Anders Ynnerman: Visualizing the medical data explosion

42,242 views ใƒป 2011-01-21

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Guy Ernest ืžื‘ืงืจ: Sigal Tifferet
00:15
I will start by posing a little bit of a challenge:
0
15260
4000
ืื ื™ ืืชื—ื™ืœ ืขืœ ื™ื“ื™ ื”ืฆื‘ืช ืืชื’ืจ ืงื˜ืŸ,
00:19
the challenge of dealing with data,
1
19260
3000
ื”ืืชื’ืจ ืฉืœ ื”ืชืžื•ื“ื“ื•ืช ืขื ื ืชื•ื ื™ื,
00:22
data that we have to deal with
2
22260
2000
ื ืชื•ื ื™ื ืื™ืชื ืฆืจื™ืš ืœื”ืชืžื•ื“ื“
00:24
in medical situations.
3
24260
2000
ื‘ืžืฆื‘ื™ื ืจืคื•ืื™ื™ื.
00:26
It's really a huge challenge for us.
4
26260
2000
ื–ื” ื‘ืืžืช ืืชื’ืจ ืื“ื™ืจ ืขื‘ื•ืจื ื•.
00:28
And this is our beast of burden --
5
28260
2000
ื•ื–ื•ื”ื™ ื‘ื”ืžืช ื”ืžืฉื ืฉืœื ื•.
00:30
this is a Computer Tomography machine,
6
30260
2000
ื–ื•ื”ื™ ืžื›ื•ื ืช ื”ื˜ื•ืžื•ื’ืจืคื™ื” ื”ืžืžื•ื—ืฉื‘ืช --
00:32
a CT machine.
7
32260
2000
ืžื›ื•ื ืช ื”-ืกื™-ื˜ื™.
00:34
It's a fantastic device.
8
34260
2000
ื–ื”ื• ืžื›ืฉื™ืจ ืžื“ื”ื™ื.
00:36
It uses X-rays, X-ray beams,
9
36260
2000
ื”ื•ื ืžืฉืชืžืฉ ื‘ืืœื•ืžื•ืช ืฉืœ ืงืจื ื™ ืจื ื˜ื’ืŸ,
00:38
that are rotating very fast around the human body.
10
38260
3000
ืฉืžืกืชื•ื‘ื‘ื•ืช ืžืื“ ืžื”ืจ ืžืกื‘ื™ื‘ ืœื’ื•ืฃ ื”ืื“ื.
00:41
It takes about 30 seconds to go through the whole machine
11
41260
2000
ืœื•ืงื— ื‘ืขืจืš 30 ืฉื ื™ื•ืช ืœืขื‘ื•ืจ ื“ืจืš ื›ืœ ื”ืžื›ื•ื ื”
00:43
and is generating enormous amounts of information
12
43260
2000
ื•ื”ื™ื ืžื™ื™ืฆืจืช ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœ ืžื™ื“ืข
00:45
that comes out of the machine.
13
45260
2000
ืฉื™ื•ืฆื ืžื”ืžื›ื•ื ื”.
00:47
So this is a fantastic machine
14
47260
2000
ืื– ื–ื•ื”ื™ ืžื›ื•ื ื” ืžื“ื”ื™ืžื”
00:49
that we can use
15
49260
2000
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ
00:51
for improving health care,
16
51260
2000
ื›ื“ื™ ืœืฉืคืจ ืืช ื”ื˜ื™ืคื•ืœ ื”ืจืคื•ืื™.
00:53
but as I said, it's also a challenge for us.
17
53260
2000
ืืš ื›ืคื™ ืฉืืžืจืชื™, ื–ื” ื’ื ืžื”ื•ื•ื” ืืชื’ืจ ืขื‘ื•ืจื ื•.
00:55
And the challenge is really found in this picture here.
18
55260
3000
ื•ื”ืืชื’ืจ ื ืžืฆื ื‘ืืžืช ื‘ืชืžื•ื ื” ื”ื–ืืช ื›ืืŸ.
00:58
It's the medical data explosion
19
58260
2000
ื–ื•ื”ื™ ื”ืชืคื•ืฆืฆื•ืช ืฉืœ ื”ื ืชื•ื ื™ื ื”ืจืคื•ืื™ื™ื
01:00
that we're having right now.
20
60260
2000
ืฉื™ืฉ ืœื ื• ืขื›ืฉื™ื•.
01:02
We're facing this problem.
21
62260
2000
ืื ื• ืžืชืžื•ื“ื“ื™ื ืขื ื”ื‘ืขื™ื” ื”ื–ืืช.
01:04
And let me step back in time.
22
64260
2000
ื”ืจืฉื• ืœื™ ืœื—ื–ื•ืจ ื‘ื–ืžืŸ.
01:06
Let's go back a few years in time and see what happened back then.
23
66260
3000
ื‘ื•ืื• ื ื—ื–ื•ืจ ืžืกืคืจ ืฉื ื™ื ื•ื ืจืื” ืžื” ืงืจื” ืื–.
01:09
These machines that came out --
24
69260
2000
ื”ืžื›ื•ื ื•ืช ื”ืืœื” ืฉื™ืฆืื• --
01:11
they started coming in the 1970s --
25
71260
2000
ื”ื ื”ืชื—ื™ืœื• ืœืฆืืช ื‘ืฉื ื•ืช ื”-70 --
01:13
they would scan human bodies,
26
73260
2000
ื”ื ืกืจืงื• ืืช ื’ื•ืฃ ื”ืื“ื,
01:15
and they would generate about 100 images
27
75260
2000
ื•ื”ื ื™ืฆืจื• ื‘ืขืจืš 100 ืชืžื•ื ื•ืช
01:17
of the human body.
28
77260
2000
ืฉืœ ื’ื•ืฃ ื”ืื“ื.
01:19
And I've taken the liberty, just for clarity,
29
79260
2000
ื”ืจืฉื™ืชื™ ืœืขืฆืžื™, ืœืฆืจื›ื™ ื‘ื”ื™ืจื•ืช,
01:21
to translate that to data slices.
30
81260
3000
ืœืชืจื’ื ืืช ื–ื” ืœื—ืชื›ื™ื ืฉืœ ื ืชื•ื ื™ื.
01:24
That would correspond to about 50 megabytes of data,
31
84260
2000
ื–ื” ืžืชืจื’ื ืœื‘ืขืจืš 50 ืžื’ื” ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื,
01:26
which is small
32
86260
2000
ืฉื–ื” ืžืขื˜
01:28
when you think about the data we can handle today
33
88260
3000
ื›ืืฉืจ ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื”ื ืชื•ื ื™ื ืฉืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœื˜ืคืœ ื”ื™ื•ื
01:31
just on normal mobile devices.
34
91260
2000
ืืคื™ืœื• ื‘ืžื›ืฉื™ืจ ื ื™ื™ื“ ื ื•ืจืžืœื™.
01:33
If you translate that to phone books,
35
93260
2000
ืื ืืชื ืžืชืจื’ืžื™ื ืืช ื–ื” ืœืกืคืจ ื˜ืœืคื•ื ื™ื,
01:35
it's about one meter of phone books in the pile.
36
95260
3000
ื–ื” ื‘ืขืจืš ืžื˜ืจ ืฉืœ ืกืคืจื™ ื˜ืœืคื•ื ื™ื ื‘ืขืจื™ืžื”.
01:38
Looking at what we're doing today
37
98260
2000
ืื ืชื‘ื™ื˜ื• ืžื” ืื ื—ื ื• ืขื•ืฉื™ื ื”ื™ื•ื
01:40
with these machines that we have,
38
100260
2000
ื‘ืขื–ืจืช ื”ืžื›ื•ื ื•ืช ื”ืืœื” ืฉื™ืฉ ืœื ื•,
01:42
we can, just in a few seconds,
39
102260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื, ืืคื™ืœื• ื‘ืฉื ื™ื•ืช ืกืคื•ืจื•ืช,
01:44
get 24,000 images out of a body,
40
104260
2000
ืœืงื‘ืœ 24,000 ืชืžื•ื ื•ืช ืžืชื•ืš ื”ื’ื•ืฃ.
01:46
and that would correspond to about 20 gigabytes of data,
41
106260
3000
ื•ื–ื” ืžืชืจื’ื ืœื‘ืขืจืš 20 ื’'ื™ื’ื” ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื,
01:49
or 800 phone books,
42
109260
2000
ืื• 800 ืกืคืจื™ ื˜ืœืคื•ื ื™ื.
01:51
and the pile would then be 200 meters of phone books.
43
111260
2000
ื•ื”ืขืจื™ืžื” ืชื”ื™ื” ืื– 200 ืžื˜ืจ ืฉืœ ืกืคืจื™ ื˜ืœืคื•ื ื™ื.
01:53
What's about to happen --
44
113260
2000
ืžื” ืฉืขื•ืžื“ ืœืงืจื•ืช --
01:55
and we're seeing this; it's beginning --
45
115260
2000
ื•ืื ื—ื ื• ืจื•ืื™ื ืืช ื–ื”, ื–ื” ืžืชื—ื™ืœ --
01:57
a technology trend that's happening right now
46
117260
2000
ืžื’ืžื” ื˜ื›ื ื•ืœื•ื’ื™ืช ืฉืžืชืจื—ืฉืช ืžืžืฉ ืขื›ืฉื™ื•
01:59
is that we're starting to look at time-resolved situations as well.
47
119260
3000
ื”ื™ื ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืจืื•ืช ืžืฆื‘ื™ื ืฉืœ ืชื•ืฆืื•ืช ื–ืžืŸ ื’ื ื›ืŸ.
02:02
So we're getting the dynamics out of the body as well.
48
122260
3000
ืื– ืื ื—ื ื• ืžืงื‘ืœื™ื ืืช ื”ื“ื™ื ืžื™ืงื” ืฉืœ ื”ื’ื•ืฃ ื’ื ื›ืŸ.
02:05
And just assume
49
125260
2000
ื•ืจืง ื ื ื™ื—
02:07
that we will be collecting data during five seconds,
50
127260
3000
ืฉืื ื—ื ื• ืื•ืกืคื™ื ื ืชื•ื ื™ื ื‘ืžืฉืš 5 ืฉื ื™ื•ืช,
02:10
and that would correspond to one terabyte of data --
51
130260
2000
ื–ื” ื™ืชื•ืจื’ื ืœื˜ืจื” ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื.
02:12
that's 800,000 books
52
132260
2000
ืฉื”ื 800,000 ืกืคืจื™ื
02:14
and 16 kilometers of phone books.
53
134260
2000
ื•-16 ืง"ืž ืฉืœ ืกืคืจื™ ื˜ืœืคื•ื ื™ื.
02:16
That's one patient, one data set.
54
136260
2000
ื•ื–ื” ืจืง ื—ื•ืœื” ืื—ื“, ืจืง ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืื—ืช.
02:18
And this is what we have to deal with.
55
138260
2000
ื•ืขื ื–ื” ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืชืžื•ื“ื“.
02:20
So this is really the enormous challenge that we have.
56
140260
3000
ืื– ื™ืฉ ืœื ื• ื‘ืืžืช ืืชื’ืจ ืื“ื™ืจ.
02:23
And already today -- this is 25,000 images.
57
143260
3000
ื•ื›ื‘ืจ ื”ื™ื•ื -- ื–ื” 25,000 ืชืžื•ื ื•ืช.
02:26
Imagine the days
58
146260
2000
ื“ืžื™ื™ื ื• ืืช ื”ื™ืžื™ื
02:28
when we had radiologists doing this.
59
148260
2000
ืฉื”ื™ื• ืœื ื• ืจื“ื™ื•ืœื•ื’ื™ื ืฉืขื•ืฉื™ื ืืช ื–ื”.
02:30
They would put up 25,000 images,
60
150260
2000
ื”ื ื”ื™ื• ืฉืžื™ื 25,000 ืชืžื•ื ื•ืช,
02:32
they would go like this, "25,0000, okay, okay.
61
152260
3000
ื”ื ื”ื™ื• ืื•ืžืจื™ื ืžืฉื”ื• ื›ืžื•, "25,000, ื‘ืกื“ืจ, ื‘ืกื“ืจ.
02:35
There is the problem."
62
155260
2000
ื”ื ื” ื”ื‘ืขื™ื”."
02:37
They can't do that anymore. That's impossible.
63
157260
2000
ื”ื ืœื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ื™ื•ืชืจ, ื–ื” ื‘ืœืชื™ ืืคืฉืจื™.
02:39
So we have to do something that's a little bit more intelligent than doing this.
64
159260
3000
ืื– ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืžืฉื”ื• ืงืฆืช ื™ื•ืชืจ ืื™ื ื˜ืœื’ื ื˜ื™ ืžืืฉืจ ืœืขืฉื•ืช ืืช ื–ื”.
02:43
So what we do is that we put all these slices together.
65
163260
2000
ืื– ืื ื—ื ื• ืฉืžื™ื ืืช ื›ืœ ื”ื—ืชื›ื™ื ื‘ื™ื—ื“.
02:45
Imagine that you slice your body in all these directions,
66
165260
3000
ื“ืžื™ื™ื ื• ืฉืืชื ื—ื•ืชื›ื™ื ืืช ื”ื’ื•ืฃ ืฉืœื›ื ื‘ื›ืœ ื”ื›ื™ื•ื•ื ื™ื ื”ืืœื”,
02:48
and then you try to put the slices back together again
67
168260
3000
ื•ืื– ืืชื ืžื ืกื™ื ืœืฉื™ื ืืช ื”ื—ืชื›ื™ื ื‘ื™ื—ื“ ื‘ื—ื–ืจื” ืฉื•ื‘
02:51
into a pile of data, into a block of data.
68
171260
2000
ืœืชื•ืš ืขืจื™ืžื” ืฉืœ ื ืชื•ื ื™ื, ืœืชื•ืš ื‘ืœื•ืง ืฉืœ ื ืชื•ื ื™ื.
02:53
So this is really what we're doing.
69
173260
2000
ืื– ื–ื” ื‘ืืžืช ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื.
02:55
So this gigabyte or terabyte of data, we're putting it into this block.
70
175260
3000
ืื– ื”ื’'ื™ื’ื” ื‘ื™ื™ื˜ ืื• ื”ื˜ืจื” ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื, ืื ื—ื ื• ืฉืžื™ื ืื•ืชื ืœืชื•ืš ื”ื‘ืœื•ืง ื”ื–ื”.
02:58
But of course, the block of data
71
178260
2000
ืื‘ืœ ื›ืžื•ื‘ืŸ, ื”ื‘ืœื•ืง ืฉืœ ื”ื ืชื•ื ื™ื
03:00
just contains the amount of X-ray
72
180260
2000
ืจืง ื›ื•ืœืœ ืืช ื”ื›ืžื•ืช ืฉืœ ืงืจื ื™ ื”ืจื ื˜ื’ืŸ
03:02
that's been absorbed in each point in the human body.
73
182260
2000
ืฉื ืกืคื’ื• ื‘ื›ืœ ื ืงื•ื“ื” ื‘ื’ื•ืฃ ื”ืื“ื.
03:04
So what we need to do is to figure out a way
74
184260
2000
ืื– ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื–ื” ืœืžืฆื•ื ื“ืจืš
03:06
of looking at the things we do want to look at
75
186260
3000
ืœื”ืกืชื›ืœ ื‘ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืจืื•ืช
03:09
and make things transparent that we don't want to look at.
76
189260
3000
ื•ืœื’ืจื•ื ืœื“ื‘ืจื™ื ืฉืื ื—ื ื• ืœื ืจื•ืฆื™ื ืœืจืื•ืช ืœื”ื™ื•ืช ืฉืงื•ืคื™ื.
03:12
So transforming the data set
77
192260
2000
ืื– ืœืฉื ื•ืช ืืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื
03:14
into something that looks like this.
78
194260
2000
ืœืžืฉื”ื• ืฉื ืจืื” ื›ืžื• ื–ื”.
03:16
And this is a challenge.
79
196260
2000
ื•ื–ื”ื• ืืชื’ืจ.
03:18
This is a huge challenge for us to do that.
80
198260
3000
ื–ื” ืืชื’ืจ ืขืฆื•ื ื‘ืฉื‘ื™ืœื ื•.
03:21
Using computers, even though they're getting faster and better all the time,
81
201260
3000
ืฉื™ืžื•ืฉ ื‘ืžื—ืฉื‘ื™ื, ืืคื™ืœื• ืฉื”ื ื ืขืฉื™ื ืžื”ื™ืจื™ื ื•ื˜ื•ื‘ื™ื ื™ื•ืชืจ ื›ืœ ื”ื–ืžืŸ,
03:24
it's a challenge to deal with gigabytes of data,
82
204260
2000
ื–ื” ืืชื’ืจ ืœืขื‘ื“ ื’'ื™ื’ื•ืช ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื,
03:26
terabytes of data
83
206260
2000
ื˜ืจื•ืช ื‘ื™ื™ื˜ ืฉืœ ื ืชื•ื ื™ื
03:28
and extracting the relevant information.
84
208260
2000
ื•ืœื—ืœืฅ ืืช ื”ืžื™ื“ืข ื”ืจืœื•ื•ื ื˜ื™.
03:30
I want to look at the heart.
85
210260
2000
ืื ื™ ืจื•ืฆื” ืœื”ืกืชื›ืœ ืขืœ ื”ืœื‘,
03:32
I want to look at the blood vessels. I want to look at the liver.
86
212260
2000
ืื ื™ ืจื•ืฆื” ืœื”ืกืชื›ืœ ืขืœ ืขื•ืจืงื™ ื”ื“ื, ืื ื™ ืจื•ืฆื” ืœื”ืกืชื›ืœ ืขืœ ื”ื›ื‘ื“,
03:34
Maybe even find a tumor,
87
214260
2000
ืื•ืœื™ ืืคื™ืœื• ืœืžืฆื•ื ื’ื™ื“ื•ืœ
03:36
in some cases.
88
216260
2000
ื‘ืžืงืจื™ื ืžืกื•ื™ื™ืžื™ื.
03:39
So this is where this little dear comes into play.
89
219260
2000
ืื– ื–ื” ื”ืžืงื•ื ืฉื”ื“ื‘ืจ ื”ืงื˜ืŸ ื•ื”ื™ืงืจ ื”ื–ื” ื ื›ื ืก ืœืžืฉื—ืง.
03:41
This is my daughter.
90
221260
2000
ื–ื•ื”ื™ ื”ื‘ืช ืฉืœื™.
03:43
This is as of 9 a.m. this morning.
91
223260
2000
ื–ื•ื”ื™ ื‘ืฉืขื” 9 ื‘ื‘ื•ืงืจ ื”ื™ื•ื.
03:45
She's playing a computer game.
92
225260
2000
ื”ื™ื ืžืฉื—ืงืช ืžืฉื—ืง ืžื—ืฉื‘.
03:47
She's only two years old,
93
227260
2000
ื”ื™ื ืจืง ื‘ืช ืฉื ืชื™ื™ื,
03:49
and she's having a blast.
94
229260
2000
ื•ื”ื™ื ืžืื“ ื ื”ื ื™ืช.
03:51
So she's really the driving force
95
231260
3000
ืื– ื”ื™ื ื”ื›ื•ื— ื”ืžื•ื‘ื™ืœ
03:54
behind the development of graphics-processing units.
96
234260
3000
ืžืื—ื•ืจื™ ื”ืคื™ืชื•ื— ืฉืœ ื™ื—ื™ื“ื•ืช ื”ืขื™ื‘ื•ื“ ื”ื’ืจืืคื™ื•ืช.
03:58
As long as kids are playing computer games,
97
238260
2000
ื›ืœ ืขื•ื“ ื™ืœื“ื™ื ืžืฉื—ืงื™ื ืžืฉื—ืงื™ ืžื—ืฉื‘,
04:00
graphics is getting better and better and better.
98
240260
2000
ื”ื’ืจืืคื™ืงื” ื ืขืฉื™ืช ื˜ื•ื‘ื” ื™ื•ืชืจ ื•ื™ื•ืชืจ ื•ื™ื•ืชืจ.
04:02
So please go back home, tell your kids to play more games,
99
242260
2000
ืื– ืื™ืžืจื• ื‘ื‘ืงืฉื” ืœื™ืœื“ื›ื ืœืฉื—ืง ื™ื•ืชืจ ืžืฉื—ืงื™ื,
04:04
because that's what I need.
100
244260
2000
ื›ื™ ื–ื” ืžื” ืฉืื ื™ ืฆืจื™ืš.
04:06
So what's inside of this machine
101
246260
2000
ืื– ืžื” ืฉื™ืฉ ื‘ืชื•ืš ื”ืžื›ื•ื ื” ื”ื–ืืช
04:08
is what enables me to do the things that I'm doing
102
248260
2000
ืžืืคืฉืจ ืœื™ ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจื™ื ืฉืื ื™ ืขื•ืฉื”
04:10
with the medical data.
103
250260
2000
ืขื ื”ื ืชื•ื ื™ื ื”ืจืคื•ืื™ื™ื.
04:12
So really what I'm doing is using these fantastic little devices.
104
252260
3000
ืื– ืื ื™ ืžืฉืชืžืฉ ื‘ืžื›ืฉื™ืจื™ื ื”ืงื˜ื ื™ื ื•ื”ืคื ื˜ืกื˜ื™ื ื”ืืœื”.
04:15
And you know, going back
105
255260
2000
ื•ืืชื ื™ื•ื“ืขื™ื, ื‘ืขื‘ืจ
04:17
maybe 10 years in time
106
257260
2000
ืœืคื ื™ ืื•ืœื™ 10 ืฉื ื™ื
04:19
when I got the funding
107
259260
2000
ื›ืืฉืจ ืงื™ื‘ืœืชื™ ืืช ื”ืžื™ืžื•ืŸ
04:21
to buy my first graphics computer --
108
261260
2000
ืœืงื ื•ืช ืืช ื”ืžื—ืฉื‘ ื”ื’ืจืืคื™ ื”ืจืืฉื•ืŸ ืฉืœื™.
04:23
it was a huge machine.
109
263260
2000
ื–ื• ื”ื™ืชื” ืžื›ื•ื ื” ืขื ืงื™ืช.
04:25
It was cabinets of processors and storage and everything.
110
265260
3000
ืืจื•ื ื•ืช ืฉืœ ืžืขื‘ื“ื™ื, ื•ืื™ื—ืกื•ืŸ ื•ื”ื›ืœ.
04:28
I paid about one million dollars for that machine.
111
268260
3000
ืฉื™ืœืžืชื™ ื‘ืขืจืš ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ ืขื‘ื•ืจื”.
04:32
That machine is, today, about as fast as my iPhone.
112
272260
3000
ื”ืžื›ื•ื ื” ื”ื–ืืช, ื”ื™ื•ื, ื”ื™ื ืžื”ื™ืจื” ื›ืžื• ื”ืื™ื™ืคื•ืŸ ืฉืœื™.
04:37
So every month there are new graphics cards coming out,
113
277260
2000
ืื– ื›ืœ ื—ื•ื“ืฉ ื™ื•ืฆืื™ื ื›ืจื˜ื™ืกื™ื ื’ืจืืคื™ื™ื ื—ื“ืฉื™ื.
04:39
and here is a few of the latest ones from the vendors --
114
279260
3000
ื•ื”ื ื” ื›ืžื” ืžื”ืื—ืจื•ื ื™ื ืžื”ื™ืฆืจื ื™ื --
04:42
NVIDIA, ATI, Intel is out there as well.
115
282260
3000
NVIDA, ATI ื•ื™ืฉ ื’ื ืœืื™ื ื˜ืœ.
04:45
And you know, for a few hundred bucks
116
285260
2000
ื•ืืชื ื™ื•ื“ืขื™ื, ื‘ืขื‘ื•ืจ ื›ืžื• ืžืื•ืช ื“ื•ืœืจื™ื
04:47
you can get these things and put them into your computer,
117
287260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืฉื™ื ืืช ื”ื“ื‘ืจื™ื ื”ืืœื” ื‘ืชื•ืš ื”ืžื—ืฉื‘ ืฉืœื›ื,
04:49
and you can do fantastic things with these graphics cards.
118
289260
3000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ืคื ื˜ืกื˜ื™ื™ื ื‘ืขื–ืจืชื.
04:52
So this is really what's enabling us
119
292260
2000
ืื– ื–ื” ื‘ืืžืช ืžื” ืฉืžืืคืฉืจ ืœื ื•
04:54
to deal with the explosion of data in medicine,
120
294260
3000
ืœื”ืชืžื•ื“ื“ ืขื ื”ืชืคื•ืฆืฆื•ืช ื”ื ืชื•ื ื™ื ื‘ืจืคื•ืื”,
04:57
together with some really nifty work
121
297260
2000
ื‘ื™ื—ื“ ืขื ื›ืžื” ืขื‘ื•ื“ื•ืช ืžืžืฉ ืื™ื›ื•ืชื™ื•ืช
04:59
in terms of algorithms --
122
299260
2000
ื‘ืžื•ื ื—ื™ื ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื --
05:01
compressing data,
123
301260
2000
ื“ื—ื™ืกืช ื ืชื•ื ื™ื,
05:03
extracting the relevant information that people are doing research on.
124
303260
3000
ื—ื™ืœื•ืฅ ื”ืžื™ื“ืข ื”ืจืœื•ื•ื ื˜ื™ ืฉืื ืฉื™ื ื—ื•ืงืจื™ื.
05:06
So I'm going to show you a few examples of what we can do.
125
306260
3000
ืื– ืื ื™ ื”ื•ืœืš ืœื”ืจืื•ืช ืœื›ื ืžืกืคืจ ื“ื•ื’ืžืื•ืช ืฉืœ ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช.
05:09
This is a data set that was captured using a CT scanner.
126
309260
3000
ื–ืืช ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืฉื ื•ืฆืจื” ื‘ืขื–ืจืช ืกื•ืจืง ืกื™-ื˜ื™.
05:12
You can see that this is a full data [set].
127
312260
3000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืืœื• ื ืชื•ื ื™ื ืžืœืื™ื.
05:15
It's a woman. You can see the hair.
128
315260
3000
ื–ื•ื”ื™ ืื™ืฉื”. ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืฉื™ืขืจ.
05:18
You can see the individual structures of the woman.
129
318260
3000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ื—ืœืงื™ื ื”ืฉื•ื ื™ื ืฉืœ ื”ืื™ืฉื”.
05:21
You can see that there is [a] scattering of X-rays
130
321260
3000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ื”ืชืคื–ืจื•ืช ืฉืœ ืงืจื ื™ ื”ืจื ื˜ื’ืŸ
05:24
on the teeth, the metal in the teeth.
131
324260
2000
ื‘ืฉื ื™ื™ื, ื”ืžืชื›ืช ื‘ืชื•ืš ื”ืฉืŸ.
05:26
That's where those artifacts are coming from.
132
326260
3000
ื–ื”ื• ื”ืžืงื•ืจ ืœื”ื”ืคืจืขื•ืช ื”ืืœื”.
05:29
But fully interactively
133
329260
2000
ืื‘ืœ ื‘ืฆื•ืจื” ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ืช ืœื—ืœื•ื˜ื™ืŸ
05:31
on standard graphics cards on a normal computer,
134
331260
3000
ื‘ืขื–ืจืช ื›ืจื˜ื™ืก ื’ืจืืคื™ ืกื˜ื ื“ืจื˜ื™ ืฉืœ ืžื—ืฉื‘ ืจื’ื™ืœ,
05:34
I can just put in a clip plane.
135
334260
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ื›ื ื™ืก ืžืฉื˜ื—.
05:36
And of course all the data is inside,
136
336260
2000
ื•ื›ืžื•ื‘ืŸ ื›ืœ ื”ื ืชื•ื ื™ื ื‘ืชื•ื›ื•,
05:38
so I can start rotating, I can look at it from different angles,
137
338260
3000
ื•ืื– ืื ื™ ื™ื›ื•ืœ ืœืกื•ื‘ื‘, ืื ื™ ื™ื›ื•ืœ ืœื”ืกืชื›ืœ ืขืœ ื–ื” ืžื–ื•ื•ื™ื•ืช ืฉื•ื ื•ืช,
05:41
and I can see that this woman had a problem.
138
341260
3000
ื•ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ืฉืœืื™ืฉื” ื”ื–ืืช ื”ื™ืชื” ื‘ืขื™ื”.
05:44
She had a bleeding up in the brain,
139
344260
2000
ื”ื™ื” ืœื” ื“ื™ืžื•ื ื‘ืžื•ื—,
05:46
and that's been fixed with a little stent,
140
346260
2000
ื•ื–ื” ืชื•ืงืŸ ื‘ืขื–ืจืช ืกื˜ื ื˜ ืงื˜ืŸ,
05:48
a metal clamp that's tightening up the vessel.
141
348260
2000
ืื˜ื‘ ืžืชื›ืช ืฉืžื›ื•ื•ืฅ ืืช ื›ืœื™ ื”ื“ื.
05:50
And just by changing the functions,
142
350260
2000
ื•ื‘ืขื–ืจืช ืฉื™ื ื•ื™ ื”ืคื•ื ืงืฆื™ื•ืช ื‘ืœื‘ื“,
05:52
then I can decide what's going to be transparent
143
352260
3000
ืื ื™ ื™ื›ื•ืœ ืœืงื‘ื•ืข ืžื” ื™ื”ื™ื” ืฉืงื•ืฃ
05:55
and what's going to be visible.
144
355260
2000
ื•ืžื” ื™ืจืื”.
05:57
I can look at the skull structure,
145
357260
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ืกืชื›ืœ ื‘ืžื‘ื ื” ื”ื’ื•ืœื’ื•ืœืช,
05:59
and I can see that, okay, this is where they opened up the skull on this woman,
146
359260
3000
ื•ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ื”ื™ื›ืŸ ื”ื ืคืชื—ื• ืืช ื”ื’ื•ืœื’ื•ืœืช ืฉืœ ื”ืื™ืฉื” ื”ื–ืืช,
06:02
and that's where they went in.
147
362260
2000
ื•ื”ื™ื›ืŸ ื”ื ื ื›ื ืกื•.
06:04
So these are fantastic images.
148
364260
2000
ืื– ืืœื• ื”ื ืชืžื•ื ื•ืช ืคื ื˜ืกื˜ื™ื•ืช.
06:06
They're really high resolution,
149
366260
2000
ื”ืŸ ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”,
06:08
and they're really showing us what we can do
150
368260
2000
ื•ื”ืŸ ืžืžืฉ ืžืจืื•ืช ืœื ื• ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช
06:10
with standard graphics cards today.
151
370260
3000
ื‘ืขื–ืจืช ื›ืจื˜ื™ืกื™ื ื’ืจืืคื™ื™ื ืกื˜ื ื“ืจื˜ื™ื ื”ื™ื•ื.
06:13
Now we have really made use of this,
152
373260
2000
ืื ื—ื ื• ื‘ืืžืช ื ื™ืฆืœื ื• ืืช ื–ื”,
06:15
and we have tried to squeeze a lot of data
153
375260
3000
ื•ื ื™ืกื™ื ื• ืœื“ื—ื•ืฃ ื”ืจื‘ื” ื ืชื•ื ื™ื
06:18
into the system.
154
378260
2000
ืœืชื•ืš ื”ืžืขืจื›ืช.
06:20
And one of the applications that we've been working on --
155
380260
2000
ื•ืื—ื“ ื”ื™ืฉื•ืžื™ื ืฉืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœื™ื• --
06:22
and this has gotten a little bit of traction worldwide --
156
382260
3000
ืฉื–ื›ื” ืœืงืฆืช ื”ื“ื™ื ื‘ืขื•ืœื --
06:25
is the application of virtual autopsies.
157
385260
2000
ื”ื•ื ื”ื™ืฉื•ื ืฉืœ ื ืชื™ื—ืช ื’ื•ืคื•ืช ื•ื™ืจื˜ื•ืืœื™ืช.
06:27
So again, looking at very, very large data sets,
158
387260
2000
ื‘ื”ืกืชื›ืœื•ืช ืขืœ ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืžืื“ ื’ื“ื•ืœื•ืช,
06:29
and you saw those full-body scans that we can do.
159
389260
3000
ื•ืจืื™ืชื ืืช ืกืงื™ืจื•ืช ื”ื’ื•ืฃ ื”ืžืœืื•ืช ืฉืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช.
06:32
We're just pushing the body through the whole CT scanner,
160
392260
3000
ืื ื—ื ื• ืคืฉื•ื˜ ืžืขื‘ื™ืจื™ื ืืช ื”ื’ื•ืฃ ื“ืจืš ื›ืœ ืกื•ืจืง ื”-ืกื™-ื˜ื™,
06:35
and just in a few seconds we can get a full-body data set.
161
395260
3000
ื•ื‘ืชื•ืš ืžืกืคืจ ืฉื ื™ื•ืช ืื ื—ื ื• ืžืงื‘ืœื™ื ื ืชื•ื ื™ื ืขื‘ื•ืจ ื›ืœ ื”ื’ื•ืฃ.
06:38
So this is from a virtual autopsy.
162
398260
2000
ื•ื–ื” ืžืชื•ืš ื ืชื™ื—ืช ื’ื•ืคื” ื•ื™ืจื˜ื•ืืœื™ืช.
06:40
And you can see how I'm gradually peeling off.
163
400260
2000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื™ืš ืื ื™ ืžืกื™ืจ ืฉื›ื‘ื•ืช ื‘ื”ื“ืจื’ื”.
06:42
First you saw the body bag that the body came in,
164
402260
3000
ืจืืฉื™ืช ืืชื ืจื•ืื™ื ืืช ืฉืง ื”ื’ื•ืคื•ืช ืฉื”ื’ื•ืคื” ื”ื’ื™ืขื” ื‘ื•,
06:45
then I'm peeling off the skin -- you can see the muscles --
165
405260
3000
ื•ืื– ืื ื™ ืžืกื™ืจ ืืช ืฉื›ื‘ืช ื”ืขื•ืจ -- ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืฉืจื™ืจื™ื --
06:48
and eventually you can see the bone structure of this woman.
166
408260
3000
ื•ืœื‘ืกื•ืฃ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืžื‘ื ื” ื”ืขืฆืžื•ืช ืฉืœ ื”ืื™ืฉื” ื”ื–ืืช.
06:51
Now at this point, I would also like to emphasize
167
411260
3000
ื‘ื ืงื•ื“ื” ื–ืืช ืื ื™ ืจื•ืฆื” ืœื”ื“ื’ื™ืฉ
06:54
that, with the greatest respect
168
414260
2000
ืฉืขื ื›ืœ ื”ื›ื‘ื•ื“
06:56
for the people that I'm now going to show --
169
416260
2000
ืœืื ืฉื™ื ืฉืื ื™ ืืจืื” ืขื›ืฉื™ื• --
06:58
I'm going to show you a few cases of virtual autopsies --
170
418260
2000
ืื ื™ ืืจืื” ืœื›ื ืžืกืคืจ ืžืงืจื™ื ืฉืœ ื ืชื™ื—ืช ื’ื•ืคื•ืช ื•ื™ืจื˜ื•ืืœื™ื•ืช --
07:00
so it's with great respect for the people
171
420260
2000
ืื– ืขื ื›ืœ ื”ื›ื‘ื•ื“ ืœืื ืฉื™ื
07:02
that have died under violent circumstances
172
422260
2000
ืฉืžืชื• ื‘ื ืกื™ื‘ื•ืช ืืœื™ืžื•ืช
07:04
that I'm showing these pictures to you.
173
424260
3000
ืื ื™ ืžืฆื™ื’ ืœื›ื ืืช ื”ืชืžื•ื ื•ืช ื”ืืœื”.
07:08
In the forensic case --
174
428260
2000
ื‘ื—ืงื™ืจืช ืคืฉืขื™ื --
07:10
and this is something
175
430260
2000
ืฉื–ื” ืžืฉื”ื•
07:12
that ... there's been approximately 400 cases so far
176
432260
2000
ืฉื”ื™ื• ื‘ืขืจืš 400 ืžืงืจื™ื ืขื“ ืขืชื”
07:14
just in the part of Sweden that I come from
177
434260
2000
ืจืง ื‘ื—ืœืง ืฉืœ ืฉื‘ื“ื™ื” ืฉืื ื™ ื‘ื ืžืžื ื•
07:16
that has been undergoing virtual autopsies
178
436260
2000
ืฉืขื‘ืจื• ื ืชื™ื—ืช ื’ื•ืคื•ืช ื•ื™ืจื˜ื•ืืœื™ืช
07:18
in the past four years.
179
438260
2000
ื‘ืžื”ืœืš 4 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
07:20
So this will be the typical workflow situation.
180
440260
3000
ืื– ื”ื ื” ืชื”ืœื™ืš ื”ืขื‘ื•ื“ื” ื”ื˜ื™ืคื•ืกื™.
07:23
The police will decide --
181
443260
2000
ื”ืžืฉื˜ืจื” ืžื—ืœื™ื˜ื” --
07:25
in the evening, when there's a case coming in --
182
445260
2000
ื‘ืขืจื‘ ื›ืืฉืจ ื”ืžืงืจื” ืžื’ื™ืข --
07:27
they will decide, okay, is this a case where we need to do an autopsy?
183
447260
3000
ืฉื–ื”ื• ืžืงืจื” ืฉื“ื•ืจืฉ ื ืชื™ื—ืช ื’ื•ืคื”.
07:30
So in the morning, in between six and seven in the morning,
184
450260
3000
ืื– ื‘ื‘ื•ืงืจ, ื‘ื™ืŸ ืฉืฉ ื•ืฉื‘ืข ื‘ื‘ื•ืงืจ,
07:33
the body is then transported inside of the body bag
185
453260
2000
ื”ื’ื•ืคื” ืžื•ืขื‘ืจืช ื‘ืชื•ืš ืฉืง ื’ื•ืคื•ืช
07:35
to our center
186
455260
2000
ืœืžืจื›ื– ืฉืœื ื•
07:37
and is being scanned through one of the CT scanners.
187
457260
2000
ื•ื ืกืจืงืช ื‘ืชื•ืš ืื—ื“ ืžืกื•ืจืงื™ ื”-ืกื™-ื˜ื™.
07:39
And then the radiologist, together with the pathologist
188
459260
2000
ื•ืื– ื”ืจื“ื™ื•ืœื•ื’, ื‘ื™ื—ื“ ืขื ื”ืคืชื•ืœื•ื’
07:41
and sometimes the forensic scientist,
189
461260
2000
ื•ืœืคืขืžื™ื ื—ื•ืงืจ ื”ืคืฉืขื™ื ื”ืžื“ืขื™,
07:43
looks at the data that's coming out,
190
463260
2000
ืžืกืชื›ืœื™ื ื‘ื ืชื•ื ื™ื ืฉื™ื•ืฆืื™ื,
07:45
and they have a joint session.
191
465260
2000
ื•ื”ื ืžืงื™ื™ืžื™ื ื“ื™ื•ืŸ ืžืฉื•ืชืฃ.
07:47
And then they decide what to do in the real physical autopsy after that.
192
467260
3000
ื•ืื– ื”ื ืžื—ืœื™ื˜ื™ื ืžื” ืœืขืฉื•ืช ื‘ื ืชื™ื—ื” ื”ืคื™ืกื™ืช ืœืื—ืจ ืžื›ืŸ.
07:52
Now looking at a few cases,
193
472260
2000
ืžื”ืกืชื›ืœื•ืช ื‘ืžืกืคืจ ืžืงืจื™ื,
07:54
here's one of the first cases that we had.
194
474260
2000
ื”ื ื” ืื—ื“ ื”ืžืงืจื™ื ื”ืจืืฉื•ื ื™ื ืฉื”ื™ื• ืœื ื•.
07:56
You can really see the details of the data set.
195
476260
3000
ืืชื ืžืžืฉ ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืคืจื˜ื™ื ืฉืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื,
07:59
It's very high-resolution,
196
479260
2000
ื–ื” ื‘ืจื–ื•ืœื•ืฆื™ื” ืžืื“ ื’ื‘ื•ื”ื”.
08:01
and it's our algorithms that allow us
197
481260
2000
ื•ืืœื• ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœื ื• ืฉืžืืคืฉืจื™ื ืœื ื•
08:03
to zoom in on all the details.
198
483260
2000
ืœื”ืชืžืงื“ ื‘ื›ืœ ื”ืคืจื˜ื™ื.
08:05
And again, it's fully interactive,
199
485260
2000
ื•ืฉื•ื‘ ื–ื” ืื™ื ื˜ืจืงื˜ื™ื‘ื™ ืœื—ืœื•ื˜ื™ืŸ,
08:07
so you can rotate and you can look at things in real time
200
487260
2000
ืืชื ื™ื›ื•ืœื™ื ืœืกื•ื‘ื‘ ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื˜ ื‘ื“ื‘ืจื™ื ื‘ื–ืžืŸ ืืžื™ืชื™
08:09
on these systems here.
201
489260
2000
ื‘ืžืขืจื›ื•ืช ื”ืืœื” ื›ืืŸ.
08:11
Without saying too much about this case,
202
491260
2000
ื‘ืœื™ ืœื”ื’ื™ื“ ื™ื•ืชืจ ืžื“ื™ ืขืœ ื”ืžืงืจื” ื”ื–ื”,
08:13
this is a traffic accident,
203
493260
2000
ื–ื•ื”ื™ ืชืื•ื ืช ื“ืจื›ื™ื,
08:15
a drunk driver hit a woman.
204
495260
2000
ื ื”ื’ ืฉื™ื›ื•ืจ ืคื’ืข ื‘ืื™ืฉื”.
08:17
And it's very, very easy to see the damages on the bone structure.
205
497260
3000
ื•ื–ื” ืžืื“ ืžืื“ ืงืœ ืœืจืื•ืช ืืช ื”ื ื–ืงื™ื ื‘ืžื‘ื ื” ื”ืขืฆืžื•ืช.
08:20
And the cause of death is the broken neck.
206
500260
3000
ื•ืกื™ื‘ืช ื”ืžื•ื•ืช ื”ื™ื ืฆื•ื•ืืจ ืฉื‘ื•ืจ.
08:23
And this women also ended up under the car,
207
503260
2000
ื•ื”ืื™ืฉื” ื”ื–ืืช ื’ื ื ืžืฆืื” ืžืชื—ืช ืœืžื›ื•ื ื™ืช,
08:25
so she's quite badly beaten up
208
505260
2000
ื›ืš ืฉื”ื™ื ื ื—ื‘ื˜ื” ื‘ืฆื•ืจื” ื—ืžื•ืจื”
08:27
by this injury.
209
507260
2000
ื‘ืคื’ื™ืขื” ื”ื–ืืช.
08:29
Here's another case, a knifing.
210
509260
3000
ื”ื ื” ืžืงืจื” ื ื•ืกืฃ, ื“ืงื™ืจืช ืกื›ื™ืŸ.
08:32
And this is also again showing us what we can do.
211
512260
2000
ื•ื–ื” ืฉื•ื‘ ืžืจืื” ืžื” ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช.
08:34
It's very easy to look at metal artifacts
212
514260
2000
ื–ื” ืžืื“ ืงืœ ืœืจืื•ืช ืืช ื—ืœืงื™ ื”ืžืชื›ืช
08:36
that we can show inside of the body.
213
516260
3000
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฆื™ื’ ื‘ืชื•ืš ื”ื’ื•ืฃ.
08:39
You can also see some of the artifacts from the teeth --
214
519260
3000
ืืชื ื™ื›ื•ืœื™ื ื’ื ืœืจืื•ืช ื—ืชื™ื›ื•ืช ืžื”ืฉื™ื ื™ื™ื --
08:42
that's actually the filling of the teeth --
215
522260
2000
ืืœื• ื‘ืืžืช ื”ืžื™ืœื•ื™ ืฉืœ ื”ืฉื™ื ื™ื™ื --
08:44
but because I've set the functions to show me metal
216
524260
3000
ืื‘ืœ ื–ื” ื‘ื’ืœืœ ืฉื›ื™ื•ื•ื ื• ืืช ื”ืคื•ื ืงืฆื™ื” ืœื”ืจืื•ืช ืžืชื›ืช
08:47
and make everything else transparent.
217
527260
2000
ื•ืœื”ืจืื•ืช ืืช ื›ืœ ื”ืฉืืจ ื›ืฉืงื•ืฃ.
08:49
Here's another violent case. This really didn't kill the person.
218
529260
3000
ื”ื ื” ืขื•ื“ ืžืงืจื” ืืœื™ื. ื–ื” ื‘ืืžืช ืœื ื”ืจื’ ืืช ื”ืื™ืฉ.
08:52
The person was killed by stabs in the heart,
219
532260
2000
ื”ืื™ืฉ ื ืจืฆื— ืขืœ ื™ื“ื™ ื“ืงื™ืจื•ืช ื‘ืœื‘,
08:54
but they just deposited the knife
220
534260
2000
ืื‘ืœ ื”ื ื ืขืฆื• ืืช ื”ืกื›ื™ืŸ
08:56
by putting it through one of the eyeballs.
221
536260
2000
ื‘ื’ืœื’ืœ ื”ืขื™ืŸ.
08:58
Here's another case.
222
538260
2000
ื”ื ื” ืžืงืจื” ื ื•ืกืฃ.
09:00
It's very interesting for us
223
540260
2000
ื–ื” ืžืื“ ืžืขื ื™ื™ืŸ ืื•ืชื ื•
09:02
to be able to look at things like knife stabbings.
224
542260
2000
ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ื‘ื™ื˜ ื‘ื“ื‘ืจื™ื ื›ืžื• ื“ืงื™ืจื•ืช ืกื›ื™ื ื™ื.
09:04
Here you can see that knife went through the heart.
225
544260
3000
ื›ืืŸ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ืกื›ื™ืŸ ืขื‘ืจื” ื“ืจืš ื”ืœื‘.
09:07
It's very easy to see how air has been leaking
226
547260
2000
ืžืื“ ืงืœ ืœืจืื•ืช ืื™ืš ื”ืื•ื•ื™ืจ ื”ืชืคื–ืจ
09:09
from one part to another part,
227
549260
2000
ืžื—ืœืง ืื—ื“ ืœื—ืœืง ืื—ืจ,
09:11
which is difficult to do in a normal, standard, physical autopsy.
228
551260
3000
ื“ื‘ืจ ืฉื”ื•ื ืงืฉื” ืœืขืฉื•ืช ื‘ื ืชื™ื—ื” ืคื™ื–ื™ืช ืจื’ื™ืœื” ื•ืกื˜ื ื“ืจื˜ื™ืช.
09:14
So it really, really helps
229
554260
2000
ืื– ื–ื” ืžืžืฉ ืžืžืฉ ืขื•ื–ืจ
09:16
the criminal investigation
230
556260
2000
ืœื—ืงื™ืจื•ืช ืคืฉืขื™ื
09:18
to establish the cause of death,
231
558260
2000
ืœืงื‘ื•ืข ืืช ืกื™ื‘ืช ื”ืžื•ื•ืช,
09:20
and in some cases also directing the investigation in the right direction
232
560260
3000
ื•ื‘ืžืงืจื™ื ืžืกื•ื™ืžื™ื ืœื›ื•ื•ืŸ ืืช ื”ื—ืงื™ืจื” ืœื›ื™ื•ื•ืŸ ื”ื ื›ื•ืŸ
09:23
to find out who the killer really was.
233
563260
2000
ืœื’ืœื•ืช ืžื™ ื‘ืืžืช ื”ื™ื” ื”ืจื•ืฆื—.
09:25
Here's another case that I think is interesting.
234
565260
2000
ื”ื ื” ืขื•ื“ ืžืงืจื” ืฉืื ื™ ื—ื•ืฉื‘ ืฉื”ื•ื ืžืขื ื™ื™ืŸ.
09:27
Here you can see a bullet
235
567260
2000
ื›ืืŸ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืงืœื™ืข
09:29
that has lodged just next to the spine on this person.
236
569260
3000
ืฉื ืžืฆื ืžืžืฉ ืœื™ื“ ืขืžื•ื“ ื”ืฉื“ืจื” ืฉืœ ื”ืื™ืฉ ื”ื–ื”.
09:32
And what we've done is that we've turned the bullet into a light source,
237
572260
3000
ื•ืžื” ืฉืขืฉื™ื ื• ื”ื™ื” ืœื”ืคื•ืš ืืช ื”ืงืœื™ืข ืœืžืงื•ืจ ืื•ืจ,
09:35
so that bullet is actually shining,
238
575260
2000
ื›ืš ืฉื”ืงืœื™ืข ืžืžืฉ ื–ื•ืจื—,
09:37
and it makes it really easy to find these fragments.
239
577260
3000
ื•ื–ื” ืžืงืœ ืขืœ ืžืฆื™ืืช ื”ื—ืœืงื™ืงื™ื ื”ืืœื”.
09:40
During a physical autopsy,
240
580260
2000
ื‘ืžื”ืœืš ื ืชื™ื—ื” ืคื™ื–ื™ืช,
09:42
if you actually have to dig through the body to find these fragments,
241
582260
2000
ืื ืืชื ืฆืจื™ื›ื™ื ืžืžืฉ ืœื—ืคื•ืจ ื‘ื’ื•ืฃ ื›ื“ื™ ืœืžืฆื•ื ืืช ื”ื—ืœืงื™ืงื™ื ื”ืืœื”,
09:44
that's actually quite hard to do.
242
584260
2000
ื–ื” ื‘ืืžืช ื“ื™ ืงืฉื”.
09:48
One of the things that I'm really, really happy
243
588260
2000
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืžืžืฉ ืžืžืฉ ืžืฉืžื— ืื•ืชื™
09:50
to be able to show you here today
244
590260
3000
ืœื”ืจืื•ืช ืœื›ื ื›ื™ื•ื
09:53
is our virtual autopsy table.
245
593260
2000
ื”ื•ื ืฉื•ืœื—ืŸ ื”ื ืชื™ื—ื•ืช ื”ื•ื™ืจื˜ื•ืืœื™ ืฉืœื ื•.
09:55
It's a touch device that we have developed
246
595260
2000
ื–ื” ืžื›ืฉื™ืจ ืžื’ืข ืฉืคื™ืชื—ื ื•
09:57
based on these algorithms, using standard graphics GPUs.
247
597260
3000
ื‘ื”ืชื‘ืกืก ืขืœ ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืืœื”, ื‘ืขื–ืจืช ืžืขื‘ื“ื™ื ื’ืจืืคื™ื™ื ืกื˜ื ื“ืจื˜ื™ื.
10:00
It actually looks like this,
248
600260
2000
ื–ื” ื‘ืืžืช ื ืจืื” ื›ืš,
10:02
just to give you a feeling for what it looks like.
249
602260
3000
ืจืง ื›ื“ื™ ืœืชืช ืœื›ื ืืช ื”ืชื—ื•ืฉื” ืื™ืš ื–ื” ื ืจืื”.
10:05
It really just works like a huge iPhone.
250
605260
3000
ื–ื” ืขื•ื‘ื“ ื›ืžื• ืื™-ืคื•ืŸ ืขื ืง.
10:08
So we've implemented
251
608260
2000
ืื ื—ื ื• ื™ืฉืžื ื•
10:10
all the gestures you can do on the table,
252
610260
3000
ืืช ื›ืœ ื”ืžื—ื•ื•ืช ืฉืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืขืœ ื”ืฉื•ืœื—ืŸ,
10:13
and you can think of it as an enormous touch interface.
253
613260
4000
ื•ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ื–ื” ื›ืžื• ืžืžืฉืง ืžื’ืข ืขื ืงื™.
10:17
So if you were thinking of buying an iPad,
254
617260
2000
ืื– ืื ื—ืฉื‘ืชื ืœืงื ื•ืช ืื™-ืคื“,
10:19
forget about it. This is what you want instead.
255
619260
3000
ืชืฉื›ื—ื• ืžื–ื”, ื–ื” ืžื” ืฉืืชื ืจื•ืฆื™ื ื‘ืžืงื•ื.
10:22
Steve, I hope you're listening to this, all right.
256
622260
3000
ืกื˜ื™ื‘, ืื ื™ ืžืงื•ื•ื” ืฉืืชื” ืžืงืฉื™ื‘ ืœื–ื”.
10:26
So it's a very nice little device.
257
626260
2000
ืื– ื–ื”ื• ืžื›ืฉื™ืจ ืงื˜ืŸ ื•ืžืื“ ื ื—ืžื“.
10:28
So if you have the opportunity, please try it out.
258
628260
2000
ืื– ืื ื™ืฉ ืœื›ื ื”ื–ื“ืžื ื•ืช, ืื ื ื ืกื• ืื•ืชื•.
10:30
It's really a hands-on experience.
259
630260
3000
ื–ื•ื”ื™ ืžืžืฉ ื—ื•ื•ื™ืช ืžื’ืข.
10:33
So it gained some traction, and we're trying to roll this out
260
633260
3000
ืื– ื–ื” ืžืชื—ื™ืœ ืœืฆื‘ื•ืจ ืชืื•ืฆื”, ื•ืื ื—ื ื• ืžื ืกื™ื ืœืฉื•ื•ืง ืืช ื–ื”
10:36
and trying to use it for educational purposes,
261
636260
2000
ื•ืžื ืกื™ื ืœื”ืฉืชืžืฉ ื‘ื–ื” ืœืฆืจื›ื™ื ื—ื™ื ื•ื›ื™ื™ื,
10:38
but also, perhaps in the future,
262
638260
2000
ืื‘ืœ ื’ื, ืื•ืœื™ ื‘ืขืชื™ื“,
10:40
in a more clinical situation.
263
640260
3000
ื‘ืžืฆื‘ื™ื ื™ื•ืชืจ ืงืœื™ื ื™ื™ื.
10:43
There's a YouTube video that you can download and look at this,
264
643260
2000
ื™ืฉ ืกืจื˜ื•ืŸ ื™ื•-ื˜ื™ื•ื‘ ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ื•ืจื™ื“ ื•ืœืจืื•ืช ืืช ื–ื”,
10:45
if you want to convey the information to other people
265
645260
2000
ืื ืืชื ืจื•ืฆื™ื ืœื”ืขื‘ื™ืจ ืืช ื”ืžื™ื“ืข ืœืื ืฉื™ื ืื—ืจื™ื
10:47
about virtual autopsies.
266
647260
3000
ืœื’ื‘ื™ ื ืชื™ื—ื•ืช ื•ื™ืจื˜ื•ืืœื™ื•ืช.
10:50
Okay, now that we're talking about touch,
267
650260
2000
ื›ืืฉืจ ืื ื—ื ื• ืžื“ื‘ืจื™ื ืขืœ ืžื’ืข,
10:52
let me move on to really "touching" data.
268
652260
2000
ื‘ื•ืื• ืžืžืฉ ื ื™ื’ืข ื‘ื ืชื•ื ื™ื.
10:54
And this is a bit of science fiction now,
269
654260
2000
ื•ื–ื” ืงืฆืช ืžื“ืข ื‘ื“ื™ื•ื ื™ ืขื›ืฉื™ื•,
10:56
so we're moving into really the future.
270
656260
3000
ื•ืื ื—ื ื• ืขื•ื‘ืจื™ื ื‘ืืžืช ืœืขืชื™ื“.
10:59
This is not really what the medical doctors are using right now,
271
659260
3000
ื”ืจื•ืคืื™ื ืœื ื‘ืืžืช ืžืฉืชืžืฉื™ื ื‘ื–ื” ืขื›ืฉื™ื•,
11:02
but I hope they will in the future.
272
662260
2000
ืื‘ืœ ืื ื™ ืžืงื•ื•ื” ืฉื”ื ื™ืขืฉื• ื–ืืช ื‘ืขืชื™ื“.
11:04
So what you're seeing on the left is a touch device.
273
664260
3000
ืื– ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื ื‘ืฆื“ ืฉืžืืœ ื”ื•ื ืžื›ืฉื™ืจ ืžื’ืข.
11:07
It's a little mechanical pen
274
667260
2000
ื–ื”ื• ืขื˜ ืžื›ื ื™ ืงื˜ืŸ
11:09
that has very, very fast step motors inside of the pen.
275
669260
3000
ืฉื™ืฉ ืœื• ืžื ื•ืขื™ ืฆืขื“ ืžืื“ ืžืื“ ืžื”ื™ืจื™ื ื‘ืชื•ื›ื•.
11:12
And so I can generate a force feedback.
276
672260
2000
ื›ืš ืฉืื ื™ ื™ื›ื•ืœ ืœื™ืฆืจ ืžืฉื•ื‘ ืฉืœ ืœื—ื™ืฆื”.
11:14
So when I virtually touch data,
277
674260
2000
ื›ืš ืฉื›ืฉืื ื™ ื ื•ื’ืข ื‘ื ืชื•ื ื™ื ื‘ืฆื•ืจื” ื•ื™ืจื˜ื•ืืœื™ืช,
11:16
it will generate forces in the pen, so I get a feedback.
278
676260
3000
ื–ื” ื™ื™ืฆืจ ื›ื•ื—ื•ืช ืžื’ืข ื‘ืขื˜, ื›ืš ืฉืื ื™ ืžืงื‘ืœ ืžืฉื•ื‘.
11:19
So in this particular situation,
279
679260
2000
ืžืฆื‘ ืžืกื•ื™ื ื–ื”,
11:21
it's a scan of a living person.
280
681260
2000
ื”ื•ื ืกืจื™ืงื” ืฉืœ ืื“ื ื—ื™.
11:23
I have this pen, and I look at the data,
281
683260
3000
ื™ืฉ ืœื™ ืืช ื”ืขื˜, ื•ืื ื™ ืžื‘ื™ื˜ ื‘ื ืชื•ื ื™ื,
11:26
and I move the pen towards the head,
282
686260
2000
ื•ืื ื™ ืžื–ื™ื– ืืช ื”ืขื˜ ืœื›ื™ื•ื•ืŸ ื”ืจืืฉ,
11:28
and all of a sudden I feel resistance.
283
688260
2000
ื•ืคืชืื•ื ืื ื™ ืžืจื’ื™ืฉ ื”ืชื ื’ื“ื•ืช.
11:30
So I can feel the skin.
284
690260
2000
ื›ืš ืฉืื ื™ ื™ื›ื•ืœ ืœื”ืจื’ื™ืฉ ืืช ื”ืขื•ืจ.
11:32
If I push a little bit harder, I'll go through the skin,
285
692260
2000
ืื ืื ื™ ืœื•ื—ืฅ ืงืฆืช ื™ื•ืชืจ ื—ื–ืง, ืื ื™ ืื—ื“ื•ืจ ืืช ื”ืขื•ืจ,
11:34
and I can feel the bone structure inside.
286
694260
3000
ื•ืื ื™ ื™ื›ื•ืœ ืœื—ื•ืฉ ืืช ืžื‘ื ื” ื”ืขืฆืžื•ืช ื‘ืคื ื™ื.
11:37
If I push even harder, I'll go through the bone structure,
287
697260
2000
ืื ืื ื™ ืœื•ื—ืฅ ื™ื•ืชืจ ื—ื–ืง, ืื ื™ ืื—ื“ื•ืจ ืืช ืžื‘ื ื” ื”ืขืฆืžื•ืช,
11:39
especially close to the ear where the bone is very soft.
288
699260
3000
ื‘ื™ื—ื•ื“ ืœื™ื“ ื”ืื•ื–ืŸ ื‘ื• ื”ืขืฆื ื”ื™ื ืžืื“ ืจื›ื”.
11:42
And then I can feel the brain inside, and this will be the slushy like this.
289
702260
3000
ื•ืื– ืื ื™ ื™ื›ื•ืœ ืœื—ื•ืฉ ืืช ื”ืžื•ื— ื‘ืคื ื™ื, ื•ื–ื” ื™ื”ื™ื” ืจื›ืจื•ื›ื™.
11:45
So this is really nice.
290
705260
2000
ืื– ื–ื” ืžืžืฉ ื ื—ืžื“.
11:47
And to take that even further, this is a heart.
291
707260
3000
ื•ื›ื“ื™ ืœืงื—ืช ืืช ื–ื” ื™ื•ืชืจ ืจื—ื•ืง, ื–ื”ื• ื”ืœื‘.
11:50
And this is also due to these fantastic new scanners,
292
710260
3000
ื•ื’ื ื–ื” ื‘ืขื–ืจืช ื”ืกื•ืจืงื™ื ื”ื—ื“ืฉื™ื ื”ืคื ื˜ืกื˜ื™ื™ื,
11:53
that just in 0.3 seconds,
293
713260
2000
ืชื•ืš 0.3 ืฉื ื™ื•ืช,
11:55
I can scan the whole heart,
294
715260
2000
ืื ื™ ื™ื›ื•ืœ ืœืกืจื•ืง ืืช ื›ืœ ื”ืœื‘,
11:57
and I can do that with time resolution.
295
717260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ื–ื” ื‘ืจื–ื•ืœื•ืฆื™ื” ืฉืœ ื–ืžืŸ.
11:59
So just looking at this heart,
296
719260
2000
ื•ืจืง ื‘ืืžืฆืขื•ืช ื”ืกืชื›ืœื•ืช ืขืœ ื”ืœื‘ ื”ื–ื”,
12:01
I can play back a video here.
297
721260
2000
ืื ื™ ื™ื›ื•ืœ ืœื ื’ืŸ ืืช ื”ื•ื™ื“ืื• ืื—ื•ืจื”.
12:03
And this is Karljohan, one of my graduate students
298
723260
2000
ื•ื–ื”ื• ืงืจืœื™ื•ืืŸ, ืื—ื“ ื”ืชืœืžื™ื“ื™ื ืฉืœื™,
12:05
who's been working on this project.
299
725260
2000
ืฉืขื‘ื“ ืขืœ ื”ืคืจื•ื™ืงื˜ ื”ื–ื”.
12:07
And he's sitting there in front of the Haptic device, the force feedback system,
300
727260
3000
ื•ื”ื•ื ื™ื•ืฉื‘ ืœืคื ื™ ืžื›ืฉื™ืจ ื”ืžื’ืข ื”ื–ื”, ืžืขืจื›ืช ืžืฉื•ื‘ ื”ื›ื•ื—,
12:10
and he's moving his pen towards the heart,
301
730260
3000
ื•ื”ื•ื ืžื–ื™ื– ืืช ื”ืขื˜ ืœื›ื™ื•ื•ืŸ ื”ืœื‘,
12:13
and the heart is now beating in front of him,
302
733260
2000
ื•ื”ืœื‘ ืขื›ืฉื™ื• ืคื•ืขื ืžื•ืœื•,
12:15
so he can see how the heart is beating.
303
735260
2000
ื•ื”ื•ื ื™ื›ื•ืœ ืœืจืื•ืช ื›ื™ืฆื“ ื”ืœื‘ ืคื•ืขื.
12:17
He's taken the pen, and he's moving it towards the heart,
304
737260
2000
ื”ื•ื ืœื•ืงื— ืืช ื”ืขื˜, ื•ืžืงืจื‘ ืื•ืชื• ืœืœื‘,
12:19
and he's putting it on the heart,
305
739260
2000
ื•ื”ื•ื ืžื ื™ื— ืื•ืชื• ืขืœ ื”ืœื‘,
12:21
and then he feels the heartbeats from the real living patient.
306
741260
3000
ื•ืื– ื”ื•ื ืžืจื’ื™ืฉ ืืช ืคืขื™ืžื•ืช ื”ืœื‘ ืฉืœ ื—ื•ืœื” ืืžื™ืชื™.
12:24
Then he can examine how the heart is moving.
307
744260
2000
ื•ืื– ื”ื•ื ื™ื›ื•ืœ ืœื‘ื“ื•ืง ื›ื™ืฆื“ ื”ืœื‘ ื–ื–.
12:26
He can go inside, push inside of the heart,
308
746260
2000
ื”ื•ื ื™ื›ื•ืœ ืœื”ื›ื ืก ืคื ื™ืžื”, ืœืชื•ืš ื”ืœื‘,
12:28
and really feel how the valves are moving.
309
748260
3000
ื•ืžืžืฉ ืœื—ื•ืฉ ื›ื™ืฆื“ ื”ืžืกืชืžื™ื ื–ื–ื™ื.
12:31
And this, I think, is really the future for heart surgeons.
310
751260
3000
ื•ื–ื”ื•, ืื ื™ ื—ื•ืฉื‘, ื”ืขืชื™ื“ ืฉืœ ื ืชื•ื—ื™ ื”ืœื‘.
12:34
I mean it's probably the wet dream for a heart surgeon
311
754260
3000
ื–ื”ื• ื›ื ืจืื” ื”ื—ืœื•ื ื”ืจื˜ื•ื‘ ืฉืœ ืžื ืชื—ื™ ื”ืœื‘
12:37
to be able to go inside of the patient's heart
312
757260
3000
ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื—ื“ื•ืจ ืœืชื•ืš ื”ืœื‘ ืฉืœ ื”ื—ื•ืœื”
12:40
before you actually do surgery,
313
760260
2000
ืœืคื ื™ ืฉื”ื ืžืžืฉ ืขื•ืฉื™ื ืืช ื”ื ื™ืชื•ื—,
12:42
and do that with high-quality resolution data.
314
762260
2000
ื•ืœืขืฉื•ืช ืืช ื–ื” ืขื ื ืชื•ื ื™ื ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”.
12:44
So this is really neat.
315
764260
2000
ืื– ื–ื” ืžืžืฉ ืžื’ื ื™ื‘.
12:47
Now we're going even further into science fiction.
316
767260
3000
ืขื›ืฉื™ื• ื ืœืš ืืคื™ืœื• ื™ื•ืชืจ ืจื—ื•ืง ืœืชื•ืš ื”ืžื“ืข ื”ื‘ื“ื™ื•ื ื™.
12:50
And we heard a little bit about functional MRI.
317
770260
3000
ืื ื—ื ื• ืฉื•ืžืขื™ื ืงืฆืช ืขืœ ืืž-ืืจ-ืื™ ืคื•ื ืงืฆื™ื•ื ืœื™.
12:53
Now this is really an interesting project.
318
773260
3000
ื–ื”ื• ื‘ืืžืช ืคืจื•ื™ืงื˜ ืžืขื ื™ื™ืŸ.
12:56
MRI is using magnetic fields
319
776260
2000
ืืž-ืืจ-ืื™ ืžืฉืชืžืฉ ื‘ืฉื“ื•ืช ืžื’ื ื˜ื™ื™ื
12:58
and radio frequencies
320
778260
2000
ื•ื’ืœื™ ืจื“ื™ื•
13:00
to scan the brain, or any part of the body.
321
780260
3000
ื›ื“ื™ ืœืกืจื•ืง ืืช ื”ืžื•ื—, ืื• ื›ืœ ื—ืœืง ืื—ืจ ื‘ื’ื•ืฃ.
13:03
So what we're really getting out of this
322
783260
2000
ืžื” ืฉืื ื—ื ื• ื‘ืืžืช ืžืงื‘ืœื™ื
13:05
is information of the structure of the brain,
323
785260
2000
ื–ื”ื• ืžื™ื“ืข ืขืœ ื”ืžื‘ื ื” ืฉืœ ื”ืžื•ื—,
13:07
but we can also measure the difference
324
787260
2000
ืื‘ืœ ืื ื—ื ื• ื’ื ื™ื›ื•ืœื™ื ืœืžื“ื•ื“ ืืช ื”ื”ื‘ื“ืœื™ื
13:09
in magnetic properties of blood that's oxygenated
325
789260
3000
ื‘ืชื›ื•ื ื•ืช ื”ืžื’ื ื˜ื™ื•ืช ืฉืœ ื”ื“ื ื”ืžื—ื•ืžืฆืŸ
13:12
and blood that's depleted of oxygen.
326
792260
3000
ื•ื”ื“ื ืฉื™ืฆื ืžืžื ื• ื”ื—ืžืฆืŸ.
13:15
That means that it's possible
327
795260
2000
ื–ื” ืื•ืžืจ ืฉื ื™ืชืŸ
13:17
to map out the activity of the brain.
328
797260
2000
ืœืžืคื•ืช ืืช ืคืขื™ืœื•ืช ื”ืžื•ื—.
13:19
So this is something that we've been working on.
329
799260
2000
ืื– ื–ื”ื• ื“ื‘ืจ ืฉืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœื™ื•.
13:21
And you just saw Motts the research engineer, there,
330
801260
3000
ื•ื‘ื“ื™ื•ืง ืจืื™ืชื ืืช ืžื•ื˜ืก, ืžื”ื ื“ืก ื”ืžื—ืงืจ ืฉื
13:24
going into the MRI system,
331
804260
2000
ื ื›ื ืก ืœืชื•ืš ืžืขืจื›ืช ื”ืืž-ืืจ-ืื™,
13:26
and he was wearing goggles.
332
806260
2000
ื•ื”ื•ื ืœื‘ืฉ ืžืฉืงืคื™ื™ื.
13:28
So he could actually see things in the goggles.
333
808260
2000
ื›ืš ืฉื”ื•ื ื™ื›ื•ืœ ืœืจืื•ืช ื“ื‘ืจื™ื ื‘ืžืฉืงืคื™ื™ื.
13:30
So I could present things to him while he's in the scanner.
334
810260
3000
ืื ื™ ื™ื›ื•ืœ ืœื”ืฆื™ื’ ืœื• ื“ื‘ืจื™ื ื›ืืฉืจ ื”ื•ื ื‘ืชื•ืš ื”ืกื•ืจืง.
13:33
And this is a little bit freaky,
335
813260
2000
ื•ื–ื” ืงืฆืช ืžืคื—ื™ื“,
13:35
because what Motts is seeing is actually this.
336
815260
2000
ื‘ื’ืœืœ ืฉืžื” ืฉืžื•ื˜ืก ืจื•ืื” ื–ื” ื‘ืขืฆื ืืช ื–ื”.
13:37
He's seeing his own brain.
337
817260
3000
ื”ื•ื ืจื•ืื” ืืช ื”ืžื•ื— ืฉืœื•.
13:40
So Motts is doing something here,
338
820260
2000
ืžื•ื˜ืก ืขื•ืฉื” ื›ืืŸ ืžืฉื”ื•.
13:42
and probably he is going like this with his right hand,
339
822260
2000
ื•ื”ื•ื ืขื•ืฉื” ื›ืš ื‘ื™ื“ื• ื”ื™ืžื ื™ืช,
13:44
because the left side is activated
340
824260
2000
ื‘ื’ืœืœ ืฉื”ืฆื“ ื”ืฉืžืืœื™ ืžื•ืคืขืœ
13:46
on the motor cortex.
341
826260
2000
ื‘ืงื•ืจื˜ืงืก ื”ืžื•ื˜ื•ืจื™.
13:48
And then he can see that at the same time.
342
828260
2000
ื•ืื– ื”ื•ื ื™ื›ื•ืœ ืœืจืื•ืช ืืช ื–ื” ื‘ืื•ืชื• ื”ื–ืžืŸ.
13:50
These visualizations are brand new.
343
830260
2000
ื”ืžื—ืฉื•ืช ืืœื• ื”ืŸ ื—ื“ืฉื•ืช ืœื—ืœื•ื˜ื™ืŸ.
13:52
And this is something that we've been researching for a little while.
344
832260
3000
ื–ื” ืžืฉื”ื• ืฉืื ื—ื ื• ื—ื•ืงืจื™ื ื›ื‘ืจ ื–ืžืŸ ืžื”.
13:55
This is another sequence of Motts' brain.
345
835260
3000
ื–ื”ื• ืจืฆืฃ ื ื•ืกืฃ ืฉืœ ืžื•ื—ื• ืฉืœ ืžื•ื˜ืก.
13:58
And here we asked Motts to calculate backwards from 100.
346
838260
3000
ื›ืืŸ ื‘ื™ืงืฉื ื• ืžืžื•ื˜ืก ืœื—ืฉื‘ ืื—ื•ืจื ื™ืช ืž-100.
14:01
So he's going "100, 97, 94."
347
841260
2000
ื”ื•ื ืกื•ืคืจ "100, 97, 94."
14:03
And then he's going backwards.
348
843260
2000
ื•ื”ื•ื ืžืžืฉื™ืš ืื—ื•ืจื”.
14:05
And you can see how the little math processor is working up here in his brain
349
845260
3000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ื™ืฆื“ ื”ืžืขื‘ื“ ื”ื—ืฉื‘ื•ื ื™ ืขื•ื‘ื“ ื›ืืŸ ื‘ืžื•ื— ืฉืœื•
14:08
and is lighting up the whole brain.
350
848260
2000
ื•ื”ื•ื ืžืื™ืจ ืืช ื›ืœ ื”ืžื•ื—.
14:10
Well this is fantastic. We can do this in real time.
351
850260
2000
ื–ื” ืคื ื˜ืกื˜ื™. ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื‘ื–ืžืŸ ืืžื™ืชื™.
14:12
We can investigate things. We can tell him to do things.
352
852260
2000
ืืคืฉืจ ืœื—ืงื•ืจ ื“ื‘ืจื™ื. ืืคืฉืจ ืœื•ืžืจ ืœื• ืœืขืฉื•ืช ื“ื‘ืจื™ื.
14:14
You can also see that his visual cortex
353
854260
2000
ืืคืฉืจ ืœืจืื•ืช ืฉื”ืงื•ืจื˜ืงืก ื”ื•ื™ื–ื•ืืœื™ ืฉืœื•
14:16
is activated in the back of the head,
354
856260
2000
ืžื•ืคืขืœ ื‘ื—ืœืง ื”ืื—ื•ืจื™ ืฉืœ ื”ืจืืฉ,
14:18
because that's where he's seeing, he's seeing his own brain.
355
858260
2000
ื‘ื’ืœืœ ืฉืฉื ื”ื•ื ืจื•ืื”, ื”ื•ื ืจื•ืื” ืืช ื”ืžื•ื— ืฉืœื• ืขืฆืžื•.
14:20
And he's also hearing our instructions
356
860260
2000
ื•ื”ื•ื ื’ื ืฉื•ืžืข ืืช ื”ื”ื•ืจืื•ืช ืฉืœื ื•
14:22
when we tell him to do things.
357
862260
2000
ื›ืฉืื ื—ื ื• ืื•ืžืจื™ื ืœื• ืœืขืฉื•ืช ื“ื‘ืจื™ื.
14:24
The signal is really deep inside of the brain as well,
358
864260
2000
ื”ืื•ืช ื”ื•ื ืžืžืฉ ืขืžื•ืง ื‘ืชื•ืš ื”ืžื•ื—,
14:26
and it's shining through,
359
866260
2000
ืื‘ืœ ื”ื•ื ื–ื•ืจื— ื”ื—ื•ืฆื”,
14:28
because all of the data is inside this volume.
360
868260
2000
ืžืื—ืจ ื•ื›ืœ ื”ื ืชื•ื ื™ื ื”ื ื‘ืชื•ืš ื”ื—ืœืง ื”ื–ื”.
14:30
And in just a second here you will see --
361
870260
2000
ื•ื‘ืชื•ืš ืฉื ื™ื” ืืชื ืชื•ื›ืœื• ืœืจืื•ืช --
14:32
okay, here. Motts, now move your left foot.
362
872260
2000
ืื•ืงื™, ื›ืืŸ. ืžื•ื˜ืก, ื”ื–ื– ืืช ื”ืจื’ืœ ื”ืฉืžืืœื™ืช ืฉืœืš.
14:34
So he's going like this.
363
874260
2000
ืื– ื”ื•ื ืขื•ืฉื” ื›ืš.
14:36
For 20 seconds he's going like that,
364
876260
2000
ื‘ืžืฉืš 20 ืฉื ื™ื•ืช ื”ื•ื ืขื•ืฉื” ื–ืืช,
14:38
and all of a sudden it lights up up here.
365
878260
2000
ื•ืคืชืื•ื ื–ื” ื ื“ืœืง ื›ืืŸ.
14:40
So we've got motor cortex activation up there.
366
880260
2000
ืื– ื™ืฉ ืœื ื• ืคืขื™ืœื•ืช ื‘ืื–ื•ืจ ื”ืžื•ื˜ื•ืจื™ ืœืžืขืœื” ืฉื.
14:42
So this is really, really nice,
367
882260
2000
ื–ื” ืžืžืฉ ืžืžืฉ ื ื—ืžื“.
14:44
and I think this is a great tool.
368
884260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื›ืœื™ ื ื”ื“ืจ.
14:46
And connecting also with the previous talk here,
369
886260
2000
ื•ืžืชืงืฉืจ ื’ื ืœืฉื™ื—ื” ื”ืงื•ื“ืžืช ื›ืืŸ,
14:48
this is something that we could use as a tool
370
888260
2000
ื–ื”ื• ื“ื‘ืจ ืฉื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื›ื›ืœื™
14:50
to really understand
371
890260
2000
ื›ื“ื™ ืœื”ื‘ื™ืŸ ื‘ืืžืช
14:52
how the neurons are working, how the brain is working,
372
892260
2000
ืื™ืš ื”ืขืฆื‘ื™ื ืขื•ื‘ื“ื™ื, ืื™ืš ื”ืžื•ื— ืขื•ื‘ื“,
14:54
and we can do this with very, very high visual quality
373
894260
3000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื‘ืื™ื›ื•ืช ื—ื–ื•ืชื™ืช ืžืื“ ืžืื“ ื’ื‘ื•ื”ื”
14:57
and very fast resolution.
374
897260
3000
ื•ืจื–ื•ืœื•ืฆื™ื” ืžืื“ ืžื”ื™ืจื”.
15:00
Now we're also having a bit of fun at the center.
375
900260
2000
ืื ื—ื ื• ื’ื ืงืฆืช ืžื‘ืœื™ื ื‘ืžืจื›ื–.
15:02
So this is a CAT scan -- Computer Aided Tomography.
376
902260
3000
ืื– ื–ื•ื”ื™ ืกืจื™ืงืช ืงืื˜ - ืžื™ืคื•ื™ ื‘ืขื–ืจืช ืžื—ืฉื‘.
15:06
So this is a lion from the local zoo
377
906260
2000
ืื– ื–ื•ื”ื™ ืœื‘ื™ืื” ืžื’ืŸ ื”ื—ื™ื•ืช ื”ืžืงื•ืžื™
15:08
outside of Norrkoping in Kolmarden, Elsa.
378
908260
3000
ืžื—ื•ืฅ ืœื ื•ืจืงื•ืคื™ื ื’ ื‘ืงื•ืœืžืจื“ืŸ, ื‘ืื–ื•ืจ ืืœื–ื”.
15:11
So she came to the center,
379
911260
2000
ืื– ื”ื™ื ื”ื’ื™ืขื” ืœืžืจื›ื–,
15:13
and they sedated her
380
913260
2000
ื•ื”ื ืกื™ืžืžื• ืื•ืชื”
15:15
and then put her straight into the scanner.
381
915260
2000
ื•ืื– ื”ื›ื ื™ืกื• ืื•ืชื” ื™ืฉืจ ืœืชื•ืš ื”ืกื•ืจืง.
15:17
And then, of course, I get the whole data set from the lion.
382
917260
3000
ื•ืื–, ื›ืžื•ื‘ืŸ, ืงื™ื‘ืœืชื™ ืืช ื›ืœ ื”ื ืชื•ื ื™ื ืžื”ืืจื™ื”.
15:20
And I can do very nice images like this.
383
920260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืชืžื•ื ื•ืช ืžืื“ ื™ืคื•ืช ื›ืžื• ื–ืืช.
15:22
I can peel off the layer of the lion.
384
922260
2000
ืื ื™ ื™ื›ื•ืœ ืœืงืœืฃ ืืช ื”ืฉื›ื‘ื•ืช ืฉืœ ื”ืืจื™ื”.
15:24
I can look inside of it.
385
924260
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ื˜ ืœืชื•ื›ื•.
15:26
And we've been experimenting with this.
386
926260
2000
ื•ืื ื—ื ื• ืขื•ืฉื™ื ื ื™ืกื•ื™ื™ื ืขื ื–ื”.
15:28
And I think this is a great application
387
928260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื™ืฉื•ื ื ื”ื“ืจ
15:30
for the future of this technology,
388
930260
2000
ืœืขืชื™ื“ ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ืืช.
15:32
because there's very little known about the animal anatomy.
389
932260
3000
ื‘ื’ืœืœ ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืžืขื˜ ืžืื“ ืขืœ ื”ืื ื˜ื•ืžื™ื” ืฉืœ ื”ื—ื™ื•ืช.
15:35
What's known out there for veterinarians is kind of basic information.
390
935260
3000
ืžื” ืฉื”ื•ื˜ืจื™ื ืจื™ื ื™ื•ื“ืขื™ื ื–ื” ืžื™ื“ืข ื‘ืกื™ืกื™ ื‘ืœื‘ื“.
15:38
We can scan all sorts of things,
391
938260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืกืจื•ืง ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื,
15:40
all sorts of animals.
392
940260
2000
ื›ืœ ืžื™ื ื™ ื—ื™ื•ืช.
15:42
The only problem is to fit it into the machine.
393
942260
3000
ื”ื‘ืขื™ื” ื”ื™ื—ื™ื“ื” ื”ื™ื ืœื”ื›ื ื™ืก ืื•ืชื ืœืชื•ืš ื”ืžื›ื•ื ื”.
15:45
So here's a bear.
394
945260
2000
ืื– ื”ื ื” ื“ื‘.
15:47
It was kind of hard to get it in.
395
947260
2000
ื–ื” ื”ื™ื” ื“ื™ ืงืฉื” ืœื”ื›ื ื™ืก ืื•ืชื• ืคื ื™ืžื”.
15:49
And the bear is a cuddly, friendly animal.
396
949260
3000
ื•ื”ื“ื‘ ื”ื•ื ื—ื™ื” ื™ื“ื™ื“ื•ืชื™ืช.
15:52
And here it is. Here is the nose of the bear.
397
952260
3000
ื”ื ื” ื”ื•ื ื›ืืŸ. ื–ื”ื• ื”ืืฃ ืฉืœ ื”ื“ื‘.
15:55
And you might want to cuddle this one,
398
955260
3000
ื•ืืชื ืื•ืœื™ ืชืจืฆื• ืœื—ื‘ืง ืืช ื”ื“ื‘ ื”ื–ื”,
15:58
until you change the functions and look at this.
399
958260
3000
ืขื“ ืฉืชืฉื ื• ืืช ื”ืคื•ื ืงืฆื™ื•ืช ื›ืš.
16:01
So be aware of the bear.
400
961260
2000
ืื– ืชื–ื”ืจื• ืžื”ื“ื‘.
16:03
So with that,
401
963260
2000
ื•ื›ืš
16:05
I'd like to thank all the people
402
965260
2000
ืื ื™ ืจื•ืฆื” ืœื”ื•ื“ื•ืช ืœื›ืœ ื”ืื ืฉื™ื
16:07
who have helped me to generate these images.
403
967260
2000
ืฉืขื–ืจื• ืœื™ ืœื™ืฆื•ืจ ืืช ื”ืชืžื•ื ื•ืช ื”ืืœื”.
16:09
It's a huge effort that goes into doing this,
404
969260
2000
ื–ื”ื• ืžืืžืฅ ืื“ื™ืจ ืฉืžื•ืฉืงืข ื‘ื–ื”,
16:11
gathering the data and developing the algorithms,
405
971260
3000
ืื™ืกื•ืฃ ื”ื ืชื•ื ื™ื ื•ืคื™ืชื•ื— ื”ืืœื’ื•ืจื™ืชืžื™ื,
16:14
writing all the software.
406
974260
2000
ื•ื›ืชื™ื‘ืช ื›ืœ ื”ืชื•ื›ื ื”.
16:16
So, some very talented people.
407
976260
3000
ืื ืฉื™ื ืžืื“ ืžื•ื›ืฉืจื™ื.
16:19
My motto is always, I only hire people that are smarter than I am
408
979260
3000
ื”ืžื•ื˜ื• ืฉืœื™ ื”ื•ื ืชืžื™ื“, ืื ื™ ืชืžื™ื“ ืžื’ื™ื™ืก ืื ืฉื™ื ืฉื™ื•ืชืจ ื—ื›ืžื™ื ืžืžื ื™
16:22
and most of these are smarter than I am.
409
982260
2000
ื•ืจื•ื‘ ื”ืื ืฉื™ื ื”ืืœื” ื”ื ื—ื›ืžื™ื ื™ื•ืชืจ ืžืžื ื™.
16:24
So thank you very much.
410
984260
2000
ืื– ืชื•ื“ื” ืจื‘ื” ืœื›ื.
16:26
(Applause)
411
986260
4000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7