Anders Ynnerman: Visualizing the medical data explosion

42,242 views ใƒป 2011-01-21

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Ji-Hyuk Park ๊ฒ€ํ† : JI HUN HAN
00:15
I will start by posing a little bit of a challenge:
0
15260
4000
์ €๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š”๋ฐ ์žˆ์–ด์„œ
00:19
the challenge of dealing with data,
1
19260
3000
๋„์ „์— ๋Œ€ํ•œ ์ด์•ผ๊ธฐ๋กœ ์‹œ์ž‘ํ• ๊นŒํ•ฉ๋‹ˆ๋‹ค.
00:22
data that we have to deal with
2
22260
2000
์˜๋ฃŒ์  ์ƒํ™ฉ์— ๊ด€๋ จ๋œ
00:24
in medical situations.
3
24260
2000
๋ฐ์ดํ„ฐ ๋ง์ด์ฃ .
00:26
It's really a huge challenge for us.
4
26260
2000
์šฐ๋ฆฌ์—๊ฒŒ ํฐ ๋„์ „์ž…๋‹ˆ๋‹ค.
00:28
And this is our beast of burden --
5
28260
2000
๋˜ํ•œ ๋ฌด๊ฑฐ์šด ์ง์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
00:30
this is a Computer Tomography machine,
6
30260
2000
์ด๊ฑด ์ปดํ“จํ„ฐ ๋‹จ์ธต ์ดฌ์˜๊ธฐ ์ž…๋‹ˆ๋‹ค.
00:32
a CT machine.
7
32260
2000
์”จํ‹ฐ ์žฅ๋น„์˜ˆ์š”.
00:34
It's a fantastic device.
8
34260
2000
์•„์ฃผ ์ข‹์€ ๋„๊ตฌ์˜ˆ์š”.
00:36
It uses X-rays, X-ray beams,
9
36260
2000
์—‘์Šค๋ ˆ์ด๋ฅผ ์ด์šฉํ•˜๋Š”๋ฐ
00:38
that are rotating very fast around the human body.
10
38260
3000
์‚ฌ๋žŒ ๋ชธ ์ฃผ๋ณ€์„ ๋งค์šฐ ๋นจ๋ฆฌ ๋Œ๋ฉด์„œ ๋น”์„ ์˜์ฃ .
00:41
It takes about 30 seconds to go through the whole machine
11
41260
2000
๋ชจ๋“  ์ดฌ์˜์„ ๋งˆ์น˜๋Š”๋ฐ 30์ดˆ ๋ฐ–์— ๊ฑธ๋ฆฌ์ง€ ์•Š์•„์š”.
00:43
and is generating enormous amounts of information
12
43260
2000
๊ทธ๋ฆฌ๊ณ  ์—„์ฒญ๋‚œ ์–‘์˜ ์ •๋ณด๋ฅผ ์Ÿ์•„๋ƒ…๋‹ˆ๋‹ค.
00:45
that comes out of the machine.
13
45260
2000
๊ทธ ์žฅ๋น„์—์„œ ๋ง์ด์ฃ .
00:47
So this is a fantastic machine
14
47260
2000
๋Œ€๋‹จํ•œ ์žฅ๋น„์ž…๋‹ˆ๋‹ค.
00:49
that we can use
15
49260
2000
์ด๊ฒƒ์„ ์ด์šฉํ•ด์„œ
00:51
for improving health care,
16
51260
2000
๋ณด๊ฑด์„ ํ–ฅ์ƒ ์‹œํ‚ต๋‹ˆ๋‹ค.
00:53
but as I said, it's also a challenge for us.
17
53260
2000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ ๋˜ํ•œ ํ•˜๋‚˜์˜ ๋„์ „์ž…๋‹ˆ๋‹ค.
00:55
And the challenge is really found in this picture here.
18
55260
3000
์ด ์˜์ƒ์—์„œ ๊ทธ ๋„์ „์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:58
It's the medical data explosion
19
58260
2000
์˜๋ฃŒ ๋ฐ์ดํ„ฐ๋Š” ์Ÿ์•„์ ธ ๋‚˜์˜ต๋‹ˆ๋‹ค.
01:00
that we're having right now.
20
60260
2000
ํ˜„์ œ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๊ฒƒ๋“ค ๋ง์ด์˜ˆ์š”.
01:02
We're facing this problem.
21
62260
2000
์šฐ๋ฆฌ๊ฐ€ ์ง๋ฉดํ•œ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
01:04
And let me step back in time.
22
64260
2000
๊ณผ๊ฑฐ๋กœ๋กœ ๋Œ์•„๊ฐ€ ๋ณด์ฃ .
01:06
Let's go back a few years in time and see what happened back then.
23
66260
3000
๋ช‡๋…„ ์ „์œผ๋กœ ๋Œ์•„๊ฐ€์„œ ์–ด๋–ค์ผ์ด ์žˆ์–ด๋Š”์ง€ ๋ด…์‹œ๋‹ค.
01:09
These machines that came out --
24
69260
2000
์ด๋Ÿฐ ์žฅ๋น„๋“ค์€ 1970๋…„๋Œ€์—
01:11
they started coming in the 1970s --
25
71260
2000
๋‚˜์˜ค๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:13
they would scan human bodies,
26
73260
2000
์‚ฌ๋žŒ ๋ชธ์„ ์ดฌ์˜ํ•˜๋ฉด
01:15
and they would generate about 100 images
27
75260
2000
ํ•œ์‚ฌ๋žŒ์—๊ฒŒ์„œ ์•ฝ 100๊ฐœ์˜ ์˜์ƒ์„
01:17
of the human body.
28
77260
2000
์ถ”์ถœํ•ด์ค๋‹ˆ๋‹ค.
01:19
And I've taken the liberty, just for clarity,
29
79260
2000
์ €๋Š” ์ •ํ™•์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด
01:21
to translate that to data slices.
30
81260
3000
๊ทธ๊ฒƒ์„ ๋ฐ์ดํ„ฐ ์กฐ๊ฐ์œผ๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค.
01:24
That would correspond to about 50 megabytes of data,
31
84260
2000
์•„๋งˆ๋„ ์•ฝ 50๋ฉ”๊ฐ€ ์ •๋„ ๋ฉ๋‹ˆ๋‹ค.
01:26
which is small
32
86260
2000
์ž‘์€ ํฌ๊ธฐ์ฃ 
01:28
when you think about the data we can handle today
33
88260
3000
์š”์ฆ˜ ํœด๋Œ€๊ธฐ๊ธฐ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์‹œ๋ฉด,
01:31
just on normal mobile devices.
34
91260
2000
์ž‘์€ ๋ฐ์ดํ„ฐ ์ž…๋‹ˆ๋‹ค.
01:33
If you translate that to phone books,
35
93260
2000
์ „ํ™”๋ฒˆํ˜ธ๋ถ€๋กœ ์ƒ๊ฐํ•œ๋‹ค๋ฉด,
01:35
it's about one meter of phone books in the pile.
36
95260
3000
์ „ํ™”๋ฒˆํ˜ธ๋ถ€ ์ฑ…์ด 1๋ฏธํ„ฐ ์ •๋„ ์Œ“์—ฌ์žˆ๋Š” ์–‘์ด์ฃ .
01:38
Looking at what we're doing today
37
98260
2000
์˜ค๋Š˜๋‚  ์šฐ๋ฆฌ๋Š”
01:40
with these machines that we have,
38
100260
2000
์ด๋Ÿฌํ•œ ๊ธฐ๊ณ„๋“ค๋กœ
01:42
we can, just in a few seconds,
39
102260
2000
๋‹จ๋ช‡์ดˆ๋งŒ์—
01:44
get 24,000 images out of a body,
40
104260
2000
24,000๊ฐœ์˜ ์‹ ์ฒด ์˜์ƒ์„ ์–ป์ฃ .
01:46
and that would correspond to about 20 gigabytes of data,
41
106260
3000
๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ๊ฐ€ ์•ฝ 20๊ธฐ๊ฐ€๋ฐ”์ดํŠธ ์ •๋„์ฃ .
01:49
or 800 phone books,
42
109260
2000
800์—ฌ๊ถŒ์˜ ์ „ํ™”๋ฒˆํ˜ธ๋ถ€์™€ ๊ฐ™์€ ์–‘์ด์ฃ .
01:51
and the pile would then be 200 meters of phone books.
43
111260
2000
์ „ํ™”๋ฒˆํ˜ธ๋ถ€๋ฅผ 200๋ฏธํ„ฐ ์Œ“์•„๋†“์€ ์–‘์ด๊ตฌ์š”.
01:53
What's about to happen --
44
113260
2000
์–ด๋–ค์ผ์ด ์ผ์–ด๋‚ ๊นŒ์š”?
01:55
and we're seeing this; it's beginning --
45
115260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ณด๊ณ  ์žˆ๋Š” ์ด๊ฒƒ์€
01:57
a technology trend that's happening right now
46
117260
2000
์ง€๊ธˆ ์‹œ์ž‘๋˜๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฒฝํ–ฅ์ž…๋‹ˆ๋‹ค.
01:59
is that we're starting to look at time-resolved situations as well.
47
119260
3000
๋˜ํ•œ ๊ทธ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์ƒํ™ฉ์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:02
So we're getting the dynamics out of the body as well.
48
122260
3000
๊ทธ๋ฆฌ๊ณ  ์‹ ์ฒด๋กœ ๋ถ€ํ„ฐ ์—ญ๋™์„ฑ์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:05
And just assume
49
125260
2000
์ถ”์ถ•ํ•˜๊ฑด๋ฐ,
02:07
that we will be collecting data during five seconds,
50
127260
3000
์šฐ๋ฆฌ๋Š” 5์ดˆ ๋™์•ˆ
02:10
and that would correspond to one terabyte of data --
51
130260
2000
ํ…Œ๋ผ๋ฐ”์ดํŠธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:12
that's 800,000 books
52
132260
2000
800,000๊ถŒ์˜ ์ „ํ™”๋ฒˆํ˜ธ๋ถ€ ์–‘์ด๋ฉฐ,
02:14
and 16 kilometers of phone books.
53
134260
2000
์ „ํ™”๋ฒˆํ˜ธ๋ถ€๊ฐ€ 16km์Œ“์ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:16
That's one patient, one data set.
54
136260
2000
์ด๊ฒƒ์€ ํ•œ๋ช…์˜ ํ™˜์ž์—๊ฒŒ์„œ๋‚˜์˜จ ๋ฐ์ดํ„ฐ ์ž…๋‹ˆ๋‹ค.
02:18
And this is what we have to deal with.
55
138260
2000
์ด๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ค„์•ผํ•  ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
02:20
So this is really the enormous challenge that we have.
56
140260
3000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํฐ ๋„์ „์ž…๋‹ˆ๋‹ค.
02:23
And already today -- this is 25,000 images.
57
143260
3000
์ด๋ฏธ ์˜ค๋Š˜๋‚ , 25,000๊ฐœ์˜ ์˜์ƒ์„ ๋‹ค๋ฃจ์ฃ .
02:26
Imagine the days
58
146260
2000
์ƒ๊ฐํ•ด๋ณด์‹ญ์‹œ์˜ค
02:28
when we had radiologists doing this.
59
148260
2000
๋ฐฉ์‚ฌ์„ ์‚ฌ๊ฐ€ ์ดฌ์˜ํ•œ ๋‚ ์„ ๋ง์ด์ฃ .
02:30
They would put up 25,000 images,
60
150260
2000
25000๊ฐœ์˜ ์ด๋ฏธ์ง€๋ฅผ ๊ฑธ์–ด๋‘๊ณ ,
02:32
they would go like this, "25,0000, okay, okay.
61
152260
3000
์ด๋ ‡๊ฒŒ ํ•˜๊ฒ ์ฃ , 25,000 ๊ดœ์ฐฎ๊ณ  ๊ดœ์ฐฎ๊ณ 
02:35
There is the problem."
62
155260
2000
์—ฌ๊ธฐ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ตฐ
02:37
They can't do that anymore. That's impossible.
63
157260
2000
์ด์ œ ๋”์ด์ƒ ์ด๋Ÿฐ์‹์€ ๋ถˆ๊ฐ€๋Šฅ ํ•ฉ๋‹ˆ๋‹ค.
02:39
So we have to do something that's a little bit more intelligent than doing this.
64
159260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ๊ฒƒ๋“ค์„ ์ข€ ๋” ํ˜„๋ช…ํ•˜๊ฒŒ ํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค.
02:43
So what we do is that we put all these slices together.
65
163260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ์˜์ƒ๋“ค์„ ๋ชจ๋‘ ํ•ฉ์นฉ๋‹ˆ๋‹ค.
02:45
Imagine that you slice your body in all these directions,
66
165260
3000
๋‹น์‹ ์˜ ๋ชธ์„ ๋ชจ๋“  ๋ฐฉํ–ฅ์—์„œ ์ดฌ์˜ํ–ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
02:48
and then you try to put the slices back together again
67
168260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์˜์ƒ๋“ค์„ ๋‹ค์‹œ ํ•ฉ์น˜๋Š” ๊ฑฐ์ฃ .
02:51
into a pile of data, into a block of data.
68
171260
2000
ํ•˜๋‚˜์˜ ๋ฐ์ดํ„ฐ๋กœ ํ˜น์€ ๋ฐ์ดํ„ฐ ๋ญ‰์น˜๋กœ์š”.
02:53
So this is really what we're doing.
69
173260
2000
์ด๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋ ค๊ณ  ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
02:55
So this gigabyte or terabyte of data, we're putting it into this block.
70
175260
3000
์ด ๊ธฐ๊ฐ€๋ฐ”์ดํŠธ๋‚˜ ํ…Œ๋ผ๋ฐ”์ดํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด ๋ธ”๋Ÿญ์— ์ง‘์–ด๋„ฃ์Šต๋‹ˆ๋‹ค.
02:58
But of course, the block of data
71
178260
2000
ํ•˜์ง€๋งŒ, ๋ฌผ๋ก  ๊ทธ ๋ธ”๋Ÿญ๋ฐ์ดํ„ฐ๋Š”
03:00
just contains the amount of X-ray
72
180260
2000
์—‘์Šค๋ ˆ์ด๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š”๋ฐ์š”.
03:02
that's been absorbed in each point in the human body.
73
182260
2000
๋ชธ ๊ฐ๋ถ€์œ„์—์„œ ํก์ˆ˜๋œ ์—‘์Šค๋ ˆ์ด๋ฅผ ๋งํ•˜์ฃ .
03:04
So what we need to do is to figure out a way
74
184260
2000
๊ทธ๋Ÿฐ ๋‹ค์Œ ์šฐ๋ฆฌ๊ฐ€ ํ•ด์•ผํ•  ๊ฒƒ์€
03:06
of looking at the things we do want to look at
75
186260
3000
์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๋ถ€์œ„๋ฅผ ์–ด๋–ป๊ฒŒ ๋ด์•ผํ•  ๊ฒƒ์ธ๊ฐ€ ์ž…๋‹ˆ๋‹ค.
03:09
and make things transparent that we don't want to look at.
76
189260
3000
ํ•„์š”์—†๋Š” ๋ถ€์œ„๋ฅผ ํˆฌ๋ช…ํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
03:12
So transforming the data set
77
192260
2000
๊ทธ๋ž˜์„œ ๋ฐ์ดํ„ฐ๋“ค์„
03:14
into something that looks like this.
78
194260
2000
์ด์™€ ๊ฐ™์ด ๋ณ€ํ˜•์‹œ์ผœ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:16
And this is a challenge.
79
196260
2000
์ด๊ฒƒ์ด ํ•˜๋‚˜์˜ ๋„์ „์ด์ฃ .
03:18
This is a huge challenge for us to do that.
80
198260
3000
์šฐ๋ฆฌ์—๊ฒŒ ์ปค๋‹ค๋ž€ ๋„์ „์ด์ฃ .
03:21
Using computers, even though they're getting faster and better all the time,
81
201260
3000
์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•˜๋”๋ผ๋„ ์•„๋ฌด๋ฆฌ ๋น ๋ฅด๊ณ  ์ข‹์€ ์ปดํ“จํ„ฐ๋ผ ํ• ์ง€๋ผ๋„,
03:24
it's a challenge to deal with gigabytes of data,
82
204260
2000
๊ธฐ๊ฐ€๋ฐ”์ดํŠธ๋‚˜ ํ…Œ๋ผ๋ฐ”์ดํŠธ์˜ ๋ฐ์ดํ„ฐ์—์„œ
03:26
terabytes of data
83
206260
2000
๊ด€๋ จ๋œ ์ •๋ณด๋ฅผ
03:28
and extracting the relevant information.
84
208260
2000
์ฐพ์•„๋‚ด๋Š”๊ฑด ๋„์ „์ž…๋‹ˆ๋‹ค.
03:30
I want to look at the heart.
85
210260
2000
์‹ฌ์žฅ์„ ์‚ดํŽด๋ณด๊ณ  ์‹ถ๊ณ ,
03:32
I want to look at the blood vessels. I want to look at the liver.
86
212260
2000
ํ˜ˆ๊ด€๋“ค์„ ๋ณด๊ณ ์‹ถ์ฃ , ๊ฐ„๋„ ๋ณด๊ณ ์‹ถ์ฃ .
03:34
Maybe even find a tumor,
87
214260
2000
์•”๋„ ์—ฌ๋Ÿฌ ์‚ฌ๋ก€๋“ค์—์„œ
03:36
in some cases.
88
216260
2000
๋ฐœ๊ฒฌํ•˜๊ณ  ์‹ถ์ฃ .
03:39
So this is where this little dear comes into play.
89
219260
2000
์ž‘์€ ์‚ฌ์Šด์ด ๋†€๊ณ  ์žˆ๋„ค์š”.
03:41
This is my daughter.
90
221260
2000
์ œ ๋”ธ์ž…๋‹ˆ๋‹ค.
03:43
This is as of 9 a.m. this morning.
91
223260
2000
์•„์นจ 9์‹œ์ฃ .
03:45
She's playing a computer game.
92
225260
2000
๋”ธ์• ๋Š” ์ปดํ“จํ„ฐ ๊ฒŒ์ž„์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:47
She's only two years old,
93
227260
2000
์ด์ œ 2์‚ด์ด์ฃ .
03:49
and she's having a blast.
94
229260
2000
์•„์ฃผ ์ฆ๊ฑฐ์›Œ ํ•˜๊ณ  ์žˆ์ฃ .
03:51
So she's really the driving force
95
231260
3000
๊ทธ๋…€๋Š” ๊ทธ๋ž˜ํ”ฝ ๊ธฐ์ˆ  ๋ฐœ์ „์— ์žˆ์–ด
03:54
behind the development of graphics-processing units.
96
234260
3000
์ถ”์ง„๋ ฅ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:58
As long as kids are playing computer games,
97
238260
2000
์•„์ด๋“ค์ด ์ปดํ“จํ„ฐ ๊ฒŒ์ž„์„ ํ•˜๋Š” ํ•œ
04:00
graphics is getting better and better and better.
98
240260
2000
๊ทธ๋ž˜ํ”ฝ ๊ธฐ์ˆ ์„ ๊ณ„์† ๋ฐœ์ „ํ•˜์ฃ .
04:02
So please go back home, tell your kids to play more games,
99
242260
2000
์ง‘์— ๊ฐ€์‹œ๋ฉด ์ œ๋ฐœ ์•„์ด๋“ค์—๊ฒŒ ๊ฒŒ์ž„์„ ๋” ํ•˜๋ผ๊ณ  ํ•˜์„ธ์š”.
04:04
because that's what I need.
100
244260
2000
์™œ๋ƒ๋ฉด ๊ฒŒ์ž„์ด ํ•„์š”ํ•˜๊ฑฐ๋“ ์š”.
04:06
So what's inside of this machine
101
246260
2000
๊ทธ ๊ธฐ๊ณ„ ์•ˆ์— ์žˆ๋Š” ๊ฒƒ์ด
04:08
is what enables me to do the things that I'm doing
102
248260
2000
์˜๋ฃŒ์  ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ๋ฌด์–ธ๊ฐ€๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ
04:10
with the medical data.
103
250260
2000
ํ•ฉ๋‹ˆ๋‹ค.
04:12
So really what I'm doing is using these fantastic little devices.
104
252260
3000
๊ทธ๋ž˜์„œ ์ €๋Š” ์ด ์ž‘๊ณ  ๋ฉ‹์ง„ ๊ธฐ๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
04:15
And you know, going back
105
255260
2000
์—ฌ๋Ÿฌ๋ถ„๋„ ์•„๋‹ค์‹œํ”ผ
04:17
maybe 10 years in time
106
257260
2000
10๋…„์ „์ฏค์—
04:19
when I got the funding
107
259260
2000
์ œ๊ฐ€ ์ฒ˜์Œ ์—ฐ๊ตฌ๋น„๋ฅผ ๋ฐ›์•„
04:21
to buy my first graphics computer --
108
261260
2000
์ €์˜ ์ฒซ ๊ทธ๋ž˜ํ”ฝ ์ปดํ“จํ„ฐ๋ฅผ ์ƒ€์ฃ .
04:23
it was a huge machine.
109
263260
2000
๋ฉ์น˜๊ฐ€ ์—„์ฒญ๋‚˜๊ฒŒ ์ปธ์—ˆ์ฃ .
04:25
It was cabinets of processors and storage and everything.
110
265260
3000
์บ๋น„๋„ท์•ˆ์— ์ฒ˜๋ฆฌ์žฅ์น˜,์ €์žฅ์žฅ์น˜ ๋ชจ๋“ ๊ฒƒ์ด ์žˆ์—ˆ์ฃ .
04:28
I paid about one million dollars for that machine.
111
268260
3000
๊ฐ€๊ฒฉ์€ ๋ฐฑ๋งŒ๋ถˆ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
04:32
That machine is, today, about as fast as my iPhone.
112
272260
3000
๊ทธ ๊ธฐ๊ณ„๋Š” ์˜ค๋Š˜๋‚ ์˜ ์•„์ดํฐ๊ณผ ๊ฐ™์€ ์†๋„์˜€์Šต๋‹ˆ๋‹ค.
04:37
So every month there are new graphics cards coming out,
113
277260
2000
๋งค๋‹ฌ ์ƒˆ๋กœ์šด ๊ทธ๋ž˜ํ”ฝ ์นด๋“œ๊ฐ€ ์ถœ์‹œ๋ฉ๋‹ˆ๋‹ค.
04:39
and here is a few of the latest ones from the vendors --
114
279260
3000
์ด๊ฒƒ๋“ค์€ ๊ฐ€์žฅ ์ตœ์‹ ์˜ ์ œํ’ˆ๋“ค์ž…๋‹ˆ๋‹ค.
04:42
NVIDIA, ATI, Intel is out there as well.
115
282260
3000
NVIDIA, ATI, Intel๋„ ์ œํ’ˆ์„ ๋‚ด๋†“์Šต๋‹ˆ๋‹ค.
04:45
And you know, for a few hundred bucks
116
285260
2000
์•„์‹œ๋‹ค์‹œํ”ผ ๋ช‡ ๋ฐฑ๋ถˆ์ด๋ฉด
04:47
you can get these things and put them into your computer,
117
287260
2000
์ด ๊ทธ๋ž˜ํ”ฝ์นด๋“ค์„ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ปดํ“จํ„ฐ์— ๋‹ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:49
and you can do fantastic things with these graphics cards.
118
289260
3000
๊ทธ๋ฆฌ๊ณ  ๋ฉ‹์ง„์ผ๋“ค์„ ๊ทธ๋ž˜ํ”ฝ์นด๋“œ๋กœ ํ•  ์ˆ˜ ์žˆ์ฃ .
04:52
So this is really what's enabling us
119
292260
2000
์ด๋Ÿฐ ๊ทธ๋ž˜ํ”ฝ์นด๋“œ๋“ค์ด
04:54
to deal with the explosion of data in medicine,
120
294260
3000
๊ฑฐ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒํ•˜๊ณ ,
04:57
together with some really nifty work
121
297260
2000
๋ฉ‹์ง„ ์ž‘์—…๋“ค์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ์ฃ .
04:59
in terms of algorithms --
122
299260
2000
์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์ฒ˜๋Ÿผ
05:01
compressing data,
123
301260
2000
๋ฐ์ดํ„ฐ๋ฅผ ์••์ถ•ํ•˜๊ณ ,
05:03
extracting the relevant information that people are doing research on.
124
303260
3000
์‚ฌ๋žŒ๋“ค์ด ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จ์ •๋ณด๋“ค์„ ์ถ”์ถœํ•˜์ฃ .
05:06
So I'm going to show you a few examples of what we can do.
125
306260
3000
์ž ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ช‡๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆฌ์ฃ .
05:09
This is a data set that was captured using a CT scanner.
126
309260
3000
์ด๊ฒƒ์„ CT ์Šค์บ๋„ˆ๋กœ ์ดฌ์˜ํ•œ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
05:12
You can see that this is a full data [set].
127
312260
3000
์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:15
It's a woman. You can see the hair.
128
315260
3000
์—ฌ์ž๊ณ  ๋จธ๋ฆฌ์นด๋ฝ๋„ ๋ณด์ž…๋‹ˆ๋‹ค.
05:18
You can see the individual structures of the woman.
129
318260
3000
์ด ์—ฌ์„ฑ์˜ ๊ฐ๊ฐ์˜ ์กฐ์ง๋“ค์ด ๋ณด์ด์ฃ .
05:21
You can see that there is [a] scattering of X-rays
130
321260
3000
์—‘์Šค๋ ˆ์ด์˜ ์ž”์ƒ์ด ๋ณด์ด๋Š”๋ฐ,
05:24
on the teeth, the metal in the teeth.
131
324260
2000
์ด๋นจ์— ๊ธˆ์†์„ฑ๋ถ„์— ์ž”์ƒ์ด ๋‚˜ํƒ€๋‚ฌ์ฃ .
05:26
That's where those artifacts are coming from.
132
326260
3000
์—‘์Šค๋ ˆ์ธ ์ž”์ƒ์ด ๋ณด์ธ ๋ถ€๋ถ„์ด์ฃ .
05:29
But fully interactively
133
329260
2000
ํ•˜์ง€๋งŒ, ์™„์ „ํžˆ ์ƒํ˜ธ์ ์ด์ฃ 
05:31
on standard graphics cards on a normal computer,
134
331260
3000
๋ณดํ†ต ์ปดํ“จํ„ฐ์— ํ‰๋ฒ”ํ•œ ๊ทธ๋ž˜ํ”ฝ ์นด๋“œ์—์„œ ๋ง์ด์˜ˆ์š”.
05:34
I can just put in a clip plane.
135
334260
2000
ํšก๋‹จ๋ฉด์„ ๋ณผ ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
05:36
And of course all the data is inside,
136
336260
2000
๋ฌผ๋ก  ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋Š” ์•ˆ์— ์žˆ์ฃ .
05:38
so I can start rotating, I can look at it from different angles,
137
338260
3000
ํšŒ์ „์‹œ์ผœ ๋ณผ์ˆ˜๋„ ์žˆ๊ณ  ๋‹ค๋ฅธ ๊ฐ๋„๋กœ ๋ณผ์ˆ˜๋„ ์žˆ์ฃ .
05:41
and I can see that this woman had a problem.
138
341260
3000
์ด ์—ฌ์„ฑ์—๊ฒŒ ์–ด๋–ค ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š”์ง€ ์•Œ ์ˆ˜์žˆ์ฃ .
05:44
She had a bleeding up in the brain,
139
344260
2000
๋‡Œ์— ์ถœํ˜ˆ์ด ๋ณด์ด๋„ค์š”.
05:46
and that's been fixed with a little stent,
140
346260
2000
๊ธฐ๊ตฌ๋กœ ์ถœํ˜ˆ์„ ๋ง‰์•˜๊ตฐ์š”.
05:48
a metal clamp that's tightening up the vessel.
141
348260
2000
๊ธˆ์† ๊บฝ์‡ ๋กœ ํ˜ˆ๊ด€์„ ๋ฌถ์—ˆ์–ด์š”.
05:50
And just by changing the functions,
142
350260
2000
๋‹จ์ง€ ๊ธฐ๋Šฅ์„ ๋ฐ”๊พธ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ
05:52
then I can decide what's going to be transparent
143
352260
3000
์–ด๋–ค ๊ตฌ์กฐ๋ฌผ์„ ํˆฌ๋ช…ํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ,
05:55
and what's going to be visible.
144
355260
2000
์–ด๋–ค ๊ฑธ ๋ณด์ด๊ฒŒ ํ•  ์ˆ˜๋„ ์žˆ์ฃ .
05:57
I can look at the skull structure,
145
357260
2000
๋‘๊ฐœ๊ณจ์„ ๋ณผ ์ˆ˜๋„ ์žˆ๊ณ ,
05:59
and I can see that, okay, this is where they opened up the skull on this woman,
146
359260
3000
๊ทธ๋ž˜์„œ ์ด ์—ฌ์„ฑ์˜ ๋‘๊ฐœ๊ณจ์— ์–ด๋””๊ฐ€ ๋ฐ–์œผ๋กœ ์—ด๋ ค์žˆ๊ณ ,
06:02
and that's where they went in.
147
362260
2000
์–ด๋””๊ฐ€ ์•ˆ์ชฝ์œผ๋กœ ๋“ค์–ด๊ฐ”๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ์ฃ .
06:04
So these are fantastic images.
148
364260
2000
๋ฉ‹์ง„ ์˜์ƒ๋“ค์ด์ฃ .
06:06
They're really high resolution,
149
366260
2000
ํ•ด์ƒ๋„๊ฐ€ ๊ต‰์žฅํžˆ ๋†’์Šต๋‹ˆ๋‹ค.
06:08
and they're really showing us what we can do
150
368260
2000
์ด๊ฒƒ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ์˜ค๋Š˜๋‚ 
06:10
with standard graphics cards today.
151
370260
3000
์ผ๋ฐ˜์  ๊ทธ๋ž˜ํ”ฝ ์นด๋“œ๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋“ค์ด์ฃ .
06:13
Now we have really made use of this,
152
373260
2000
์ด์ œ ์ด๊ฑธ์ข€ ์ด์šฉํ•ด ๋ณด๋„๋กํ•˜์ฃ 
06:15
and we have tried to squeeze a lot of data
153
375260
3000
๋งŽ์€ ๋ฐ์ดํ„ฐ๋“ค์„ ์งœ์„œ ์ด ์‹œ์Šคํ…œ์—
06:18
into the system.
154
378260
2000
๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
06:20
And one of the applications that we've been working on --
155
380260
2000
์šฐ๋ฆฌ๊ฐ€ ์ž‘์—…ํ•˜๊ณ  ์žˆ๋Š” ํ”„๋กœ๊ทธ๋žจ ์ค‘ ํ•˜๋‚˜๋กœ
06:22
and this has gotten a little bit of traction worldwide --
156
382260
3000
์ง€๊ธˆ ์„ธ๊ณ„์ ์œผ๋กœ๋„ ์ฒจ๋‹จ์ธ
06:25
is the application of virtual autopsies.
157
385260
2000
๊ฐ€์ƒ ๋ถ€๊ฒ€ ํ”„๋กœ๊ทธ๋žจ ์ž…๋‹ˆ๋‹ค.
06:27
So again, looking at very, very large data sets,
158
387260
2000
๋‹ค์‹œ ๋ง์”€๋“œ๋ฆฌ์ง€๋งŒ ๊ต‰์žฅํžˆ ํฐ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
06:29
and you saw those full-body scans that we can do.
159
389260
3000
ํ•œ์‚ฌ๋žŒ์˜ ๋ชธ์ „์ฒด๋ฅผ ์ดฌ์˜ํ•œ ๊ฒƒ์ด์ฃ .
06:32
We're just pushing the body through the whole CT scanner,
160
392260
3000
์šฐ๋ฆฐ ๋Œ€์ƒ์ž๋ฅผ CT ๊ธฐ๊ณ„์— ๋„ฃ๊ธฐ๋งŒ ํ•˜๋ฉด,
06:35
and just in a few seconds we can get a full-body data set.
161
395260
3000
๋ช‡ ์ดˆ ํ›„์— ๋ชธ์ „์ฒด์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:38
So this is from a virtual autopsy.
162
398260
2000
์ด๊ฒƒ์ด ๊ฐ€์ƒ ๋ถ€๊ฒ€์˜ ์‹œ์ž‘์ž…๋‹ˆ๋‹ค.
06:40
And you can see how I'm gradually peeling off.
163
400260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์ œ๊ฐ€ ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์”ฉ ๋ฒ—๊ฒจ๊ฐ€๋Š”์ง€ ๋ณด๊ฒŒ๋ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:42
First you saw the body bag that the body came in,
164
402260
3000
๋จผ์ € ๋ณด์‹ค๊ฒƒ์€ ์‚ฌ์ฒด๊ฐ€ ๋“ค์–ด์žˆ๋Š” ์ฃผ๋จธ๋‹ˆ ์ž…๋‹ˆ๋‹ค.
06:45
then I'm peeling off the skin -- you can see the muscles --
165
405260
3000
๋‹ค์Œ์€ ํ”ผ๋ถ€๋ฅผ ๋ฒ—๊ฒจ๋‚ด์ฃ . ๊ทผ์œก์ด ๋ณด์ด์‹œ์ฃ .
06:48
and eventually you can see the bone structure of this woman.
166
408260
3000
๊ทธ๋ฆฌ๊ณ  ์ด ์—ฌ์„ฑ์˜ ๊ณจ๊ฒฉ๊ตฌ์กฐ๊ฐ€ ๋ณด์ด์‹œ์ฃ .
06:51
Now at this point, I would also like to emphasize
167
411260
3000
์ง€๊ธˆ ์ œ๊ฐ€ ๊ฐ•์กฐํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€
06:54
that, with the greatest respect
168
414260
2000
๊ฐ€์žฅ ํฐ ๊ฒฝ์™ธ๊ฐ์„
06:56
for the people that I'm now going to show --
169
416260
2000
์ง€๊ธˆ ๋ณด์‹œ๊ฒŒ ๋  ๋ถ„๋“ค์—๊ฒŒ ๋Œ๋ฆฐ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:58
I'm going to show you a few cases of virtual autopsies --
170
418260
2000
์ „ ์ง€๊ธˆ ๊ฐ€์ƒ๋ถ€๊ฒ€์˜ ๋ช‡๋ช‡ ์‚ฌ๋ก€๋ฅผ ๋ณด์—ฌ๋“œ๋ฆด๋ ค๊ณ ํ•ฉ๋‹ˆ๋‹ค.
07:00
so it's with great respect for the people
171
420260
2000
๋Œ€์ƒ์ž ๋ถ„๋“ค์—๊ฒŒ ๊ฒฝ์™ธ๊ฐ์„ ๋Œ๋ฆฌ๋ฉฐ,
07:02
that have died under violent circumstances
172
422260
2000
์ด๋ถ„๋“ค์€ ์ฒ˜์ฐธํ•œ ํ™˜๊ฒฝ์—์„œ ๋Œ์•„๊ฐ€์…จ์Šต๋‹ˆ๋‹ค.
07:04
that I'm showing these pictures to you.
173
424260
3000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๊ทธ ์˜์ƒ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
07:08
In the forensic case --
174
428260
2000
๋ฒ•์˜ํ•™์  ์‚ฌ๋ก€์—์„œ
07:10
and this is something
175
430260
2000
์ด๊ฒƒ๋“ค์€ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
07:12
that ... there's been approximately 400 cases so far
176
432260
2000
์ง€๊ธˆ๊นŒ์ง€ ์•ฝ 400๊ฑด์˜ ์‚ฌ๋ก€๋“ค์ด
07:14
just in the part of Sweden that I come from
177
434260
2000
์Šค์›จ๋ด์˜ ์ผ๋ถ€ ์ง€์—ญ์—์„œ
07:16
that has been undergoing virtual autopsies
178
436260
2000
๊ฐ€์ƒ ๋ถ€๊ฒ€์ด ์ด๋ฃจ์–ด ์กŒ์Šต๋‹ˆ๋‹ค.
07:18
in the past four years.
179
438260
2000
์ง€๋‚œ 4๋…„๊ฐ„ ๋ง์ด์ฃ .
07:20
So this will be the typical workflow situation.
180
440260
3000
๊ทธ๋ ‡๋‹ค๋ฉด, ์ด๊ฒƒ์€ ์ผ๋ฐ˜์ ์ธ ์ž‘์—…์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:23
The police will decide --
181
443260
2000
๊ฒฝ์ฐฐ์ด ์ €๋…์—
07:25
in the evening, when there's a case coming in --
182
445260
2000
์ž์‹ ๋“ค์ด ์‚ฌ๊ฑด์„ ๋งก์€ ์‹œ๊ฐ„์—
07:27
they will decide, okay, is this a case where we need to do an autopsy?
183
447260
3000
๋ถ€๊ฒ€์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์‚ฌ๊ฑด์„ ๋งก์•˜๋‹ค๋ฉด,
07:30
So in the morning, in between six and seven in the morning,
184
450260
3000
์•„์นจ 6์‹œ์—์„œ 7์‹œ ์‚ฌ์ด์—
07:33
the body is then transported inside of the body bag
185
453260
2000
๊ทธ ์‚ฌ์ฒด๋Š” ์‚ฌ์ฒด๊ฐ€๋ฐฉ์— ๋‹ด๊ฒจ์„œ ์ €ํฌ ์„ผํ„ฐ๋กœ
07:35
to our center
186
455260
2000
์˜ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
07:37
and is being scanned through one of the CT scanners.
187
457260
2000
๊ทธ๋Ÿฐ๋‹ค์Œ CT๋กœ ์ดฌ์˜์„ ํ•˜๊ฒŒ ๋˜์ฃ .
07:39
And then the radiologist, together with the pathologist
188
459260
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ๋ฐฉ์‚ฌ์„ ์‚ฌ๋Š” ๋ณ‘๋ฆฌ์‚ฌ์™€ ๊ฐ™์ด
07:41
and sometimes the forensic scientist,
189
461260
2000
๊ฐ€๋”์€ ๋ฒ•์˜ํ•™์ž์™€ ๊ฐ™์ด
07:43
looks at the data that's coming out,
190
463260
2000
๊ทธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ดํŽด ๋ณด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
07:45
and they have a joint session.
191
465260
2000
๊ทธ๋“ค์€ ํšŒ์˜๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.
07:47
And then they decide what to do in the real physical autopsy after that.
192
467260
3000
๊ทธ๋Ÿฐ๋‹ค์Œ ์‹ค์ œ์ ์ธ ๋ถ€๊ฒ€์—์„œ ๋ญ˜ ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
07:52
Now looking at a few cases,
193
472260
2000
์ด์ œ ๋ช‡๋ช‡ ์‚ฌ๋ก€๋“ค์„ ๋ณด์ฃ .
07:54
here's one of the first cases that we had.
194
474260
2000
์—ฌ๊ธฐ ์ฒซ๋ฒˆ์งธ ์‚ฌ์ฒด๋ฅผ ๋ณด์‹œ์ฃ .
07:56
You can really see the details of the data set.
195
476260
3000
์šฐ๋ฆฌ๋Š” ๊ต‰์žฅํžˆ ์ž์„ธํ•˜๊ฒŒ ๋“ค์—ฌ๋‹ค ๋ณผ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:59
It's very high-resolution,
196
479260
2000
ํ•ด์ƒ๋„๊ฐ€ ๋งค์šฐ ๋†’์œผ๋‹ˆ๊นŒ์š”.
08:01
and it's our algorithms that allow us
197
481260
2000
๊ทธ๋ฆฌ๊ณ  ์ €ํฌ์˜ ์—ฐ์‚ฐํ”„๋กœ๊ทธ๋žจ์€
08:03
to zoom in on all the details.
198
483260
2000
๋ชจ๋“  ์„ธ์„ธํ•œ ๋ถ€๋ถ„๋“ค์„ ํ™•๋Œ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:05
And again, it's fully interactive,
199
485260
2000
๊ฐ•์กฐํ•˜์ž๋ฉด, ์™„๋ฒฝํ•˜๊ฒŒ ์ƒํ˜ธ์ ์ด์ฃ .
08:07
so you can rotate and you can look at things in real time
200
487260
2000
๊ทธ๋ž˜์„œ ํšŒ์ „์‹œํ‚ฌ ์ˆ˜๋„ ์žˆ๊ณ , ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์ฃ .
08:09
on these systems here.
201
489260
2000
์ด ์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด์„œ์š”.
08:11
Without saying too much about this case,
202
491260
2000
๊ฐ„๋‹จํ•˜๊ฒŒ ์ด ์‚ฌ๊ฑด์— ๋Œ€ํ•ด ๋ง์”€๋“œ๋ฆฌ๋ฉด
08:13
this is a traffic accident,
203
493260
2000
๊ตํ†ต์‚ฌ๊ณ  ์ด๊ณ ,
08:15
a drunk driver hit a woman.
204
495260
2000
์Œ์ฃผ์šด์ „์ž๊ฐ€ ์—ฌ์„ฑ์„ ์น˜์—ˆ์Šต๋‹ˆ๋‹ค.
08:17
And it's very, very easy to see the damages on the bone structure.
205
497260
3000
๋ผˆ์— ๋Œ€ํ•œ ์†์ƒ์€ ๊ต‰์žฅํžˆ ์ž˜ ๋ณด์ž…๋‹ˆ๋‹ค.
08:20
And the cause of death is the broken neck.
206
500260
3000
์‚ฌ์ธ์€ ๊ฒฝ์ถ”๊ณจ์ ˆ์ž…๋‹ˆ๋‹ค.
08:23
And this women also ended up under the car,
207
503260
2000
์—ฌ์„ฑ์€ ์ฐจ์— ๊น”๋ ค ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:25
so she's quite badly beaten up
208
505260
2000
์—ฌ์„ฑ์€ ์‹ฌ๊ฐํ•œ ์ƒํ•ด๋ฅผ ์ž…์—ˆ์ฃ .
08:27
by this injury.
209
507260
2000
์†์ƒ์ด ์‹ฌํ–ˆ์–ด์š”.
08:29
Here's another case, a knifing.
210
509260
3000
๋‹ค๋ฅธ ์‚ฌ๋ก€๋ฅผ ๋ณด์ฃ . ์นผ๋กœ ์ฐ”๋ฆฐ๊ฑฐ์ฃ .
08:32
And this is also again showing us what we can do.
211
512260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ฌด์—‡์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:34
It's very easy to look at metal artifacts
212
514260
2000
๊ธˆ์†์œผ๋กœ ๋œ ๋ฌผ์ฒด๋“ค์€ ์ž˜ ๋ณด์ด์ฃ .
08:36
that we can show inside of the body.
213
516260
3000
๋ชธ์•ˆ์— ๋ฌด์—‡์ด ์žˆ๋Š”์ง€ ๋ณด์ด์ฃ .
08:39
You can also see some of the artifacts from the teeth --
214
519260
3000
์—ฌ๊ธฐ ๋ณด์‹œ๋ฉด ์ด๋นจ์—๋„ ๋ญ”๊ฐ€ ์žˆ์ฃ .
08:42
that's actually the filling of the teeth --
215
522260
2000
์‚ฌ์‹ค ์ด๋นจ์— ์‚ฌ์šฉ๋œ ์ถฉ์ „๋ฌผ์ž…๋‹ˆ๋‹ค.
08:44
but because I've set the functions to show me metal
216
524260
3000
์ œ๊ฐ€ ๊ธˆ์†๋ฌผ์ฒด๋ฅผ ๋ณด์ด๊ฒŒ ํ•˜๊ณ , ๋‹ค๋ฅธ ๊ฒƒ๋“ค์€
08:47
and make everything else transparent.
217
527260
2000
๋ชจ๋‘ ํˆฌ๋ช…์œผ๋กœ ๋ณด์ด๊ฒŒ ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
08:49
Here's another violent case. This really didn't kill the person.
218
529260
3000
๋‹ค๋ฅธ ํญ๋ ฅ์‚ฌ๊ฑด์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ์‚ฌ๋ง์›์ธ์€ ์•„๋‹™๋‹ˆ๋‹ค.
08:52
The person was killed by stabs in the heart,
219
532260
2000
์‹ฌ์žฅ์ด ์ฐ”๋ ค์„œ ์‚ฌ๋งํ•˜์˜€์Šต๋‹ˆ๋‹ค.
08:54
but they just deposited the knife
220
534260
2000
ํ•˜์ง€๋งŒ, ๊ทธ๋“ค์ด ์ฐŒ๋ฅธ ์นผ์€
08:56
by putting it through one of the eyeballs.
221
536260
2000
ํ•œ์ชฝ ์•ˆ๊ตฌ๋ฅผ ๊ด€ํ†ตํ–ˆ์ฃ .
08:58
Here's another case.
222
538260
2000
๋˜๋‹ค๋ฅธ ์‚ฌ๋ก€๋ฅผ ๋ณด์ฃ .
09:00
It's very interesting for us
223
540260
2000
๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ์‚ฌ๋ก€์ž…๋‹ˆ๋‹ค.
09:02
to be able to look at things like knife stabbings.
224
542260
2000
์นผ์— ์ฐ”๋ฆฐ ๋“ฏํ•œ ๋ฌผ์ฒด๊ฐ€ ๋ณด์ด์ฃ .
09:04
Here you can see that knife went through the heart.
225
544260
3000
๋ณด์‹œ๋‹ค์‹œํ”ผ ์นผ์ด ์‹ฌ์žฅ์„ ๊ด€ํ†ตํ–ˆ์Šต๋‹ˆ๋‹ค.
09:07
It's very easy to see how air has been leaking
226
547260
2000
๊ณต๊ธฐ๊ฐ€ ์„ธ๋Š” ๊ฒƒ์ผ ์‰ฝ๊ฒŒ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
09:09
from one part to another part,
227
549260
2000
ํ•œ๋ถ€๋ถ„์—์„œ ๋‹ค๋ฅธ ๋ถ€๋ถ„์œผ๋กœ ๋ง์ด์ฃ .
09:11
which is difficult to do in a normal, standard, physical autopsy.
228
551260
3000
์ผ๋ฐ˜์  ์‹ค์ œ ๋ถ€๊ฒ€์—์„œ๋Š” ๋ณด๊ธฐ ํž˜๋“  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:14
So it really, really helps
229
554260
2000
์ด ๊ฒƒ์€ ์ง„์ •์œผ๋กœ
09:16
the criminal investigation
230
556260
2000
๋ฒ”์ฃ„ ์ˆ˜์‚ฌ์— ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.
09:18
to establish the cause of death,
231
558260
2000
์‚ฌ์ธ์„ ์•Œ์•„๋‚ด๋Š”๋ฐ ๋ง์ด์ฃ .
09:20
and in some cases also directing the investigation in the right direction
232
560260
3000
์–ด๋–ค๊ฒฝ์šฐ ์ˆ˜์‚ฌ๋ฅผ ๋ฐ”๋ฅธ ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋•๋‹ˆ๋‹ค.
09:23
to find out who the killer really was.
233
563260
2000
๋ˆ„๊ฐ€ ์ง„์งœ ๋ฒ”์ธ์ธ๊ฐ€๋ฅผ ๊ฐ€๋ฆฌ๋Š” ๊ฒƒ์ด์ฃ .
09:25
Here's another case that I think is interesting.
234
565260
2000
๋˜ ํ•˜๋‚˜์˜ ํฅ๋ฏธ๋กœ์šด ์‚ฌ๋ก€์ž…๋‹ˆ๋‹ค.
09:27
Here you can see a bullet
235
567260
2000
์—ฌ๊ธฐ ์ด์•Œ์ด ๋ณด์ด์ฃ .
09:29
that has lodged just next to the spine on this person.
236
569260
3000
์ด ์‚ฌ๋žŒ์˜ ์ฒ™์ถ” ์˜†์— ๋ฐ–ํ˜€์žˆ์ฃ .
09:32
And what we've done is that we've turned the bullet into a light source,
237
572260
3000
์šฐ๋ฆฌ๊ฐ€ ํ•œ ๊ฒƒ์€ ๊ทธ ์ด์•Œ์— ๋น›์„ ๋น„์ถฐ๋ดค์Šต๋‹ˆ๋‹ค.
09:35
so that bullet is actually shining,
238
575260
2000
์ด์•Œ์ด ๋น›๋‚˜๊ณ  ์žˆ์ฃ .
09:37
and it makes it really easy to find these fragments.
239
577260
3000
์ด๋ ‡๊ฒŒ ํ•จ์œผ๋กœ์จ ์กฐ๊ฐ๋“ค์„ ์ฐพ๊ธฐ ์‰ฝ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
09:40
During a physical autopsy,
240
580260
2000
์‹ค์ œ ๋ถ€๊ฒ€๋™์•ˆ์—
09:42
if you actually have to dig through the body to find these fragments,
241
582260
2000
์กฐ๊ฐ๋“ค์„ ์ฐพ๊ธฐ ์œ„ํ•ด์„œ ์‚ฌ์ฒด๋ฅผ ํŒŒํ—ค์ณ์„œ
09:44
that's actually quite hard to do.
242
584260
2000
์กฐ๊ฐ์„ ์ฐพ๊ธฐ๋Š” ๋งค์šฐ ํž™๋“ญ๋‹ˆ๋‹ค.
09:48
One of the things that I'm really, really happy
243
588260
2000
์ œ๊ฐ€ ๊ธฐ์˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ์ค‘ ํ•˜๋‚˜๋Š”
09:50
to be able to show you here today
244
590260
3000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์ด๊ฒƒ์„ ๋ณด์—ฌ๋“œ๋ฆด ์ˆ˜ ์žˆ์–ด์„œ ์ž…๋‹ˆ๋‹ค.
09:53
is our virtual autopsy table.
245
593260
2000
์ €ํฌ ๊ฐ€์ƒ๋ถ€๊ฒ€ ํ…Œ์ด๋ธ” ์ž…๋‹ˆ๋‹ค.
09:55
It's a touch device that we have developed
246
595260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœํ•œ ํ„ฐ์น˜์Šคํฌ๋ฆฐ ํ…Œ์ด๋ธ”์ž…๋‹ˆ๋‹ค.
09:57
based on these algorithms, using standard graphics GPUs.
247
597260
3000
์ €ํฌ์˜ ์—ฐ์‚ฐํ”„๋กœ๊ทธ๋žจ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ผ๋ฐ˜ ๊ทธ๋ž˜ํ”ฝ์นด๋“œ๋ฅผ ์‚ฌ์šฉํ–ˆ์ฃ .
10:00
It actually looks like this,
248
600260
2000
์ด๋ ‡๊ฒŒ ์ƒ๊ฒผ์Šต๋‹ˆ๋‹ค.
10:02
just to give you a feeling for what it looks like.
249
602260
3000
์–ด๋–ป๊ฒŒ ์ƒ๊ฒผ๋Š”์ง€ ๋ณด์—ฌ๋“œ๋ ธ์œผ๋ฉด ํ–ˆ์Šต๋‹ˆ๋‹ค.
10:05
It really just works like a huge iPhone.
250
605260
3000
๋งํ•˜์ž๋ฉด, ํฐ ์•„์ดํฐ์ฒ˜๋Ÿผ ์ž‘๋™ํ•˜์ฃ .
10:08
So we've implemented
251
608260
2000
์šฐ๋ฆฌ๋Š” ๋ชจ๋“  ๋™์ž‘๋“ค์„
10:10
all the gestures you can do on the table,
252
610260
3000
์ด ํ…Œ์ด๋ธ” ์œ„์—์„œ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:13
and you can think of it as an enormous touch interface.
253
613260
4000
ํฐ ํ„ฐ์น˜ ์Šคํฌ๋ฆฐ์„ ๊ฐ€์ง„ ๊ธฐ๊ณ„๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
10:17
So if you were thinking of buying an iPad,
254
617260
2000
์•„์ดํŒจ๋“œ๋ฅผ ์‚ฌ์‹ค ์ƒ๊ฐ์ด๋ผ๋ฉด,
10:19
forget about it. This is what you want instead.
255
619260
3000
์žŠ์œผ์„ธ์š” ์—ฌ๊ธฐ ๋‹น์‹ ์ด ์›ํ•˜๋Š” ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
10:22
Steve, I hope you're listening to this, all right.
256
622260
3000
์Šคํ‹ฐ๋ธŒ, ๋‹น์‹  ๋“ฃ๊ณ  ์žˆ์ฃ ?, ๊ทธ๋ž˜์š”.
10:26
So it's a very nice little device.
257
626260
2000
์ด๊ฒƒ์€ ๊ต‰์žฅํžˆ ๋ฉ‹์ง„ ๋ฌผ๊ฑด์ด์ฃ .
10:28
So if you have the opportunity, please try it out.
258
628260
2000
๋งŒ์ผ ๊ธฐํšŒ๊ฐ€ ๋˜์‹ ๋‹ค๋ฉด ํ•œ๋ฒˆ ์‚ฌ์šฉํ•ด ๋ณด์„ธ์š”.
10:30
It's really a hands-on experience.
259
630260
3000
์ •๋ง ์†์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:33
So it gained some traction, and we're trying to roll this out
260
633260
3000
์—ฌ๋Ÿฌ ์–ธ๋ก ์— ์†Œ๊ฐœ๋˜์—ˆ๊ณ , ์ด์šฉํ•ด๋ณผ๋ ค๊ณ  ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ,
10:36
and trying to use it for educational purposes,
261
636260
2000
๊ต์œก์ ์œผ๋กœ ์‚ฌ์šฉํ• ๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
10:38
but also, perhaps in the future,
262
638260
2000
์•„๋งˆ๋„ ๋ฏธ๋ž˜์—๋Š”
10:40
in a more clinical situation.
263
640260
3000
์ข€ ๋” ์ž„์ƒ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:43
There's a YouTube video that you can download and look at this,
264
643260
2000
๊ฐ€์ƒ๋ถ€๊ฒ€์— ๋Œ€ํ•œ ์œ ํŠœ๋ธŒ ์˜์ƒ์ž…๋‹ˆ๋‹ค..
10:45
if you want to convey the information to other people
265
645260
2000
๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ƒ ๋ถ€๊ฒ€์— ๋Œ€ํ•ด ์•Œ๋ฆฌ๊ณ ์‹ถ๋‹ค๋ฉด,
10:47
about virtual autopsies.
266
647260
3000
์œ ์šฉํ•œ ์˜์ƒ์ด์ฃ .
10:50
Okay, now that we're talking about touch,
267
650260
2000
์ด์ œ ํ„ฐ์น˜์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐ ํ•ด๋ด…์‹œ๋‹ค.
10:52
let me move on to really "touching" data.
268
652260
2000
์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์ด์•ผ๊ธฐ ํ•ด๋ณด์ฃ 
10:54
And this is a bit of science fiction now,
269
654260
2000
์ง€๊ธˆ์€ ๊ณต์ƒ๊ณผํ•™ ์†Œ์„ค๊ฐ™์€ ์ด์•ผ๊ธฐ์ง€๋งŒ,
10:56
so we're moving into really the future.
270
656260
3000
๋ฏธ๋ž˜์— ๊ฐ€๋Šฅํ•œ ์ด์•ผ๊ธฐ์ฃ .
10:59
This is not really what the medical doctors are using right now,
271
659260
3000
์ง€๊ธˆ ํ˜„์žฌ์— ์˜์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ์ง€๋งŒ,
11:02
but I hope they will in the future.
272
662260
2000
์ €๋Š” ๋ฏธ๋ž˜์—๋Š” ๊ทธ๋Ÿฌ๋ฆฌ๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
11:04
So what you're seeing on the left is a touch device.
273
664260
3000
์™ผ์ชฝ์— ๋ณด์‹œ๋ฉด ํ„ฐ์น˜ ๊ธฐ๊ธฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:07
It's a little mechanical pen
274
667260
2000
์ด๊ฒƒ์€ ์ž‘์€ ๊ธฐ๊ณ„์  ํŒฌ์ž…๋‹ˆ๋‹ค.
11:09
that has very, very fast step motors inside of the pen.
275
669260
3000
ํž˜์„ ์ธก์ •ํ•˜๋Š” ์„ผ์„œ๊ฐ€ ํŽœ์•ˆ์— ์žˆ์Šต๋‹ˆ๋‹ค.
11:12
And so I can generate a force feedback.
276
672260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ํž˜์˜ ์„ธ๊ธฐ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:14
So when I virtually touch data,
277
674260
2000
๊ฐ€์ƒ๋ฐ์ดํ„ฐ์— ํ„ฐ์น˜๋ฅผ ํ• ๋•Œ,
11:16
it will generate forces in the pen, so I get a feedback.
278
676260
3000
์ด๊ฒƒ์€ ํŽœ์ด ํ„ฐ์น˜ ํž˜์„ ๋งŒ๋“ค๊ธฐ๋•Œ๋ฌธ์— ์ œ๊ฐ€ ๋Š๋‚„์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:19
So in this particular situation,
279
679260
2000
์ง€๊ธˆ ํŠน์ •ํ•œ ์˜ˆ๋ฅผ ๋“ค์–ด๋ณด๋ฉด,
11:21
it's a scan of a living person.
280
681260
2000
์‚ด์•„์žˆ๋Š” ์‚ฌ๋žŒ์„ ์Šค์บ”ํ•˜์—ฌ,
11:23
I have this pen, and I look at the data,
281
683260
3000
์ œ๊ฐ€ ์ดํŽœ์„ ์ด์šฉํ•ด ํ…Œ์ดํ„ฐ๋ฅผ ๋ณด๊ณ  ์žˆ์ฃ .
11:26
and I move the pen towards the head,
282
686260
2000
์ œ๊ฐ€ ํŽœ์„ ์‚ฌ๋žŒ์˜ ๋จธ๋ฆฌ๋กœ ๊ฐ€์ง€๊ณ ๊ฐ€๋ฉด,
11:28
and all of a sudden I feel resistance.
283
688260
2000
๊ฐ‘์ž๊ธฐ ๋”ฑ๋”ฑํ•œ ๊ฒƒ์ด ๋Š๊ปด์ง‘๋‹ˆ๋‹ค.
11:30
So I can feel the skin.
284
690260
2000
๋‹ค์‹œ๋งํ•ด ํ”ผ๋ถ€๋ฅผ ๋Š๋‚„์ˆ˜ ์žˆ์ฃ .
11:32
If I push a little bit harder, I'll go through the skin,
285
692260
2000
์ œ๊ฐ€ ์ข€๋” ์„ธ๊ฒŒ ๋ˆ„๋ฅด๋ฉด ํ”ผ๋ถ€๋ฅผ ํ†ต๊ณผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:34
and I can feel the bone structure inside.
286
694260
3000
๊ทธ๋ฆฌ๊ณ  ์•ˆ์— ์žˆ๋Š” ๋”ฑ๋”ฑํ•œ ๋ผˆ๋ฅผ ๋Š๋‚„์ˆ˜ ์žˆ์ฃ .
11:37
If I push even harder, I'll go through the bone structure,
287
697260
2000
์ข€๋” ์„ธ๊ฒŒ ๋ˆ„๋ฅด๋ฉด ๋ผˆ๋„ ๋šซ์„ ์ˆ˜ ์žˆ์ฃ .
11:39
especially close to the ear where the bone is very soft.
288
699260
3000
๋ผˆ๊ฐ€ ๋งค์šฐ ๋ฌผ๋ ํ•œ ๊ท€๊ทผ์ฒ˜์˜ ๋ผˆ๋“ค์€ ํŠนํžˆ ๋” ๊ทธ๋ ‡์ฃ .
11:42
And then I can feel the brain inside, and this will be the slushy like this.
289
702260
3000
๊ทธ๋ฆฌ๊ณ  ์ „ ๋‡Œ์†์„ ๋Š๋‚„ ์ˆ˜ ์žˆ์ฃ . ์ด๋ ‡๊ฒŒ ๋ญ‰๊ฒŒ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:45
So this is really nice.
290
705260
2000
๊ต‰์žฅํ•˜์ฃ .
11:47
And to take that even further, this is a heart.
291
707260
3000
์ข€ ๋” ๋ณด๋ฉด, ์‹ฌ์žฅ์ด์ฃ .
11:50
And this is also due to these fantastic new scanners,
292
710260
3000
์ด๋Ÿฐ ๊ฒƒ์ด ๊ฐ€๋Šฅํ•œ๊ฒƒ์€ ์ด๋Ÿฐ ๋ฉ‹์ฐ ์Šค์บ๋„ˆ๋“ค ๋•๋ถ„์ž…๋‹ˆ๋‹ค.
11:53
that just in 0.3 seconds,
293
713260
2000
0.3์ดˆ๋ฐ–์— ๊ฑธ๋ฆฌ์ง€ ์•Š์ฃ .
11:55
I can scan the whole heart,
294
715260
2000
์‹ฌ์žฅํ•˜๋‚˜๋ฅผ ์Šค์บ”ํ•˜๋Š”๋ฐ ๋ง์ด์ฃ .
11:57
and I can do that with time resolution.
295
717260
2000
์Šค์บ”์„ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ํ•  ์ˆ˜ ์žˆ์–ด์š”.
11:59
So just looking at this heart,
296
719260
2000
์ง€๊ธˆ ์ด ์‹ฌ์žฅ์„ ๋ณด๊ณ  ์žˆ์ง€๋งŒ,
12:01
I can play back a video here.
297
721260
2000
๋น„๋””์˜ค๋ฅผ ๋’ค๋กœ ๋Œ๋ฆด์ˆ˜ ์žˆ์ฃ .
12:03
And this is Karljohan, one of my graduate students
298
723260
2000
์ด๊ฑด ์ œ ๋Œ€ํ•™์›์ƒ์ค‘์˜ ํ•œ๋ช…์ธ ์นผ์กฐํ•œ์ž…๋‹ˆ๋‹ค.
12:05
who's been working on this project.
299
725260
2000
์ด ํ”„๋กœ์ ํŠธ์— ์ฐธ์—ฌํ•˜๊ณ ์žˆ์ฃ .
12:07
And he's sitting there in front of the Haptic device, the force feedback system,
300
727260
3000
๊ทธ๋Š” ์ด‰๊ฐ ๊ธฐ๊ธฐ ์•ž์— ์•‰์•„์žˆ์Šต๋‹ˆ๋‹ค. ํž˜๋˜๋จน์ž„ ์‹œ์Šคํ…œ์ด์ฃ .
12:10
and he's moving his pen towards the heart,
301
730260
3000
๊ทธ๊ฐ€ ํŒฌ์„ ์‹ฌ์žฅ์ชฝ์œผ๋กœ ๊ฐ€์ง€๊ณ  ๊ฐ€๋ฉด,
12:13
and the heart is now beating in front of him,
302
733260
2000
๊ทธ ์‹ฌ์žฅ์ด ์ง€๊ธˆ๋ถ€ํ„ฐ ๊ทธ ์•ž์—์„œ ๋œ๋‹ˆ๋‹ค.
12:15
so he can see how the heart is beating.
303
735260
2000
์‹ฌ์žฅ์ด ์–ด๋–ป๊ฒŒ ๋›ฐ๋Š”์ง€ ์•Œ์ˆ˜ ์žˆ์ฃ .
12:17
He's taken the pen, and he's moving it towards the heart,
304
737260
2000
ํŒฌ์„ ๋‹ค์‹œ ๋นผ์„œ ์‹ฌ์žฅ์ชฝ์œผ๋กœ ๊ฐ€์ง€๊ณ  ๊ฐ€๋ฉด,
12:19
and he's putting it on the heart,
305
739260
2000
๊ทธ๊ฒƒ์„ ์‹ฌ์žฅ์— ๊ฐ–๋‹ค๋Œ€๋ฉด,
12:21
and then he feels the heartbeats from the real living patient.
306
741260
3000
๊ทธ๋Š” ๊ทธ ์‹ฌ์žฅ์ด ๋›ฐ๋Š” ๊ฒƒ์„ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:24
Then he can examine how the heart is moving.
307
744260
2000
๊ทธ๋Š” ์‹ฌ์žฅ์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ์ฃ .
12:26
He can go inside, push inside of the heart,
308
746260
2000
๊ทธ๋ฆฌ๊ณ  ์‹ฌ์žฅ ์•ˆ์ชฝ์œผ๋กœ ํŒฌ์„ ๋„ฃ์œผ๋ฉด,
12:28
and really feel how the valves are moving.
309
748260
3000
์‹ฌํŒ๋ง‰์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:31
And this, I think, is really the future for heart surgeons.
310
751260
3000
์ œ์ƒ๊ฐ์—๋Š” ๋ฏธ๋ž˜์˜ ์‹ฌ์žฅ์™ธ๊ณผ์—์„œ ์“ฐ์—ฌ์งˆ ๊ฑฐ๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
12:34
I mean it's probably the wet dream for a heart surgeon
311
754260
3000
์•„๋งˆ๋„ ์‹ฌ์žฅ์™ธ๊ณผ์˜์‚ฌ๋“ค์ด ์ •๋ง ๋ฐ”๋ผ๋Š” ๊ฒƒ์ด
12:37
to be able to go inside of the patient's heart
312
757260
3000
ํ™˜์ž์˜ ์‹ฌ์žฅ ์•ˆ์„ ์ง์ ‘ ๋Š๊ปด๋ณด๋Š” ๊ฒƒ์ด๋ง์ด์ฃ .
12:40
before you actually do surgery,
313
760260
2000
์‹ค์ œ๋กœ ์ˆ˜์ˆ ํ•˜๊ธฐ์ „์— ๋ง์ด์˜ˆ์š”.
12:42
and do that with high-quality resolution data.
314
762260
2000
๊ณ ํ•ด์ƒ๋„ ์˜์ƒ์œผ๋กœ ์ด๊ฒƒ์„ ํ•˜๋Š” ๊ฑธ ์›ํ• ๊บผ์˜ˆ์š”.
12:44
So this is really neat.
315
764260
2000
์ •๋ง ๊ต‰์žฅํ•˜์ฃ .
12:47
Now we're going even further into science fiction.
316
767260
3000
๊ณต์ƒ๊ณผํ•™์†Œ์„ค๋งŒํผ์ด๋‚˜ ์•ž์„œ๊ฐ€๊ณ  ์žˆ์ฃ .
12:50
And we heard a little bit about functional MRI.
317
770260
3000
๊ธฐ๋Šฅ์  MRI์— ๋Œ€ํ•ด์„œ ๋ง์”€๋“œ๋ฆฌ๋ฉด,
12:53
Now this is really an interesting project.
318
773260
3000
ํ˜„์žฌ ๊ต‰์žฅํžˆ ํฅ๋ฏธ๋กœ์šด ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
12:56
MRI is using magnetic fields
319
776260
2000
MRI๋Š” ์ž๊ธฐ์žฅ์„ ์ด์šฉํ•˜์ฃ 
12:58
and radio frequencies
320
778260
2000
๋ฐฉ์‚ฌ์„  ์ฃผํŒŒ์ˆ˜์™€ ํ•จ๊ป˜์š”.
13:00
to scan the brain, or any part of the body.
321
780260
3000
๋‡Œ๋‚˜ ๋ชธ์„ ์Šค์บ”ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
13:03
So what we're really getting out of this
322
783260
2000
์ด๊ฒƒ์„ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋Š”
13:05
is information of the structure of the brain,
323
785260
2000
๋‡Œ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ •๋ณด์ฃ .
13:07
but we can also measure the difference
324
787260
2000
ํ•˜์ง€๋งŒ, ๋˜ ๋‹ค๋ฅธ ๊ฒƒ๋“ค์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ,
13:09
in magnetic properties of blood that's oxygenated
325
789260
3000
์‚ฐํ™”๋œ ํ˜ˆ์•ก๊ณผ ๋น„์‚ฐํ™”ํ˜ˆ์•ก์˜ ์ž๊ธฐ์„ฑ์˜ ์ฐจ์ด๋ฅผ
13:12
and blood that's depleted of oxygen.
326
792260
3000
์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:15
That means that it's possible
327
795260
2000
๊ทธ๊ฒƒ์€ ๋‡Œ์˜ ํ™œ๋™์„
13:17
to map out the activity of the brain.
328
797260
2000
์ง€๋„ํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ด์•ผ๊ธฐ์ฃ .
13:19
So this is something that we've been working on.
329
799260
2000
์ด๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ๋“ค์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
13:21
And you just saw Motts the research engineer, there,
330
801260
3000
Motts๋ผ๋Š” ์—ฐ๊ตฌ ๊ธฐ์ˆ ์ž๋ฅผ ๋ณด๊ณ  ๊ณ„์‹ ๋ฐ
13:24
going into the MRI system,
331
804260
2000
MRI์‹œ์Šคํ…œ์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
13:26
and he was wearing goggles.
332
806260
2000
๊ณ ๊ธ€์„ ์“ฐ๊ณ  ์žˆ์ฃ .
13:28
So he could actually see things in the goggles.
333
808260
2000
๊ทธ๋Š” ๊ณ ๊ธ€์„ ํ†ตํ•ด ๋ฌด์–ธ๊ฐ€๋ฅผ ๋ณด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
13:30
So I could present things to him while he's in the scanner.
334
810260
3000
๊ทธ๊ฐ€ ์Šค์บ”ํ•˜๋Š” ๋™์•ˆ ์ €๋Š” ๊ณ ๊ธ€์„ ํ†ตํ•ด ์–ด๋–ค๊ฒƒ๋“ค์„ ๋ณด์—ฌ์ฃผ์ฃ .
13:33
And this is a little bit freaky,
335
813260
2000
์ด๊ฒƒ์ด ์ข€ ๊ดด์ƒํ•˜๊ธด ํ•˜์ฃ .
13:35
because what Motts is seeing is actually this.
336
815260
2000
์‚ฌ์‹ค Motts์€ ์ง€๊ธˆ ์ด๊ฒƒ์„ ๋ณด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
13:37
He's seeing his own brain.
337
817260
3000
๊ทธ ์ž์‹ ์˜ ๋‡Œ๋ฅผ ๋ณด๊ณ  ์žˆ๋Š”๊ฑฐ์ฃ .ใ…ฃ
13:40
So Motts is doing something here,
338
820260
2000
Motts์€ ์—ฌ๊ธฐ์„œ ๋ฌด์—‡์„ ํ•˜๊ณ  ์žˆ๋„ค์š”.
13:42
and probably he is going like this with his right hand,
339
822260
2000
์•„๋งˆ๋„ ๊ทธ๋Š” ์˜ค๋ฅธ์†์œผ๋กœ ์ด๋Ÿฌ๊ณ  ์žˆ๋‚˜๋ด…๋‹ˆ๋‹ค.
13:44
because the left side is activated
340
824260
2000
์ขŒ๋‡Œ๊ฐ€ ํ™œ์„ฑํ•˜ ๋œ๊ฒƒ์„ ๋ณด๊ณ  ์•Œ์ˆ˜ ์žˆ์ฃ .
13:46
on the motor cortex.
341
826260
2000
์ขŒ๋‡Œ์˜ ์šด๋™์˜์—ญ์ด์š”.
13:48
And then he can see that at the same time.
342
828260
2000
๊ทธ๋Š” ์ด๊ฑธ ๊ฐ™์ด ๋ณด๊ณ  ์žˆ์ฃ .
13:50
These visualizations are brand new.
343
830260
2000
์ด๊ฒƒ๋“ค์€ ์ƒˆ๋กœ์šด ์˜์ƒ๊ธฐ๋ฒ•์ด์ฃ .
13:52
And this is something that we've been researching for a little while.
344
832260
3000
์ด๊ฒƒ์€ ์ €ํฌ๊ฐ€ ์–ผ๋งˆ๊ฐ„ ์—ฐ๊ตฌํšŒ ์™”๋˜ ๊ฒƒ์ด์ฃ .
13:55
This is another sequence of Motts' brain.
345
835260
3000
์ด๊ฑด Motts์˜ ๋‹ค๋ฅธ ๋‡Œํ™œ๋™ ํŒจํ„ด์ž…๋‹ˆ๋‹ค.
13:58
And here we asked Motts to calculate backwards from 100.
346
838260
3000
100๋ถ€ํ„ฐ ๊บผ๊พธ๋กœ ๊ณ„์‚ฐํ•˜๋ผ๊ณ  ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
14:01
So he's going "100, 97, 94."
347
841260
2000
๊ทธ๋Š” 100 97. 94 ์ด๋ ‡๊ฒŒ ํ•˜์ฃ .
14:03
And then he's going backwards.
348
843260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Š” ๊บผ๊พธ๋กœ ๊ณ„์‚ฐํ•˜์ฃ .
14:05
And you can see how the little math processor is working up here in his brain
349
845260
3000
์ด๋Ÿฌํ•œ ์ž‘์€ ๊ณ„์‚ฐ์ด ๊ทธ์˜ ๋‡Œ๋ฅผ ์–ผ๋งˆ๋‚˜ ํ™œ์„ฑํ™”์‹œํ‚ค๋Š”์ง€ ๋ณด์ด์‹œ์ฃ .
14:08
and is lighting up the whole brain.
350
848260
2000
๋Œ€๋ถ€๋ถ€์˜ ๋‡Œ๊ฐ€ ํ™œ์„ฑํ™” ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
14:10
Well this is fantastic. We can do this in real time.
351
850260
2000
๊ต‰์žฅํ•˜์ฃ  ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ณผ์ˆ˜ ์žˆ์–ด์š”.
14:12
We can investigate things. We can tell him to do things.
352
852260
2000
๋งŽ์€ ๊ฒƒ๋“ค์„ ์กฐ์‚ฌํ•  ์ˆ˜ ์žˆ์ฃ . ๊ทธ์—๊ฐ€ ๋ญ”๊ฐ€ ํ•ด๋ณด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์ฃ .
14:14
You can also see that his visual cortex
353
854260
2000
๊ทธ์˜ ์‹œ๊ฐ ์˜์—ญ๋„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:16
is activated in the back of the head,
354
856260
2000
๋‡Œ์˜ ๋’ค์ชฝ ์‹œ๊ฐ์˜์—ญ์ด ํ™œ์„ฑํ™”๋ฌ๋„ค์š”.
14:18
because that's where he's seeing, he's seeing his own brain.
355
858260
2000
๊ฑฐ๊ธฐ๊ฐ€ ๊ทธ๊ฐ€ ๋ณด๊ณ  ์žˆ๋Š” ๊ณณ์ด์ฃ  ์ž์‹ ์˜๋‡Œ๋ฅผ ๋ณด๊ณ  ์žˆ์œผ๋‹ˆ๊นŒ์š”.
14:20
And he's also hearing our instructions
356
860260
2000
๊ทธ๋Š” ์ง€์‹œ๋„ ๋“ฃ๊ณ  ์žˆ์ฃ .
14:22
when we tell him to do things.
357
862260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ญ”๊ฐ€ ํ•˜๋ผ๊ณ  ํ• ๋•Œ์š”.
14:24
The signal is really deep inside of the brain as well,
358
864260
2000
๊ทธ ์‹ ํ˜ธ๋Š” ๋‡Œ์† ๊นŠ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:26
and it's shining through,
359
866260
2000
๊ทธ๋ ‡๋‹คํ•ด๋„ ๋น›๋‚˜๊ณ  ์žˆ์ฃ .
14:28
because all of the data is inside this volume.
360
868260
2000
์™œ๋ƒ๋ฉด ๋ชจ๋“  ๋ฐ์ดํ„ฐ๊ฐ€ ์ด ์•ˆ์— ์žˆ์œผ๋‹ˆ๊นŒ์š”.
14:30
And in just a second here you will see --
361
870260
2000
์—ฌ๊ธฐ์„œ ๋ณด์‹œ๋Š”๋ฐ ๋‹จ ๋ช‡์ดˆ๋ฐ–์— ์•ˆ๊ฑธ๋ฆฌ์ฃ 
14:32
okay, here. Motts, now move your left foot.
362
872260
2000
๊ทธ๋ž˜ Motts ์™ผ๋ฐœ์„ ์›€์ง์—ฌ๋ด
14:34
So he's going like this.
363
874260
2000
๊ทธ๋Š” ์ด๋ ‡๊ฒŒ ํ• ๊บผ์˜ˆ์š”.
14:36
For 20 seconds he's going like that,
364
876260
2000
20์ดˆ๋™์•ˆ ์ด๋ ‡๊ฒŒ ํ•  ๊ฒ๋‹ˆ๋‹ค.
14:38
and all of a sudden it lights up up here.
365
878260
2000
๊ทธ๋ฆฌ๊ณ  ๊ฐ‘์ž๊ธฐ ์—ฌ๊ธฐ๊ฐ€ ํ™œ์„ฑํ™”๋˜์ฃ .
14:40
So we've got motor cortex activation up there.
366
880260
2000
์—ฌ๊ธฐ ์šด๋™์˜์—ญ์ด ํ™œ์„ฑํ™”๋˜์ฃ .
14:42
So this is really, really nice,
367
882260
2000
์ง„์งœ ๋ฉ‹์ง€์ฃ .
14:44
and I think this is a great tool.
368
884260
2000
์ „ ์ด๊ฒŒ ๊ต‰์žฅํ•œ ๊ธฐ๊ธฐ๋ผ๊ณ  ์ƒ๊ฐํ•ด์š”.
14:46
And connecting also with the previous talk here,
369
886260
2000
์ œ๊ฐ€ ์•ž์—์„œ ๋ง์”€๋“œ๋ฆฐ๊ฒƒ์ด๋ž‘ ๊ด€๋ จ๋˜์–ด์žˆ์ฃ .
14:48
this is something that we could use as a tool
370
888260
2000
์ด๊ฒƒ์„ ์ด์šฉํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š”
14:50
to really understand
371
890260
2000
์ง„์ •์œผ๋กœ ์‹ ๊ฒฝ๋“ค์ด
14:52
how the neurons are working, how the brain is working,
372
892260
2000
์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€ ๋‡Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ผ์„ ํ•˜๋Š”์ง€
14:54
and we can do this with very, very high visual quality
373
894260
3000
๊ต‰์žฅํ•œ ๊ณ ํ–‰์ƒ๋„์™€ ๋น ๋ฅด๊ฒŒ
14:57
and very fast resolution.
374
897260
3000
์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:00
Now we're also having a bit of fun at the center.
375
900260
2000
๋‹ค๋ฅธ ๊ฒƒ๋“ค๋„ ์„ผํ„ฐ์— ์žˆ์Šต๋‹ˆ๋‹ค.
15:02
So this is a CAT scan -- Computer Aided Tomography.
376
902260
3000
์ด๊ฒƒ์€ CAT ์Šค์บ”์ž…๋‹ˆ๋‹ค. computer adided tomography
15:06
So this is a lion from the local zoo
377
906260
2000
์ด๊ฑด ์ง€์—ญ ๋™๋ฌผ์›์˜ ์‚ฌ์ž์ฃ .
15:08
outside of Norrkoping in Kolmarden, Elsa.
378
908260
3000
์ฝœ๋งˆ๋ด์— ์žˆ๋Š” ๋…ธ์ฝ”ํ•‘ ๋ฐ–์— ๋™๋ฌผ์›์ด์ฃ .
15:11
So she came to the center,
379
911260
2000
์‚ฌ์ž๋Š” ์„ผํ„ฐ์— ์™€์„œ
15:13
and they sedated her
380
913260
2000
์ง„์ •์ œ๋ฅผ ๋งž์ถ”๊ณ 
15:15
and then put her straight into the scanner.
381
915260
2000
์Šค์บ๋„ˆ์— ๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
15:17
And then, of course, I get the whole data set from the lion.
382
917260
3000
์‚ฌ์ž์˜ ๋ชธ์ „์ฒด๋ฅผ ์ดฌ์˜ํ–ˆ์ฃ .
15:20
And I can do very nice images like this.
383
920260
2000
์ด์™€ ๊ฐ™์ด ๊ต‰์žฅํžˆ ์ข‹์€ ์˜์ƒ์„ ๊ฐ€์ง€๊ณ  ์žˆ์ฃ .
15:22
I can peel off the layer of the lion.
384
922260
2000
์‚ฌ์ž๋ฅผ ํ•œ๊ฒน์‹ ๋ฒ—๊ธธ ์ˆ˜ ์žˆ์–ด์š”.
15:24
I can look inside of it.
385
924260
2000
๊ทธ ์•ˆ์ชฝ๋„ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
15:26
And we've been experimenting with this.
386
926260
2000
์ด๊ฑธ๋กœ ์‹คํ—˜์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
15:28
And I think this is a great application
387
928260
2000
์ด๊ฑด ๊ต‰์žฅํ•œ ๊ธฐ๊ธฐ๋ผ๊ณ  ์ƒ๊ฐ๋ฉ๋‹ˆ๋‹ค.
15:30
for the future of this technology,
388
930260
2000
๋ฏธ๋ž˜๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ๋ง์ด์ฃ .
15:32
because there's very little known about the animal anatomy.
389
932260
3000
ํ˜„์žฌ๋Š” ๋™๋ฌผ์˜ ํ•ด๋ถ€ํ•™์  ์ง€์‹์ด ๋งŽ์ด ๋ถ€์กฑํ•˜์ฃ .
15:35
What's known out there for veterinarians is kind of basic information.
390
935260
3000
ํ˜„์žฌ ์•Œ๋ ค์ง„ ๊ฒƒ๋“ค์€ ์ˆ˜์˜์‚ฌ๋“ค์—๊ฒŒ ์•„์ฃผ ๊ธฐ๋ณธ์ ์ธ ๊ฒƒ๋“ค์ด์ฃ .
15:38
We can scan all sorts of things,
391
938260
2000
์ด๋Ÿฐ ๊ฒƒ๋“ค์„ ์Šค์บ” ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:40
all sorts of animals.
392
940260
2000
๋ชจ๋“  ๋™๋ฌผ๋“ค์„์š”.
15:42
The only problem is to fit it into the machine.
393
942260
3000
๋ฌธ์ œ๋Š” ์Šค์บ๋„ˆ์— ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์•ผํ•œ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
15:45
So here's a bear.
394
945260
2000
์—ฌ๊ธฐ ๊ณฐ์ด ์žˆ์ฃ 
15:47
It was kind of hard to get it in.
395
947260
2000
๊ธฐ๊ณ„์— ๋„ฃ๊ธฐ๊ฐ€ ํž˜๋“ค์ฃ .
15:49
And the bear is a cuddly, friendly animal.
396
949260
3000
๊ณฐ์€ ๋ฏธ๋ จํ•˜๋ฉด์„œ ์นœ๊ทผํ•œ ๋™๋ฌผ์ด์ฃ .
15:52
And here it is. Here is the nose of the bear.
397
952260
3000
์—ฌ๊ธฐ๋ณด์‹œ๋ฉด ๊ณฐ์˜ ์ฝ”๊ฐ€ ๋ณด์ด์ฃ .
15:55
And you might want to cuddle this one,
398
955260
3000
์•„๋งˆ ์“ฐ๋‹ค๋“ฌ๊ณ  ์‹ถ์œผ์‹œ๊ฒ ์ฃ .
15:58
until you change the functions and look at this.
399
958260
3000
๊ธฐ๋Šฅ๋ณ€๊ฒฝ์„ ํ•ด์„œ ์ด๋ ‡๊ฒŒ ๋˜๊ธฐ ์ „๊นŒ์ง€๋Š”์š”.
16:01
So be aware of the bear.
400
961260
2000
๊ณฐ์ด๋ผ๋Š”๊ฑธ ๊ธฐ์–ตํ•˜๊ณ  ์žˆ์œผ์„ธ์š”.
16:03
So with that,
401
963260
2000
์—ฌ๊ธฐ ๋ณด์‹œ๋ฉด,
16:05
I'd like to thank all the people
402
965260
2000
์ œ๊ฐ€ ๊ฐ์‚ฌํ•˜๊ณ ์‹ถ์€ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
16:07
who have helped me to generate these images.
403
967260
2000
์ด๋Ÿฐ ์˜์ƒ์„ ๋งŒ๋“œ๋Š”๋ฐ ๋„์›€์„ ์ค€ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
16:09
It's a huge effort that goes into doing this,
404
969260
2000
์ด๋ ‡๊ฒŒ ํ•˜๊ธฐ๊นŒ์ง€๋Š” ๊ต‰์žฅํ•œ ๋…ธ๋ ฅ์ด ๋“ค์—ˆ์ฃ .
16:11
gathering the data and developing the algorithms,
405
971260
3000
๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๊ณ  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์งœ๊ณ 
16:14
writing all the software.
406
974260
2000
์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์งฐ์ฃ .
16:16
So, some very talented people.
407
976260
3000
๋งค์šฐ ๋›ฐ์–ด๋‚œ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
16:19
My motto is always, I only hire people that are smarter than I am
408
979260
3000
์ €์˜ ๋ชจํ† ๋Š” ์ €๋ณด๋‹ค ๋˜‘๋˜‘ํ•œ ์‚ฌ๋žŒ์„ ๊ณ ์šฉํ•˜์ž๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:22
and most of these are smarter than I am.
409
982260
2000
๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ์ด ์ €๋ณด๋‹ค ๋˜‘๋˜‘ํ•˜์ฃ .
16:24
So thank you very much.
410
984260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
16:26
(Applause)
411
986260
4000
๋ฐ•์ˆ˜
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7