常生活影像。
11:24
When the results of our algorithms
on the bottom look very similar
240
684227
3168
我們下方的演算結果
11:27
to the simulation's truth image on top,
241
687419
2096
和上方的模擬實驗中的真實影像很相像,
11:29
then we can start to become
more confident in our algorithms.
242
689539
3346
我們就可以對我們的演算法更有信心。
11:32
And I really want to emphasize here
243
692909
1867
我真的想要強調這一點:
11:34
that all of these pictures were created
244
694800
1934
這些所有的圖片都是
11:36
by piecing together little pieces
of everyday photographs,
245
696758
2936
由日常生活照片的碎片
拼湊出來的,
11:39
like you'd take with your own
personal camera.
246
699718
2215
就是那種用私人相機照出來的照片。
11:41
So an image of a black hole
we've never seen before
247
701957
3276
我們之前從沒看過黑洞的相片,
11:45
may eventually be created by piecing
together pictures we see all the time
248
705257
3943
但最後黑洞的相片也許是由我們
常常看到的日常生活照片拼湊出來的:
11:49
of people, buildings,
trees, cats and dogs.
249
709224
2745
人像、建築物、樹木、貓、狗等等。
11:51
Imaging ideas like this
will make it possible for us
250
711993
2645
這些成像方法讓我們能夠
11:54
to take our very first pictures
of a black hole,
251
714662
2619
拍攝出黑洞的第一張相片,
11:57
and hopefully, verify
those famous theories
252
717305
2447
我們同時也希望
能夠驗證那些著名的理論,
11:59
on which scientists rely on a daily basis.
253
719776
2421
那些科學家平常所依賴的理論。
12:02
But of course, getting
imaging ideas like this working
254
722221
2608
當然,提出這些成像的方法與理論,
12:04
would never have been possible
without the amazing team of researchers
255
724853
3322
沒有一個驚人的研究團隊
是不可能達到這種成果的,
12:08
that I have the privilege to work with.
256
728199
1887
我很榮幸身為這個團隊的一員。
12:10
It still amazes me
257
730110
1163
我對這件事感到驚異:
12:11
that although I began this project
with no background in astrophysics,
258
731297
3351
雖然我沒有任何天文物理的背景
而加入這個專案,
12:14
what we have achieved
through this unique collaboration
259
734672
2619
我們透過這獨特的合作所得到的,
12:17
could result in the very first
images of a black hole.
260
737315
2759
能夠獲得第一張黑洞的相片。
12:20
But big projects like
the Event Horizon Telescope
261
740098
2698
但是像「事件視界望遠鏡」
這樣的大專案,
12:22
are successful due to all
the interdisciplinary expertise
262
742820
2814
多虧有跨學科領域的專業知識而成功,
12:25
different people bring to the table.
263
745658
1790
不同的專家共同合作着。
12:27
We're a melting pot of astronomers,
264
747472
1706
我們像是個熔爐,集結了天文學家、
12:29
physicists, mathematicians and engineers.
265
749202
2232
物理學家、數學家和工程師。
12:31
This is what will make it soon possible
266
751458
2554
這就是我們讓不可思議的事情
12:34
to achieve something
once thought impossible.
267
754036
2853
快速實現的原因。
12:36
I'd like to encourage all of you to go out
268
756913
2256
我很想鼓勵大家
12:39
and help push the boundaries of science,
269
759193
2096
去協助推動科學的前沿,
12:41
even if it may at first seem
as mysterious to you as a black hole.
270
761313
3901
即使第一步可能像黑洞那樣神秘。
12:45
Thank you.
271
765238
1174
謝謝大家。
12:46
(Applause)
272
766436
2397
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。