Michael Dickinson: How a fly flies

314,060 views ใƒป 2013-02-22

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
I grew up watching Star Trek. I love Star Trek.
1
15805
3532
ื’ื“ืœืชื™ ืขืœ ืฆืคื™ื™ื” ื‘"ืžืœื—ืžืช ื”ื›ื•ื›ื‘ื™ื". ืื ื™ ืื•ื”ื‘ ืืช "ืžืœื—ืžืช ื”ื›ื•ื›ื‘ื™ื".
00:19
Star Trek made me want to see alien creatures,
2
19337
4462
"ืžืœื—ืžืช ื”ื›ื•ื›ื‘ื™ื" ื’ืจืžื” ืœื™ ืœืจืฆื•ืช ืœืจืื•ืช ื™ืฆื•ืจื™ื ื—ื™ื™ื–ืจื™ื™ื,
00:23
creatures from a far-distant world.
3
23799
2303
ื™ืฆื•ืจื™ื ืžืขื•ืœื ื”ืจื—ืง ืžื›ืืŸ.
00:26
But basically, I figured out that I could find
4
26102
2787
ืื‘ืœ ื‘ืขื™ืงืจื•ืŸ, ืžืฆืืชื™ ืฉื™ื›ื•ืœืชื™ ืœืžืฆื•ื
00:28
those alien creatures right on Earth.
5
28889
2977
ื™ืฆื•ืจื™ื ื—ื™ื™ื–ืจื™ื ืžืžืฉ ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ.
00:31
And what I do is I study insects.
6
31866
2653
ื•ืžื” ืฉืื ื™ ืขื•ืฉื”, ืื ื™ ืœื•ืžื“ ืขืœ ื—ืจืงื™ื.
00:34
I'm obsessed with insects, particularly insect flight.
7
34519
3256
ืื ื™ ืื•ื‘ืกืกื™ื‘ื™ ืœื—ืจืงื™ื, ื‘ืžื™ื•ื—ื“ ื˜ื™ืกืช ื—ืจืงื™ื.
00:37
I think the evolution of insect flight is perhaps
8
37775
3141
ืื ื™ ื—ื•ืฉื‘ ืฉื”ืื‘ื•ืœื•ืฆื™ื” ืฉืœ ื˜ื™ืกืช ื—ืจืงื™ื ื”ื™ื ืื•ืœื™
00:40
one of the most important events in the history of life.
9
40916
2742
ืื—ื“ ื”ืื™ืจื•ืขื™ื ื”ื—ืฉื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื”ื—ื™ื™ื.
00:43
Without insects, there'd be no flowering plants.
10
43658
2237
ืœืœื ื—ืจืงื™ื, ืœื ื™ื”ื™ื• ืฆืžื—ื™ื ื‘ืขืœื™ ืคืจื—ื™ื.
00:45
Without flowering plants, there would be no
11
45895
1916
ื‘ืœื™ ืฆืžื—ื™ื ื‘ืขืœื™ ืคืจื—ื™ื, ืœื ื™ื”ื™ื•
00:47
clever, fruit-eating primates giving TED Talks.
12
47811
3137
ืคืจื™ืžื˜ื™ื ื—ื›ืžื™ื ืื•ื›ืœื™ ืคื™ืจื•ืช ืฉืžืขื‘ื™ืจื™ื ืฉื™ื—ื•ืช ื‘TED.
00:50
(Laughter)
13
50948
2300
(ืฆื—ื•ืง)
00:53
Now,
14
53248
1987
ืขื›ืฉื™ื•,
00:55
David and Hidehiko and Ketaki
15
55235
3039
ื“ื•ื“, ื•ื”ื™ื“ื™ืงื™ื• ื•ืงื˜ืืงื™
00:58
gave a very compelling story about
16
58274
3445
ืกื™ืคืจื• ืกื™ืคื•ืจ ืžืื•ื“ ืžืฉื›ื ืข ืื•ื“ื•ืช
01:01
the similarities between fruit flies and humans,
17
61719
2805
ื”ื“ืžื™ื•ืŸ ื‘ื™ืŸ ื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช ืœื‘ื ื™ ืื“ื,
01:04
and there are many similarities,
18
64524
1489
ื•ื™ืฉ ืงื•ื•ื™ ื“ืžื™ื•ืŸ ืจื‘ื™ื,
01:06
and so you might think that if humans are similar to fruit flies,
19
66013
3002
ื•ื›ืš ืืชื ืขืฉื•ื™ื™ื ืœื—ืฉื•ื‘ ืฉืื ื‘ื ื™ ืื“ื ื“ื•ืžื™ื ืœื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช,
01:09
the favorite behavior of a fruit fly might be this, for example --
20
69015
3797
ื”ืคืขื•ืœื” ื”ืื”ื•ื‘ ืฉืœ ื–ื‘ื•ื‘ ืคื™ืจื•ืช ืขืฉื•ื™ ืœื”ื™ื•ืช ื–ื•, ืœื“ื•ื’ืžื”-
01:12
(Laughter)
21
72812
2282
(ืฆื—ื•ืง)
01:15
but in my talk, I don't want to emphasize on the similarities
22
75094
3191
ืืš ื‘ืฉื™ื—ื” ืฉืœื™, ืื™ื ื™ ืจื•ืฆื” ืœื”ื“ื’ื™ืฉ ืืช ืงื•ื•ื™ ื”ื“ืžื™ื•ืŸ
01:18
between humans and fruit flies, but rather the differences,
23
78285
3067
ื‘ื™ืŸ ื‘ื ื™ ืื“ื ืœื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช, ืืœื ื“ื•ื•ืงื ืืช ื”ื”ื‘ื“ืœื™ื,
01:21
and focus on the behaviors that I think fruit flies excel at doing.
24
81352
5287
ื•ืœื”ืชืžืงื“ ืขืœ ื”ื”ืชื ื”ื’ื•ื™ื•ืช ืฉืื ื™ ื—ื•ืฉื‘ ืฉื–ื‘ื•ื‘ื™ ื”ืคื™ืจื•ืช ืžืฆื˜ื™ื™ื ื™ื ื‘ื”ืŸ.
01:26
And so I want to show you a high-speed video sequence
25
86639
2856
ืื– ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ืจืฆืฃ ื•ื™ื“ืื• ืžื”ื™ืจ
01:29
of a fly shot at 7,000 frames per second in infrared lighting,
26
89495
3935
ืฉืœ ืฆื™ืœื•ื ื–ื‘ื•ื‘ ื‘ 7,000 ืžืกื’ืจื•ืช ืœืฉื ื™ื™ื” ื‘ืชืื•ืจืช ืื™ื ืคืจื-ืื“ื•ื,
01:33
and to the right, off-screen, is an electronic looming predator
27
93430
4210
ืžื™ืžื™ืŸ, ืžื—ื•ืฅ ืœืžืกืš, ื–ื”ื• ื˜ื•ืจืฃ ืžืื™ื™ื ืืœืงื˜ืจื•ื ื™
01:37
that is going to go at the fly.
28
97640
1435
ืฉืขื•ืžื“ ืœืชืงื•ืฃ ืืช ื”ื–ื‘ื•ื‘.
01:39
The fly is going to sense this predator.
29
99075
1838
ื”ื–ื‘ื•ื‘ ืขื•ืžื“ ืœื—ื•ืฉ ืืช ื”ื˜ื•ืจืฃ ื”ื–ื”.
01:40
It is going to extend its legs out.
30
100913
2455
ื”ื•ื ื”ื•ืœืš ืœืžืชื•ื— ืืช ื”ืจื’ืœื™ื™ื ืฉืœื• ื”ื—ื•ืฆื”.
01:43
It's going to sashay away
31
103368
1613
ื”ื•ื ื”ื•ืœืš ืœื”ื—ืœื™ืง ืžืฉื
01:44
to live to fly another day.
32
104981
2565
ืœื—ื™ื•ืช ื›ื“ื™ ืœืขื•ืฃ ืขื•ื“ ื™ื•ื.
01:47
Now I have carefully cropped this sequence
33
107546
2362
ืขื›ืฉื™ื• ืื ื™ ื—ืชื›ืชื™ ื‘ื–ื”ื™ืจื•ืช ืืช ื”ืจืฆืฃ ื”ื–ื”
01:49
to be exactly the duration of a human eye blink,
34
109908
3160
ื›ื“ื™ ืฉื™ื”ื™ื” ื‘ื“ื™ื•ืง ื›ืžืฉืš ื–ืžืŸ ืฉืœ ืžืฆืžื•ืฅ ื”ืขื™ืŸ ื”ืื ื•ืฉื™ืช,
01:53
so in the time that it would take you to blink your eye,
35
113068
2834
ื›ืš ืฉื‘ื–ืžืŸ ืฉื™ื™ืงื— ืœื›ื ืœื”ื ื™ื“ ืขืคืขืฃ,
01:55
the fly has seen this looming predator,
36
115902
3265
ื”ื–ื‘ื•ื‘ ืจืื” ืืช ื”ื˜ื•ืจืฃ ื”ืžืื™ื™ื ื”ื–ื”,
01:59
estimated its position, initiated a motor pattern to fly it away,
37
119167
6168
ื”ืขืจื™ืš ืืช ืžื™ืงื•ืžื•, ื™ื–ื ื“ื’ื ืžื•ื˜ื•ืจื™ ื›ื“ื™ ืœื”ื˜ื™ืก ืื•ืชื• ืžืฉื,
02:05
beating its wings at 220 times a second as it does so.
38
125335
4464
ืœื”ื›ื•ืช ื‘ื›ื ืคื™ื• ื‘ืžื”ื™ืจื•ืช ืฉืœ 220 ืคืขืžื™ื ื‘ืฉื ื™ื” ื›ืฉื”ื•ื ืขื•ืฉื” ื–ืืช.
02:09
I think this is a fascinating behavior
39
129799
1973
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื• ื”ืชื ื”ื’ื•ืช ืžืจืชืงืช
02:11
that shows how fast the fly's brain can process information.
40
131772
3921
ืฉืžืจืื” ื›ืžื” ืžื”ืจ ืžื•ื—ื• ืฉืœ ื”ื–ื‘ื•ื‘ ื™ื›ื•ืœ ืœืขื‘ื“ ืžื™ื“ืข.
02:15
Now, flight -- what does it take to fly?
41
135693
2842
ื›ืขืช, ื˜ื™ืกื”--ืžื” ื ื“ืจืฉ ื›ื“ื™ ืœืขื•ืฃ?
02:18
Well, in order to fly, just as in a human aircraft,
42
138535
2864
ื•ื‘ื›ืŸ, ื›ื“ื™ ืœืขื•ืฃ, ื‘ื“ื™ื•ืง ื›ืžื• ื‘ืžื˜ื•ืก,
02:21
you need wings that can generate sufficient aerodynamic forces,
43
141399
2735
ืฆืจื™ืš ื›ื ืคื™ื™ื ืฉื™ื›ื•ืœื•ืช ืœื™ื™ืฆืจ ืžืกืคื™ืง ื›ื•ื—ื•ืช ืื•ื•ื™ืจื•ื“ื™ื ืžื™ื™ื,
02:24
you need an engine sufficient to generate the power required for flight,
44
144134
3546
ืฆืจื™ืš ืžื ื•ืข ืฉื™ืกืคื™ืง ืœื™ื™ืฆืจ ืืช ื”ื”ืกืคืง ื”ื“ืจื•ืฉ ืœื˜ื™ืกื”,
02:27
and you need a controller,
45
147680
1709
ื•ืืชื” ืฆืจื™ืš ื‘ืงืจ,
02:29
and in the first human aircraft, the controller was basically
46
149389
2626
ื•ื‘ืžื˜ื•ืกื™ื ื”ืจืืฉื•ืŸ, ื”ื‘ืงืจ ื”ื™ื” ื‘ืขืฆื
02:32
the brain of Orville and Wilbur sitting in the cockpit.
47
152015
4312
ืžื•ื—ื ืฉืœ ืื•ืจื•ื•ื™ืœ ื•ื•ื™ื™ืœื‘ื•ืจ ืฉื™ื•ืฉื‘ื™ื ื‘ืชื ื”ื˜ื™ื™ืก.
02:36
Now, how does this compare to a fly?
48
156327
2753
ื›ืขืช, ื›ื™ืฆื“ ื ื™ืชืŸ ืœื”ืฉื•ื•ืช ื–ืืช ืœื–ื‘ื•ื‘?
02:39
Well, I spent a lot of my early career trying to figure out
49
159080
3251
ื•ื‘ื›ืŸ, ื‘ื™ืœื™ืชื™ ื”ืจื‘ื” ื–ืžืŸ ื‘ืชื—ื™ืœืช ื”ืงืจื™ื™ืจื” ืฉืœื™, ื‘ื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ
02:42
how insect wings generate enough force to keep the flies in the air.
50
162331
4336
ืื™ืš ื›ื ืคื™ ื—ืจืงื™ื ืžืคื™ืงืŸืช ืžืกืคื™ืง ื›ื•ื— ื›ื“ื™ ืœื”ื—ื–ื™ืง ืืช ื”ื–ื‘ื•ื‘ื™ื ื‘ืื•ื•ื™ืจ.
02:46
And you might have heard how engineers proved
51
166667
1610
ื•ืื•ืœื™ ืฉืžืขืชื ื›ื™ืฆื“ ืžื”ื ื“ืกื™ื ื”ื•ื›ื™ื—ื•
02:48
that bumblebees couldn't fly.
52
168277
2634
ืฉื“ื‘ื•ืจื™ ื”ื‘ื•ืžื‘ื•ืก ืœื ื™ื›ืœื• ืœื˜ื•ืก.
02:50
Well, the problem was in thinking that the insect wings
53
170911
2620
ื•ื‘ื›ืŸ, ื”ื‘ืขื™ื” ื”ื™ืชื” ื‘ื—ืฉื™ื‘ื” ืฉื›ื ืคื™ ื”ื—ืจืง
02:53
function in the way that aircraft wings work. But they don't.
54
173531
3119
ืžืชืคืงื“ื•ืช ื›ืžื• ื›ื ืคื™ ืžื˜ื•ืกื™ื. ืื‘ืœ ื”ืŸ ืœื.
02:56
And we tackle this problem by building giant,
55
176650
2854
ื•ืื ื• ืžืชืžื•ื“ื“ื™ื ืขื ื‘ืขื™ื” ื–ื• ืขืœ-ื™ื“ื™ ื‘ื ื™ื™ืช ื“ื’ืžื™ ื—ืจืงื™ื ืจื•ื‘ื•ื˜ื™ื™ื ืขื ืงื™ื™ื,
02:59
dynamically scaled model robot insects
56
179504
3432
ื‘ืขืœื™ ืงื ื” ืžื™ื“ื” ืžืฉืชื ื” ื‘ืื•ืคืŸ ื“ื™ื ืžื™
03:02
that would flap in giant pools of mineral oil
57
182936
3336
ืฉื™ื“ืฉื“ืฉื• ื‘ื‘ืจื™ื›ื•ืช ืขื ืง ืฉืœ ืฉืžืŸ ืžื™ื ืจืœื™
03:06
where we could study the aerodynamic forces.
58
186272
2274
ืžืงื•ื ืฉื‘ื• ื ื•ื›ืœ ืœืœืžื•ื“ ืืช ื”ื›ื•ื—ื•ืช ื”ืื•ื•ื™ืจื•ื“ื™ื ืžื™ื™ื.
03:08
And it turns out that the insects flap their wings
59
188546
2158
ื•ืžืกืชื‘ืจ ื›ื™ ื—ืจืงื™ื ื˜ื•ืคื—ื™ื ื‘ื›ื ืคื™ื”ื
03:10
in a very clever way, at a very high angle of attack
60
190704
2592
ื‘ืื•ืคืŸ ื—ื›ื ืžืื•ื“, ื‘ื–ื•ื•ื™ืช ื”ืชืงืคื” ื’ื‘ื•ื”ื” ืžืื•ื“
03:13
that creates a structure at the leading edge of the wing,
61
193296
3121
ืฉื™ื•ืฆืจืช ืžื‘ื ื” ื‘ื—ื•ื“ ื”ื—ื ื™ืช ืฉืœ ื”ื›ื ืฃ,
03:16
a little tornado-like structure called a leading edge vortex,
62
196417
3199
ืžื‘ื ื” ืงืฆืช ื“ืžื•ื™ ื˜ื•ืจื ื“ื• ืฉื ืงืจื ืžื•ื‘ื™ืœื™ ืžืขืจื‘ื•ืœืช ืงืฆื”,
03:19
and it's that vortex that actually enables the wings
63
199616
2954
ื•ื–ื• ื”ืžืขืจื‘ื•ืœืช ืฉืžืืคืฉืจืช ืœืžืขืฉื” ืœื›ื ืคื™ื™ื
03:22
to make enough force for the animal to stay in the air.
64
202570
3359
ืœื”ืคื™ืง ืžืกืคื™ืง ื›ื•ื— ืฉืžืืคืฉืจ ืœื‘ืขืœ ื”ื—ื™ื™ื ืœื”ื™ืฉืืจ ื‘ืื•ื•ื™ืจ.
03:25
But the thing that's actually most -- so, what's fascinating
65
205929
2428
ืื‘ืœ ื”ื“ื‘ืจ ืฉืœืžืขืฉื” ื‘ืขื™ืงืจ โ€“ ืื–, ืžื” ืฉืžืจืชืง
03:28
is not so much that the wing has some interesting morphology.
66
208357
2975
ื”ื•ื ืœื ื›ืœ ื›ืš ืฉืœื›ื ืฃ ื™ืฉ ืื™ื–ื•ืฉื”ื™ ืžื•ืจืคื•ืœื•ื’ื™ื” ืžืขื ื™ื™ื ืช.
03:31
What's clever is the way the fly flaps it,
67
211332
3645
ืžื” ืฉื—ื›ื ื”ื•ื ื”ืื•ืคืŸ ืฉื‘ื• ื”ื–ื‘ื•ื‘ ืžื ืคื ืฃ ื‘ื›ื ืคื™ื™ื
03:34
which of course ultimately is controlled by the nervous system,
68
214977
3136
ืžื” ืฉื›ืžื•ื‘ืŸ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ื•ื ื ืฉืœื˜ ืขืœ ื™ื“ื™ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื,
03:38
and this is what enables flies to perform
69
218113
2647
ื•ื–ื” ืžื” ืฉืžืืคืฉืจ ืœื–ื‘ื•ื‘ื™ื ืœื‘ืฆืข
03:40
these remarkable aerial maneuvers.
70
220760
2807
ืชืžืจื•ื ื™ื ืื•ื•ื™ืจื™ื™ื ืžื“ื”ื™ืžื™ื ืืœื” .
03:43
Now, what about the engine?
71
223567
2097
ืขื›ืฉื™ื•, ืžื” ืœื’ื‘ื™ ื”ืžื ื•ืข?
03:45
The engine of the fly is absolutely fascinating.
72
225664
2492
ื”ืžื ื•ืข ืฉืœ ื”ื–ื‘ื•ื‘ ื”ื•ื ื‘ื”ื—ืœื˜ ืžืจืชืง.
03:48
They have two types of flight muscle:
73
228156
1898
ื™ืฉ ืœื”ื ืฉื ื™ ืกื•ื’ื™ื ืฉืœ ืฉืจื™ืจื™ ื˜ื™ืกื”:
03:50
so-called power muscle, which is stretch-activated,
74
230054
2985
ืžื” ืฉื ืงืจื ื›ื•ื— ื”ืฉืจื™ืจ, ืืฉืจ ืžื•ืคืขืœ ืขืœ-ื™ื“ื™ ืžืชื™ื—ื”,
03:53
which means that it activates itself and does not need to be controlled
75
233039
3726
ื›ืœื•ืžืจ ื”ื•ื ืžืคืขื™ืœ ืืช ืขืฆืžื• ื•ืื™ื ื• ืฆืจื™ืš ืœื”ื™ื•ืช ื ืฉืœื˜
03:56
on a contraction-by-contraction basis by the nervous system.
76
236765
3339
ืขืœ ื‘ืกื™ืก ื”ืชื›ื•ื•ืฆื•ืช ืื—ืจ ื”ืชื›ื•ื•ืฆื•ืช ืขืœ ื™ื“ื™ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื.
04:00
It's specialized to generate the enormous power required for flight,
77
240104
4609
ื”ื•ื ื”ืชืžื—ื” ืœื™ื™ืฆืจ ื›ื•ื— ืขืฆื•ื ื”ื“ืจื•ืฉ ืขื‘ื•ืจ ื˜ื™ืกื”,
04:04
and it fills the middle portion of the fly,
78
244713
2079
ื•ืžืžืœื ืืช ื—ืœืงื• ื”ืืžืฆืขื™ ืฉืœ ื”ื–ื‘ื•ื‘,
04:06
so when a fly hits your windshield,
79
246792
1547
ื›ืš ืฉื›ืืฉืจ ื–ื‘ื•ื‘ ืคื•ื’ืข ื‘ืฉืžืฉื” ื”ืงื“ืžื™ืช ืฉืœืš,
04:08
it's basically the power muscle that you're looking at.
80
248339
2406
ื–ื”ื• ื‘ืขืฆื ื›ื•ื— ื”ืฉืจื™ืจ ืฉื‘ื• ืืชื” ืžื‘ื™ื˜.
04:10
But attached to the base of the wing
81
250745
2146
ืื‘ืœ ืžื—ื•ื‘ืจืช ืœื‘ืกื™ืก ื”ื›ื ืฃ
04:12
is a set of little, tiny control muscles
82
252891
2638
ื™ืฉ ืขืจื›ื” ืฉืœ ืฉืจื™ืจื™ ืฉืœื™ื˜ื” ืงื˜ื ื™ื, ื–ืขื™ืจื™ื,
04:15
that are not very powerful at all, but they're very fast,
83
255529
3301
ืฉืื™ื ื ื—ื–ืงื™ื ืžืื•ื“ ื‘ื›ืœืœ, ืื‘ืœ ื”ื ืžืื•ื“ ืžื”ื™ืจื™ื,
04:18
and they're able to reconfigure the hinge of the wing
84
258830
3206
ื•ื”ื ืžืกื•ื’ืœื™ื ืœื”ื’ื“ื™ืจ ืžื—ื“ืฉ ืืช ืžืคืจืง ื”ื›ื ืฃ
04:22
on a stroke-by-stroke basis,
85
262036
1762
ืขืœ ื‘ืกื™ืก ืžื›ื” ืื—ืจ ืžื›ื”,
04:23
and this is what enables the fly to change its wing
86
263798
3142
ื•ื–ื” ืžื” ืžืืคืฉืจ ืœื–ื‘ื•ื‘ ืœืฉื ื•ืช ื”ื›ื ืฃ ืฉืœื•
04:26
and generate the changes in aerodynamic forces
87
266940
2971
ื•ืœื™ืฆื•ืจ ืืช ื”ืฉื™ื ื•ื™ื™ื ื‘ื›ื•ื—ื•ืช ื”ืื•ื•ื™ืจื•ื“ื™ื ืžื™ื™ื
04:29
which change its flight trajectory.
88
269911
2573
ืžื” ืฉืžืฉื ื” ืืช ืžืกืœื•ืœ ื”ื˜ื™ืกื” ืฉืœื•.
04:32
And of course, the role of the nervous system is to control all this.
89
272484
3563
ื•ื›ืžื•ื‘ืŸ, ืชืคืงื™ื“ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ื”ื™ื ืœืคืงื— ืขืœ ื›ืœ ื–ื”.
04:36
So let's look at the controller.
90
276047
1512
ืื– ื‘ื•ืื• ื•ื ืกืชื›ืœ ื‘ื‘ืงืจ.
04:37
Now flies excel in the sorts of sensors
91
277559
2647
ื›ืขืช ื–ื‘ื•ื‘ื™ื ืžืฆื˜ื™ื™ื ื™ื ื‘ืกื•ื’ื™ ื—ื™ื™ืฉื ื™ื
04:40
that they carry to this problem.
92
280206
2284
ืฉื”ื ื ื•ืฉืื™ื ืœืฆื•ืจืš ื‘ืขื™ื” ื–ื•.
04:42
They have antennae that sense odors and detect wind detection.
93
282490
4127
ื™ืฉ ืœื”ื ืื ื˜ื ื” ืฉื—ืฉื” ืจื™ื—ื•ืช, ื•ืžื‘ื—ื™ื ื” ื‘ืื™ืชื•ืจ ื”ืจื•ื—.
04:46
They have a sophisticated eye which is
94
286617
1675
ื™ืฉ ืœื”ื ืขื™ืŸ ืžืชื•ื—ื›ืžืช ืฉื”ื™ื
04:48
the fastest visual system on the planet.
95
288292
2456
ืžืขืจื›ืช ื”ืจืื™ื™ื” ื”ืžื”ื™ืจื” ื‘ื™ื•ืชืจ ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ.
04:50
They have another set of eyes on the top of their head.
96
290748
2036
ื™ืฉ ืœื”ื ืžืขืจื›ืช ืื—ืจืช ืฉืœ ืขื™ื ื™ื™ื ื‘ืงืฆื” ื”ืจืืฉ ืฉืœื”ื.
04:52
We have no idea what they do.
97
292784
2052
ืฉืื™ืŸ ืœื ื• ืžื•ืฉื’ ืžื” ื”ืŸ ืขื•ืฉื•ืช.
04:54
They have sensors on their wing.
98
294836
2954
ื™ืฉ ืœื”ื ื—ื™ื™ืฉื ื™ื ืขืœ ื”ื›ื ืฃ ืฉืœื”ื.
04:57
Their wing is covered with sensors, including sensors
99
297790
3760
ื”ื›ื ืฃ ืฉืœื”ื ืžื›ื•ืกื” ื‘ื—ื™ื™ืฉื ื™ื, ื›ื•ืœืœ ื—ื™ื™ืฉื ื™ื
05:01
that sense deformation of the wing.
100
301550
2046
ืฉื—ืฉื™ื ืขื™ื•ื•ืช ืฉืœ ื”ื›ื ืฃ.
05:03
They can even taste with their wings.
101
303596
2109
ื”ื ื™ื›ื•ืœื™ื ื’ื ืœื˜ืขื•ื ืขื ื›ื ืคื™ื”ื.
05:05
One of the most sophisticated sensors a fly has
102
305705
2555
ืื—ื“ ื”ื—ื™ื™ืฉื ื™ื ื”ืžืชื•ื—ื›ืžื™ื ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื–ื‘ื•ื‘
05:08
is a structure called the halteres.
103
308260
1807
ื”ื•ื ืžื‘ื ื” ืฉื ืงืจื ืžืฉืงื•ืœื•ืช.
05:10
The halteres are actually gyroscopes.
104
310067
1879
ื”ืžืฉืงื•ืœื•ืช ื”ืŸ ืœืžืขืฉื” ื’'ื™ืจื•ืกืงื•ืคื™ื.
05:11
These devices beat back and forth about 200 hertz during flight,
105
311946
4449
ื”ืชืงื ื™ื ืืœื” ืžื›ื™ื ื”ืœื•ืš ื•ืฉื•ื‘ ื‘ืชื“ืจ ืฉืœ ื›- 200 ื”ืจืฅ ื‘ืžื”ืœืš ื”ื˜ื™ืกื”,
05:16
and the animal can use them to sense its body rotation
106
316395
2673
ื•ื”ื—ื™ื” ื™ื›ื•ืœื” ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื—ื•ืฉ ืืช ืจื•ื˜ืฆื™ืช ื”ื’ื•ืฃ ืฉืœื”
05:19
and initiate very, very fast corrective maneuvers.
107
319068
3968
ื•ืœื™ื–ื•ื ืชืžืจื•ื ื™ื ืžืชืงื ื™ื ืžื”ื™ืจื™ื ืžืื•ื“.
05:23
But all of this sensory information has to be processed
108
323036
2329
ืื‘ืœ ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื—ื•ืฉื™ ื”ื–ื” ื™ืฉ ืœืขื‘ื“
05:25
by a brain, and yes, indeed, flies have a brain,
109
325365
3720
ืขืœ-ื™ื“ื™ ื”ืžื•ื—, ื•ืขืœ ื›ืŸ, ืื›ืŸ, ืœื–ื‘ื•ื‘ื™ื ื™ืฉ ืžื•ื—,
05:29
a brain of about 100,000 neurons.
110
329085
3159
ืžื•ื— ืฉืœ ื›-100,000 ื ื•ื™ืจื•ื ื™ื .
05:32
Now several people at this conference
111
332244
2193
ื›ืขืช ืžืกืคืจ ืื ืฉื™ื ื‘ื›ื ืก ื”ื–ื”
05:34
have already suggested that fruit flies could serve neuroscience
112
334437
4808
ื›ื‘ืจ ื”ืฆื™ืขื• ืฉื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช ื™ื›ื•ืœื™ื ืœืฉืžืฉ ื‘ืžื“ืขื™ ื”ืžื•ื—
05:39
because they're a simple model of brain function.
113
339245
3247
ืžืื—ืจ ืฉื”ื ืžื•ื“ืœ ืคืฉื•ื˜ ืฉืœ ืชืคืงื•ื“ ื”ืžื•ื—.
05:42
And the basic punchline of my talk is,
114
342492
2077
ื•ืฉื•ืจืช ื”ืžื—ืฅ ื”ื‘ืกื™ืกื™ืช ืฉืœ ื”ืฉื™ื—ื” ืฉืœื™ ื”ื™ื,
05:44
I'd like to turn that over on its head.
115
344569
2658
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืคื•ืš ื–ืืช ืขืœ ื”ืจืืฉ
05:47
I don't think they're a simple model of anything.
116
347227
2628
ืื ื™ ืœื ื—ื•ืฉื‘ ืฉื”ื ืžื•ื“ืœ ืคืฉื•ื˜ ืฉืœ ืžืฉื”ื•.
05:49
And I think that flies are a great model.
117
349855
2477
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื‘ื•ื‘ื™ื ื”ื ื“ื’ื ืžืฆื•ื™ืŸ.
05:52
They're a great model for flies.
118
352332
2516
ื”ื ื“ื’ื ืžืฆื•ื™ืŸ ืœื–ื‘ื•ื‘ื™ื.
05:54
(Laughter)
119
354848
2481
(ืฆื—ื•ืง)
05:57
And let's explore this notion of simplicity.
120
357329
3003
ื•ื”ื‘ื” ื•ื ื—ืงื•ืจ ืืช ื”ืžื•ืฉื’ ื”ื–ื” ืฉืœ ืคืฉื˜ื•ืช.
06:00
So I think, unfortunately, a lot of neuroscientists,
121
360332
2431
ืื– ืื ื™ ื—ื•ืฉื‘, ืœืžืจื‘ื” ื”ืฆืขืจ, ื”ืจื‘ื” ืžื“ืขื ื™-ืžื•ื—
06:02
we're all somewhat narcissistic.
122
362763
1832
ืื ื—ื ื• ื›ื•ืœื ื• ืงืฆืช ื ืจืงื™ืกื™ืกื˜ื™ื.
06:04
When we think of brain, we of course imagine our own brain.
123
364595
3433
ื›ืืฉืจ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื”ืžื•ื—, ืื ื—ื ื• ื›ืžื•ื‘ืŸ ืžื“ืžื™ื™ื ื™ื ืืช ื”ืžื•ื— ืฉืœื ื•.
06:08
But remember that this kind of brain,
124
368028
1960
ืืš ื™ืฉ ืœื–ื›ื•ืจ ื›ื™ ืกื•ื’ ื–ื” ืฉืœ ืžื•ื—,
06:09
which is much, much smaller
125
369988
1768
ืฉื”ื•ื ื”ืจื‘ื”, ื”ืจื‘ื” ื™ื•ืชืจ ืงื˜ืŸ
06:11
โ€” instead of 100 billion neurons, it has 100,000 neurons โ€”
126
371756
2678
โ€” ื‘ืžืงื•ื 100 ืžื™ืœื™ืืจื“ ื ื•ื™ืจื•ื ื™ื, ื™ืฉ ืœื• 100,000 ื ื•ื™ืจื•ื ื™ื โ€”
06:14
but this is the most common form of brain on the planet
127
374434
2882
ืื‘ืœ ื–ื” ื”ืฆื•ืจื” ื”ื ืคื•ืฆื” ื‘ื™ื•ืชืจ ืฉืœ ืžื•ื— ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ
06:17
and has been for 400 million years.
128
377316
2904
ื›ื‘ืจ ืžื–ื” 400 ืžื™ืœื™ื•ืŸ ืฉื ื™ื.
06:20
And is it fair to say that it's simple?
129
380220
2288
ื•ื”ืื ื–ื” ื”ื•ื’ืŸ ืœื•ืžืจ ืฉื–ื” ืคืฉื•ื˜?
06:22
Well, it's simple in the sense that it has fewer neurons,
130
382508
2095
ื•ื‘ื›ืŸ, ื–ื” ืคืฉื•ื˜ ื‘ืžื•ื‘ืŸ ืฉื™ืฉ ื‘ื• ืคื—ื•ืช ื ื•ื™ืจื•ื ื™ื ,
06:24
but is that a fair metric?
131
384603
1754
ืื‘ืœ ื”ืื ื–ื” ืžื“ื“ ื”ื•ื’ืŸ?
06:26
And I would propose it's not a fair metric.
132
386357
2276
ื•ื”ื™ื™ืชื™ ืžืฆื™ืข ืฉื”ื•ื ืœื ืžื“ื“ ื”ื•ื’ืŸ.
06:28
So let's sort of think about this. I think we have to compare --
133
388633
3100
ืื– ื‘ื•ืื• ื•ื ื—ืฉื•ื‘ ืขืœ ื–ื” ืื™ื›ืฉื”ื•. ืื ื™ ื—ื•ืฉื‘ ืฉืขืœื™ื ื• ืœื”ืฉื•ื•ืช-
06:31
(Laughter) โ€”
134
391733
1559
(ืฆื—ื•ืง) โ€”
06:33
we have to compare the size of the brain
135
393292
5121
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืฉื•ื•ืช ืืช ื”ื’ื•ื“ืœ ืฉืœ ื”ืžื•ื—
06:38
with what the brain can do.
136
398413
2030
ืขื ืžื” ืฉื”ืžื•ื— ื™ื›ื•ืœ ืœืขืฉื•ืช.
06:40
So I propose we have a Trump number,
137
400443
2881
ืื– ืื ื™ ืžืฆื™ืข ืฉื™ืฉ ืœื ื• ืžืกืคืจ ื˜ืจืืžืค,
06:43
and the Trump number is the ratio of this man's
138
403324
2865
ื•ืžืกืคืจ ื˜ืจืืžืค ื”ื•ื ื”ื™ื—ืก ืฉืœ ื”ืจืคืจื˜ื•ืืจ
06:46
behavioral repertoire to the number of neurons in his brain.
139
406189
3679
ื”ื”ืชื ื”ื’ื•ืชื™ ืฉืœ ื”ืื™ืฉ ืœืžืกืคืจ ื”ื ื•ื™ืจื•ื ื™ื ื‘ืžื•ื— ืฉืœื•.
06:49
We'll calculate the Trump number for the fruit fly.
140
409868
2668
ืื ื—ื ื• ื ื—ืฉื‘ ืืช ืžืกืคืจ ื˜ืจืืžืค ืฉืœ ื–ื‘ื•ื‘ ื”ืคื™ืจื•ืช.
06:52
Now, how many people here think the Trump number
141
412536
2684
ืขื›ืฉื™ื•, ื›ืžื” ืื ืฉื™ื ื›ืืŸ ื—ื•ืฉื‘ื™ื ืฉืžืกืคืจ ื˜ืจืืžืค
06:55
is higher for the fruit fly?
142
415220
2489
ื”ื•ื ื’ื‘ื•ื” ื™ื•ืชืจ ืขื‘ื•ืจ ื–ื‘ื•ื‘ ื”ืคื™ืจื•ืช?
06:57
(Applause)
143
417709
2431
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:00
It's a very smart, smart audience.
144
420140
3428
ื–ื”ื• ืงื”ืœ ื—ื›ื ืžืื•ื“, ื—ื›ื.
07:03
Yes, the inequality goes in this direction, or I would posit it.
145
423568
3327
ื›ืŸ, ืื™-ื”ืฉื•ื•ื™ื•ืŸ ื”ื•ืœืš ื‘ื›ื™ื•ื•ืŸ ื–ื”, ืื• ืฉืื ื™ื— ืื•ืชื•.
07:06
Now I realize that it is a little bit absurd
146
426895
2382
ืขื›ืฉื™ื• ืื ื™ ืžื‘ื™ืŸ ืฉื–ื” ืงืฆืช ืžื’ื•ื—ืš
07:09
to compare the behavioral repertoire of a human to a fly.
147
429277
3558
ืœื”ืฉื•ื•ืช ืืช ื”ืจืคืจื˜ื•ืืจ ื”ืชื ื”ื’ื•ืชื™ ืฉืœ ืื“ื ืœื–ื‘ื•ื‘.
07:12
But let's take another animal just as an example. Here's a mouse.
148
432835
4143
ืืš ื‘ื•ืื• ื•ื ื™ืงื— ื—ื™ื” ืื—ืจืช ืจืง ื›ื“ื•ื’ืžื”. ื”ื ื” ืขื›ื‘ืจ.
07:16
A mouse has about 1,000 times as many neurons as a fly.
149
436978
4305
ืœืขื›ื‘ืจ ื™ืฉ ื‘ืขืจืš ืคื™ 1,000 ื™ื•ืชืจ ื ื•ื™ืจื•ื ื™ื ืžืืฉืจ ืœื–ื‘ื•ื‘.
07:21
I used to study mice. When I studied mice,
150
441283
2027
ื ื”ื’ืชื™ ืœื—ืงื•ืจ ืขื›ื‘ืจื™ื. ื›ืืฉืจ ืœืžื“ืชื™ ืขืœ ืขื›ื‘ืจื™ื,
07:23
I used to talk really slowly.
151
443310
2837
ื ื”ื’ืชื™ ืœื“ื‘ืจ ืžืžืฉ ืœืื˜.
07:26
And then something happened when I started to work on flies.
152
446147
2576
ื•ืœืื—ืจ ืžื›ืŸ ืžืฉื”ื• ืงืจื” ื›ืฉื”ืชื—ืœืชื™ ืœืขื‘ื•ื“ ืขืœ ื–ื‘ื•ื‘ื™ื.
07:28
(Laughter)
153
448723
2412
(ืฆื—ื•ืง)
07:31
And I think if you compare the natural history of flies and mice,
154
451135
3460
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืื ืžืฉื•ื•ื™ื ืืช ื”ื”ืกื˜ื•ืจื™ื” ื”ื˜ื‘ืขื™ืช ืฉืœ ื–ื‘ื•ื‘ื™ื ื•ืขื›ื‘ืจื™ื
07:34
it's really comparable. They have to forage for food.
155
454595
3313
ื”ื™ื ื‘ืืžืช ื‘ืจืช ื”ืฉื•ื•ืื”. ื”ื ืฆืจื™ื›ื™ื ืœืชื•ืจ ืื—ืจ ืžื–ื•ืŸ.
07:37
They have to engage in courtship.
156
457908
2447
ื”ื ืฆืจื™ื›ื™ื ืœื—ื–ืจ ืื—ืจ ื‘ื ื™ ื–ื•ื’.
07:40
They have sex. They hide from predators.
157
460355
3471
ื”ื ืขื•ืฉื™ื ืกืงืก. ื”ื ืžืชื—ื‘ืื™ื ืžื˜ื•ืจืคื™ื.
07:43
They do a lot of the similar things.
158
463826
1980
ื”ื ืขื•ืฉื™ื ื”ืจื‘ื” ื“ื‘ืจื™ื ื“ื•ืžื™ื.
07:45
But I would argue that flies do more.
159
465806
1718
ืื‘ืœ ืื ื™ ืื˜ืขืŸ ืฉื–ื‘ื•ื‘ื™ื ืขื•ืฉื™ื ื™ื•ืชืจ.
07:47
So for example, I'm going to show you a sequence,
160
467524
3378
ื›ืš ืœืžืฉืœ, ืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื ืจืฆืฃ,
07:50
and I have to say, some of my funding comes from the military,
161
470902
4205
ื•ืขืœื™ ืœื•ืžืจ, ืฉื—ืœืง ืžื”ืžื™ืžื•ืŸ ืฉืœื™ ืžื’ื™ืข ืžื”ืฆื‘ื,
07:55
so I'm showing this classified sequence
162
475107
2072
ืื– ืื ื™ ืžืฆื™ื’ ืจืฆืฃ ืžืกื•ื•ื’ ื–ื”
07:57
and you cannot discuss it outside of this room. Okay?
163
477179
4093
ื•ืื™ื ื›ื ื™ื›ื•ืœื™ื ืœื“ื•ืŸ ื‘ื• ืžื—ื•ืฅ ืœื—ื“ืจ ื–ื”. ื˜ื•ื‘?
08:01
So I want you to look at the payload
164
481272
1908
ืื– ืื ื™ ืจื•ืฆื” ืœื”ืกืชื›ืœ ืขืœ ื”ืžื˜ืขืŸ
08:03
at the tail of the fruit fly.
165
483180
3026
ืฉื‘ื–ื ื‘ ืฉืœ ื–ื‘ื•ื‘ ื”ืคื™ืจื•ืช.
08:06
Watch it very closely,
166
486206
2101
ืฆืคื• ื‘ื–ื” ื‘ืชืฉื•ืžืช ืœื‘,
08:08
and you'll see why my six-year-old son
167
488307
4297
ื•ืชืจืื• ืœืžื” ื”ื‘ืŸ ืฉืœื™ ื‘ืŸ ื”ืฉืฉ,
08:12
now wants to be a neuroscientist.
168
492604
4729
ืขื›ืฉื™ื• ืจื•ืฆื” ืœื”ื™ื•ืช ืžื“ืขืŸ ืžื•ื—.
08:17
Wait for it.
169
497333
1179
ื”ืžืชื™ื ื•.
08:18
Pshhew.
170
498512
1569
ืคืฉื™ื•.
08:20
So at least you'll admit that if fruit flies are not as clever as mice,
171
500081
3084
ืื– ืœืคื—ื•ืช ืชื•ื“ื• ืฉื–ื‘ื•ื‘ื™ ืคื™ืจื•ืช ืื™ื ื ื—ื›ืžื™ื ื›ืžื• ืขื›ื‘ืจื™ื
08:23
they're at least as clever as pigeons. (Laughter)
172
503165
4916
ื”ื ืœืคื—ื•ืช ื—ื›ืžื™ื ื›ืžื• ื™ื•ื ื™ื. (ืฆื—ื•ืง)
08:28
Now, I want to get across that it's not just a matter of numbers
173
508081
3967
ืขื›ืฉื™ื•, ืื ื™ ืจื•ืฆื” ืœื”ืกื‘ื™ืจ ืฉื–ื” ืœื ืจืง ืขื ื™ื™ืŸ ืฉืœ ืžืกืคืจื™ื
08:32
but also the challenge for a fly to compute
174
512048
2598
ืื‘ืœ ื’ื ื”ืืชื’ืจ ืขื‘ื•ืจ ื”ื–ื‘ื•ื‘ ืœื—ืฉื‘
08:34
everything its brain has to compute with such tiny neurons.
175
514646
2849
ืืช ื›ืœ ืžื” ืฉืžื•ื—ื• ืฆืจื™ืš ืœื—ืฉื‘ ืขื ื ื•ื™ืจื•ื ื™ื ื–ืขื™ืจื™ื ื›ืืœื”.
08:37
So this is a beautiful image of a visual interneuron from a mouse
176
517495
2988
ืื– ื–ื•ื”ื™ ืชืžื•ื ื” ื™ืคื” ืฉืœ ื ื•ื™ืจื•ืŸ ืžื”ืื–ื•ืจ ื”ื—ื–ื•ืชื™ ืฉืœ ืขื›ื‘ืจ
08:40
that came from Jeff Lichtman's lab,
177
520483
2768
ืฉื‘ื ืžืžืขื‘ื“ืช ื’'ืฃ ืœื™ื›ื˜ืžืŸ,
08:43
and you can see the wonderful images of brains
178
523251
3247
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืชืžื•ื ื•ืช ื”ื ื”ื“ืจื•ืช ืฉืœ ืžื•ื—ื•ืช
08:46
that he showed in his talk.
179
526498
3193
ืฉื”ื•ื ื”ืจืื” ื‘ืฉื™ื—ื” ืฉืœื•.
08:49
But up in the corner, in the right corner, you'll see,
180
529691
2368
ืืš ืœืžืขืœื” ื‘ืคื™ื ื”, ื‘ืคื™ื ื” ื”ื™ืžื ื™ืช, ืชืจืื•,
08:52
at the same scale, a visual interneuron from a fly.
181
532059
4112
ื‘ืื•ืชื• ืงื ื” ืžื™ื“ื”, ื ื•ื™ืจื•ืŸ ืžื”ืื–ื•ืจ ื”ื—ื–ื•ืชื™ ืฉืœ ื–ื‘ื•ื‘.
08:56
And I'll expand this up.
182
536171
1841
ื•ืืจื—ื™ื‘ ื–ืืช.
08:58
And it's a beautifully complex neuron.
183
538012
2170
ื•ื–ื” ื ื•ื™ืจื•ืŸ ืžื•ืจื›ื‘ ืœื”ืคืœื™ื.
09:00
It's just very, very tiny, and there's lots of biophysical challenges
184
540182
3485
ื”ื•ื ืคืฉื•ื˜ ืžืื•ื“ ืžืื•ื“ ื–ืขื™ืจ, ื•ื™ืฉ ื”ืžื•ืŸ ืืชื’ืจื™ื ื‘ื™ื•ืคื™ื–ื™ืงืœื™ื™ื
09:03
with trying to compute information with tiny, tiny neurons.
185
543667
3623
ื‘ื ืกื™ื•ืŸ ืœื—ืฉื‘ ืžื™ื“ืข ืขื ื ื•ื™ืจื•ื ื™ื ืงื˜ื ื™ื, ืงื˜ื ื˜ื ื™ื.
09:07
How small can neurons get? Well, look at this interesting insect.
186
547290
3537
ืขื“ ื›ืžื” ืงื˜ื ื™ื ื™ื›ื•ืœื™ื ื ื•ื™ืจื•ื ื™ื ืœื”ื™ื•ืช? ื•ื‘ื›ืŸ, ื”ื‘ื™ื˜ื• ื–ื” ื—ืจืง ืžืขื ื™ื™ืŸ.
09:10
It looks sort of like a fly. It has wings, it has eyes,
187
550827
2212
ื”ื•ื ื ืจืื” ื‘ืขืจืš ื›ืžื• ื–ื‘ื•ื‘. ื™ืฉ ืœื• ื›ื ืคื™ื™ื, ื™ืฉ ืœื• ืขื™ื ื™ื™ื,
09:13
it has antennae, its legs, complicated life history,
188
553039
2799
ื™ืฉ ืœื• ืžืฉื•ืฉื™ื, ื”ืจื’ืœื™ื™ื ืฉืœื•, ืกื™ืคื•ืจ ื—ื™ื™ื ืžืกื•ื‘ืš,
09:15
it's a parasite, it has to fly around and find caterpillars
189
555838
3096
ื–ื”ื• ื˜ืคื™ืœ, ืขืœื™ื• ืœืขื•ืฃ ื•ืœืžืฆื•ื ืชื•ืœืขื™ื
09:18
to parasatize,
190
558934
1382
ืฉื™ืฉืžืฉื• ืœื• ื›ืคื•ื ื“ืงืื™ื,
09:20
but not only is its brain the size of a salt grain,
191
560316
4115
ืื‘ืœ ืœื ืจืง ืฉืžื•ื—ื• ืฉืœื• ื”ื•ื ื‘ื’ื•ื“ืœ ืฉืœ ื’ืจื’ืจ ืžืœื—,
09:24
which is comparable for a fruit fly,
192
564431
1969
ื‘ื“ื•ืžื” ืœื–ื‘ื•ื‘ ืคื™ืจื•ืช,
09:26
it is the size of a salt grain.
193
566400
2926
ื”ื•ื ื‘ื’ื•ื“ืœ ืฉืœ ื’ืจื’ืจ ืžืœื—.
09:29
So here's some other organisms at the similar scale.
194
569326
3635
ืื– ื”ื ื” ื›ืžื” ืื•ืจื’ื ื™ื–ืžื™ื ืื—ืจื™ื ื‘ืงื ื” ืžื™ื“ื” ื“ื•ืžื”.
09:32
This animal is the size of a paramecium and an amoeba,
195
572961
4130
ื‘ืขืœ ื—ื™ื™ื ื–ื” ื”ื•ื ื‘ื’ื•ื“ืœ ืฉืœ ืกื ื“ืœื™ืช ื•ืฉืœ ืืžื‘ื”,
09:37
and it has a brain of 7,000 neurons that's so small --
196
577091
3880
ื•ื™ืฉ ืœื• ืžื•ื— ืฉืœ 7,000 ื ื•ื™ืจื•ื ื™ื ืฉื”ื•ื ื›ืœ ื›ืš ืงื˜ืŸ-
09:40
you know these things called cell bodies you've been hearing about,
197
580971
2456
ืืชื ืžื›ื™ืจื™ื ื“ื‘ืจื™ื ืืœื” ืฉื ืงืจืื™ื ื’ื•ืคื™ ืชื ืฉืžืขืชื ืขืœื™ื”ื
09:43
where the nucleus of the neuron is?
198
583427
1651
ื”ื™ื›ืŸ ืฉื ืžืฆื ื”ื’ืจืขื™ืŸ ืฉืœ ื”ื ื•ื™ืจื•ืŸ?
09:45
This animal gets rid of them because they take up too much space.
199
585078
3460
ื‘ืขืœ ื—ื™ื™ื ื–ื” ื ืคื˜ืจ ืžื”ื ืžืฉื•ื ืฉื”ื ืชื•ืคืกื™ื ืžืงื•ื ืจื‘ ืžื“ื™.
09:48
So this is a session on frontiers in neuroscience.
200
588538
2473
ืื– ื–ื”ื• ืžืคื’ืฉ ืฉืžื“ื‘ืจ ืขืœ ื—ื–ื™ืชื•ืช ื‘ื—ืงืจ ื”ืžื•ื—.
09:51
I would posit that one frontier in neuroscience is to figure out how the brain of that thing works.
201
591011
5360
ืื ื™ ืžืฆื™ื’ ืขืžื“ื” ืฉื˜ื•ืขื ืช ืฉื—ื–ื™ืช ืื—ืช ื‘ื—ืงืจ ื”ืžื•ื— ื”ื™ื ืœื”ื‘ื™ืŸ ืื™ืš ืขื•ื‘ื“ ื”ืžื•ื— ืฉืœ ื”ื“ื‘ืจ ื”ื–ื”.
09:56
But let's think about this. How can you make a small number of neurons do a lot?
202
596371
5633
ืื‘ืœ ื‘ื•ืื• ื•ื ื—ืฉื•ื‘ ืขืœ ื–ื”. ื›ื™ืฆื“ ื ื™ืชืŸ ืœื’ืจื•ื ืœืžืกืคืจ ืงื˜ืŸ ืฉืœ ื ื•ื™ืจื•ื ื™ื ืœืขืฉื•ืช ื”ืจื‘ื”?
10:02
And I think, from an engineering perspective,
203
602004
2522
ื•ืื ื™ ื—ื•ืฉื‘, ืžื ืงื•ื“ืช ืžื‘ื˜ ื”ื ื“ืกื™ืช,
10:04
you think of multiplexing.
204
604526
1729
ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ืจื™ื‘ื•ื‘.
10:06
You can take a hardware and have that hardware
205
606255
2703
ื ื™ืชืŸ ืœืงื—ืช ื—ื•ืžืจื”, ื•ืœื’ืจื•ื ืœื—ื•ืžืจื” ื–ื•
10:08
do different things at different times,
206
608958
1613
ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื ื‘ื–ืžื ื™ื ืฉื•ื ื™ื,
10:10
or have different parts of the hardware doing different things.
207
610571
2995
ืื• ืœื’ืจื•ื ืœื—ืœืงื™ื ืฉื•ื ื™ื ืฉืœ ื”ื—ื•ืžืจื” ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื.
10:13
And these are the two concepts I'd like to explore.
208
613566
3271
ื•ืืœื” ืฉื ื™ ืžื•ืฉื’ื™ื ืฉืื ื™ ืจื•ืฆื” ืœื—ืงื•ืจ.
10:16
And they're not concepts that I've come up with,
209
616837
1658
ื•ื”ื ืื™ื ื ืžื•ืฉื’ื™ื ืฉื”ืžืฆืืชื™,
10:18
but concepts that have been proposed by others in the past.
210
618495
4545
ืืœื ืžื•ืฉื’ื™ื ืฉื”ื•ืฆืขื• ืขืœ-ื™ื“ื™ ืื—ืจื™ื ื‘ืขื‘ืจ.
10:23
And one idea comes from lessons from chewing crabs.
211
623040
3075
ื•ืจืขื™ื•ืŸ ืื—ื“ ืžื’ื™ืข ืžื ืกื™ื•ืŸ ืฉืœ ืœืขื™ืกืช ืกืจื˜ื ื™ื.
10:26
And I don't mean chewing the crabs.
212
626115
1867
ื•ืื ื™ ืœื ืžืชื›ื•ื•ืŸ ืœืœืขื™ืกื” ืฉืœ ืกืจื˜ื ื™ื.
10:27
I grew up in Baltimore, and I chew crabs very, very well.
213
627982
3599
ื’ื“ืœืชื™ ื‘ื‘ื•ืœื˜ื™ืžื•ืจ, ื•ืื ื™ ืœื•ืขืก ืกืจื˜ื ื™ื ืžืื•ื“,ื˜ื•ื‘ ืžืื•ื“.
10:31
But I'm talking about the crabs actually doing the chewing.
214
631581
2857
ืื‘ืœ ืื ื™ ืžื“ื‘ืจ ืขืœ ืกืจื˜ื ื™ื ืฉืžื‘ืฆืขื™ื ืืช ืคืขื•ืœืช ื”ืœืขื™ืกื”.
10:34
Crab chewing is actually really fascinating.
215
634438
2030
ืœืขื™ืกืช ืกืจื˜ื ื™ื ื”ื™ื ืœืžืขืฉื” ื‘ืืžืช ืžืจืชืงืช.
10:36
Crabs have this complicated structure under their carapace
216
636468
3259
ืœืกืจื˜ื ื™ื ื™ืฉ ืžื‘ื ื” ืžื•ืจื›ื‘ ื–ื” ืชื—ืช ื”ืฉืจื™ื•ืŸ ืฉืœื”ื
10:39
called the gastric mill
217
639727
1310
ืฉื ืงืจื ืžื˜ื—ื ื” ืงื™ื‘ืชื™ืช
10:41
that grinds their food in a variety of different ways.
218
641037
2430
ืฉื˜ื•ื—ื ืช ืืช ื”ืžื–ื•ืŸ ื‘ืžื’ื•ื•ืŸ ื“ืจื›ื™ื ืฉื•ื ื•ืช.
10:43
And here's an endoscopic movie of this structure.
219
643467
5259
ื•ื”ื ื” ืกืจื˜ ืื ื“ื•ืกืงื•ืคื™ ืฉืœ ืžื‘ื ื” ื–ื”.
10:48
The amazing thing about this is that it's controlled
220
648726
2560
ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ืœื’ื‘ื™ ื–ื” ื”ื•ื ืฉื”ื•ื ื ืฉืœื˜
10:51
by a really tiny set of neurons, about two dozen neurons
221
651286
3432
ืขืœ-ื™ื“ื™ ืงื‘ื•ืฆื” ืฉืœ ื ื•ื™ืจื•ื ื™ื ืžืžืฉ ื–ืขื™ืจื™ื , ื›ืขืฉืจื™ื ื•ืืจื‘ืขื” ื ื•ื™ืจื•ื ื™ื
10:54
that can produce a vast variety of different motor patterns,
222
654718
4963
ืฉื™ื›ื•ืœื™ื ืœื™ื™ืฆืจ ืžื’ื•ื•ืŸ ืขืฆื•ื ืฉืœ ื“ืคื•ืกื™ื ืžื•ื˜ื•ืจื™ื™ื ืฉื•ื ื™ื,
10:59
and the reason it can do this is that this little tiny ganglion
223
659681
4347
ื•ื”ืกื™ื‘ื” ืœื›ืš ืฉื”ื™ื ื™ื›ื•ืœื” ืœืขืฉื•ืช ืืช ื–ื” ื”ื™ื ืฉืฆื‘ื™ืจ ื–ืขื™ืจ ื–ื”
11:04
in the crab is actually inundated by many, many neuromodulators.
224
664028
4184
ื‘ืกืจื˜ืŸ ืœืžืขืฉื” ืžื•ืฆืฃ ืขืœ-ื™ื“ื™ ืืคื ื ื™ ื ื•ื™ืจื•ื ื™ื ืจื‘ื™ื.
11:08
You heard about neuromodulators earlier.
225
668212
2141
ืฉืžืขืชื ืขืœ ืืคื ื ื™ ื ื•ื™ืจื•ื ื™ื ืงื•ื“ื ืœื›ืŸ.
11:10
There are more neuromodulators
226
670353
2225
ื™ืฉ ื™ื•ืชืจ ืืคื ื ื™ ื ื•ื™ืจื•ื ื™ื
11:12
that alter, that innervate this structure than actually neurons in the structure,
227
672578
5485
ืฉืžืฉื ื™ื, ืฉืžืขืฆื‘ื‘ื™ื ืžื‘ื ื” ื–ื” ืžืืฉืจ ืœืžืขืฉื” ื ื•ื™ืจื•ื ื™ื ื‘ืžื‘ื ื”,
11:18
and they're able to generate a complicated set of patterns.
228
678063
4242
ื•ื”ื ืžืกื•ื’ืœื™ื ืœื”ืคื™ืง ืžืขืจื›ืช ืžืกื•ื‘ื›ืช ืฉืœ ืชื‘ื ื™ื•ืช.
11:22
And this is the work by Eve Marder and her many colleagues
229
682305
3441
ื•ื–ื•ื”ื™ ื”ืขื‘ื•ื“ื” ืฉืœ ืื™ื‘ ืžืจื“ืจ ื•ืขืžื™ืชื™ื” ื”ืจื‘ื™ื
11:25
who've been studying this fascinating system
230
685746
2295
ืฉื›ื‘ืจ ืœืžื“ื• ืืช ื”ืžืขืจื›ืช ื”ืžืจืชืงืช ื”ื–ื•
11:28
that show how a smaller cluster of neurons
231
688041
2152
ืฉืžืจืื” ื›ื™ืฆื“ ืืฉื›ื•ืœ ืงื˜ืŸ ื™ื•ืชืจ ืฉืœ ื ื•ื™ืจื•ื ื™ื
11:30
can do many, many, many things
232
690193
1825
ื™ื›ื•ืœ ืœืขืฉื•ืช ื”ืจื‘ื”, ื”ืจื‘ื”, ื”ืจื‘ื” ื“ื‘ืจื™ื
11:32
because of neuromodulation that can take place on a moment-by-moment basis.
233
692018
4856
ื‘ื’ืœืœ ืืคื ื ื™ ื ื•ื™ืจื•ื ื™ื ืฉื™ื›ื•ืœื™ื ืœืงืจื•ืช ืขืœ ื‘ืกื™ืก ืฉืœ ืจื’ืข ืœืจื’ืข.
11:36
So this is basically multiplexing in time.
234
696874
2439
ืื– ื–ื” ื”ื•ื ื‘ืขืฆื ืจื™ื‘ื•ื‘ ื‘ื–ืžืŸ.
11:39
Imagine a network of neurons with one neuromodulator.
235
699313
2785
ืชืืจื• ืœืขืฆืžื›ื ืจืฉืช ื ื•ื™ืจื•ื ื™ื ืขื ืืคื ืŸ ื ื•ื™ืจื•ื ื™ ืื—ื“.
11:42
You select one set of cells to perform one sort of behavior,
236
702098
3478
ืืชื ื‘ื•ื—ืจื™ื ืžืขืจื›ืช ืื—ืช ืฉืœ ืชืื™ื ื›ื“ื™ ืœื‘ืฆืข ืกื•ื’ ืื—ื“ ืฉืœ ื”ืชื ื”ื’ื•ืช,
11:45
another neuromodulator, another set of cells,
237
705576
2618
ืžืืคื ืŸ ืขืฆื‘ ืื—ืจ, ืงื‘ื•ืฆื” ืื—ืจืช ืฉืœ ืชืื™ื,
11:48
a different pattern, and you can imagine
238
708194
1713
ืชื‘ื ื™ืช ืื—ืจืช, ื•ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ
11:49
you could extrapolate to a very, very complicated system.
239
709907
3878
ืืชื ื™ื›ื•ืœื™ื ืœื’ื“ืœ ืžืขืจื›ืช ืžืื“,ืžืื“ ืžืกื•ื‘ื›ืช..
11:53
Is there any evidence that flies do this?
240
713785
2094
ื”ืื ื™ืฉ ืจืื™ื•ืช ืฉื–ื‘ื•ื‘ื™ื ืขื•ืฉื™ื ืืช ื–ื”?
11:55
Well, for many years in my laboratory and other laboratories around the world,
241
715879
3375
ื•ื‘ื›ืŸ, ื‘ืžืฉืš ืฉื ื™ื ืจื‘ื•ืช ื‘ืžืขื‘ื“ื” ืฉืœื™ ื•ื‘ืžืขื‘ื“ื•ืช ืื—ืจื•ืช ื‘ืจื—ื‘ื™ ื”ืขื•ืœื,
11:59
we've been studying fly behaviors in little flight simulators.
242
719254
2648
ืื ื—ื ื• ืขื•ืกืงื™ื ื‘ืœืžื™ื“ืช ื”ืชื ื”ื’ื•ื™ื•ืช ื‘ืกื™ืžื•ืœื˜ื•ืจื™ื ืชืขื•ืคืชื™ื™ื ืงื˜ื ื™ื.
12:01
You can tether a fly to a little stick.
243
721902
1706
ื ื™ืชืŸ ืœืจืชื•ื ื–ื‘ื•ื‘ ืœืžืงืœ ืงื˜ืŸ.
12:03
You can measure the aerodynamic forces it's creating.
244
723608
2501
ื ื™ืชืŸ ืœืžื“ื•ื“ ืืช ื”ื›ื•ื—ื•ืช ื”ืื•ื•ื™ืจื•ื“ื™ื ืžื™ื™ื ืฉื”ื•ื ื™ื•ืฆืจ.
12:06
You can let the fly play a little video game
245
726109
2546
ื ื™ืชืŸ ืœืชืช ืœื–ื‘ื•ื‘ ืœืฉื—ืง ืžืฉื—ืง ื•ื™ื“ืื• ืงื˜ืŸ
12:08
by letting it fly around in a visual display.
246
728655
3878
ืขืœ-ื™ื“ื™ ื›ืš ืฉืžืืคืฉืจื™ื ืœื• ืœืขื•ืฃ ื‘ืชืฆื•ื’ื” ื—ื–ื•ืชื™ืช.
12:12
So let me show you a little tiny sequence of this.
247
732533
2337
ืื– ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืจืฆืฃ ืงื˜ืŸ ื–ืขื™ืจ ืฉืœ ื–ื”.
12:14
Here's a fly
248
734870
1227
ื”ื ื” ื–ื‘ื•ื‘
12:16
and a large infrared view of the fly in the flight simulator,
249
736097
3437
ื•ืžืจืื” ืื™ื ืคืจื-ืื“ื•ื ื’ื“ื•ืœ ืฉืœ ื”ื–ื‘ื•ื‘ ื‘ืกื™ืžื•ืœื˜ื•ืจ ื˜ื™ืกื”,
12:19
and this is a game the flies love to play.
250
739534
1955
ื•ื–ื” ืžืฉื—ืง ืฉื”ื–ื‘ื•ื‘ื™ื ืื•ื”ื‘ื™ื ืœืฉื—ืง.
12:21
You allow them to steer towards the little stripe,
251
741489
2437
ืžืืคืฉืจื™ื ืœื”ื ืœื ื•ื•ื˜ ืœื›ื™ื•ื•ืŸ ืคืก ืงื˜ืŸ,
12:23
and they'll just steer towards that stripe forever.
252
743926
2825
ื”ื ืคืฉื•ื˜ ื™ื ื•ื•ื˜ื• ืœื›ื™ื•ื•ืŸ ื”ืจืฆื•ืขื” ื”ื–ื• ืœื ืฆื—.
12:26
It's part of their visual guidance system.
253
746751
3558
ื–ื” ื—ืœืง ืžืžืขืจื›ืช ื”ื”ื ื—ื™ื” ื”ื—ื–ื•ืชื™ืช ืฉืœื”ื.
12:30
But very, very recently, it's been possible
254
750309
2345
ืื‘ืœ ืžืื•ื“ ืžืื•ื“ ืœืื—ืจื•ื ื”, ื”ืชืืคืฉืจ
12:32
to modify these sorts of behavioral arenas for physiologies.
255
752654
4940
ืœืฉื ื•ืช ืžื™ื ื™ ื–ื™ืจื•ืช ื”ืชื ื”ื’ื•ืชื™ื•ืช ืืœื• ืœืคื™ืกื™ื•ืœื•ื’ื™ื•ืช.
12:37
So this is the preparation that one of my former post-docs,
256
757594
2488
ืื– ื–ื•ื”ื™ ื”ื”ื›ื ื” ืฉืœ ืื—ื“ ื”ืคื•ืกื˜-ื“ื•ืงื˜ื•ืจื˜ ื”ืงื•ื“ืžื™ื ืฉืœื™,
12:40
Gaby Maimon, who's now at Rockefeller, developed,
257
760082
2443
ื’ื‘ื™ ืžื™ืžื•ืŸ, ืฉื ืžืฆื ื›ืขืช ื‘ืจื•ืงืคืœืจ, ืคื™ืชื—,
12:42
and it's basically a flight simulator
258
762525
1686
ื•ื–ื” ืœืžืขืฉื” ืกื™ืžื•ืœื˜ื•ืจ ื˜ื™ืกื”
12:44
but under conditions where you actually can stick an electrode
259
764211
3075
ืื‘ืœ ื‘ืชื ืื™ื ืฉื ื™ืชืŸ ืœืžืขืฉื” ืœืฉืชื•ืœ ืืœืงื˜ืจื•ื“ื”
12:47
in the brain of the fly and record
260
767286
2264
ื‘ืžื•ื— ื”ื–ื‘ื•ื‘ ื•ืœื”ืงืœื™ื˜
12:49
from a genetically identified neuron in the fly's brain.
261
769550
3656
ืขืœ ืคื™ ื ื•ื™ืจื•ืŸ ืฉืžื–ื•ื”ื” ื’ื ื˜ื™ืช ื‘ืžื•ื—ื• ืฉืœ ื”ื–ื‘ื•ื‘.
12:53
And this is what one of these experiments looks like.
262
773206
2298
ื•ื›ืš ื ืจืื” ืื—ื“ ืžื”ื ื™ืกื•ื™ื™ื ื”ืืœื”.
12:55
It was a sequence taken from another post-doc in the lab,
263
775504
2971
ื–ื” ื”ื™ื” ืจืฆืฃ ืฉื ืœืงื— ืžืคื•ืกื˜-ื“ื•ืงื˜ื•ืจื˜ ืื—ืจ ื‘ืžืขื‘ื“ื”,
12:58
Bettina Schnell.
264
778475
1199
ื‘ื˜ื™ื ื” ืฉื ืœ.
12:59
The green trace at the bottom is the membrane potential
265
779674
3392
ื”ืžืขืงื‘ ื”ื™ืจื•ืง ื‘ืชื—ืชื™ืช ื”ื•ื ืคื•ื˜ื ืฆื™ืืœ ื”ืžืžื‘ืจื ื”
13:03
of a neuron in the fly's brain,
266
783066
2030
ืฉืœ ื ื•ื™ืจื•ืŸ ื‘ืžื•ื— ืฉืœ ื”ื–ื‘ื•ื‘,
13:05
and you'll see the fly start to fly, and the fly is actually
267
785096
2942
ื•ืชืจืื• ืฉื”ื–ื‘ื•ื‘ ืžืชื—ื™ืœ ืœืขื•ืฃ, ื•ื”ื–ื‘ื•ื‘ ืœืžืขืฉื”
13:08
controlling the rotation of that visual pattern itself
268
788038
3279
ืฉื•ืœื˜ ื‘ืกื™ื‘ื•ื‘ ืฉืœ ื”ืชื‘ื ื™ืช ื”ื—ื–ื•ืชื™ืช ืขืฆืžื”
13:11
by its own wing motion,
269
791317
1479
ืขืœ-ื™ื“ื™ ืชื ื•ืขืช ื”ื›ื ืฃ ืฉืœื•,
13:12
and you can see this visual interneuron
270
792796
2110
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืชื ื”ื ื•ื™ืจื•ืŸ ื”ืžืชื•ื•ืš ื”ื—ื–ื•ืชื™ ื”ื–ื”
13:14
respond to the pattern of wing motion as the fly flies.
271
794906
3908
ืžื’ื™ื‘ ืœืชื‘ื ื™ืช ืฉืœ ืชื ื•ืขืช ื”ื›ื ืฃ ื›ืฉื”ื–ื‘ื•ื‘ ืขืฃ.
13:18
So for the first time we've actually been able to record
272
798814
2376
ืื– ื‘ืคืขื ื”ืจืืฉื•ื ื” ืื ื• ืœืžืขืฉื” ื›ื‘ืจ ื”ื™ื™ื ื• ืžืกื•ื’ืœื™ื ืœื”ืงืœื™ื˜
13:21
from neurons in the fly's brain while the fly
273
801190
2908
ืžื ื•ื™ืจื•ื ื™ื ื‘ืžื•ื— ืฉืœ ื”ื–ื‘ื•ื‘ ื‘ืขื•ื“ื•
13:24
is performing sophisticated behaviors such as flight.
274
804098
4468
ืžื‘ืฆืข ื”ืชื ื”ื’ื•ื™ื•ืช ืžืชื•ื—ื›ืžื•ืช ื›ืžื• ื˜ื™ืกื”.
13:28
And one of the lessons we've been learning
275
808566
1855
ืื—ื“ ื”ืœืงื—ื™ื ืฉื›ื‘ืจ ืœืžื“ื ื•
13:30
is that the physiology of cells that we've been studying
276
810421
2420
ื”ื•ื ืฉื”ืคื™ื–ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืชืื™ื ืฉื›ื‘ืจ ืœืžื“ื ื•
13:32
for many years in quiescent flies
277
812841
2421
ื‘ืžืฉืš ืฉื ื™ื ืจื‘ื•ืช ื‘ื–ื‘ื•ื‘ื™ื ื‘ืžื ื•ื—ื”
13:35
is not the same as the physiology of those cells
278
815262
2648
ืื™ื ื• ื–ื”ื” ืœืคื™ื–ื™ื•ืœื•ื’ื™ื” ืฉืœ ืชืื™ื ืืœื”
13:37
when the flies actually engage in active behaviors
279
817910
2736
ื›ืืฉืจ ื”ื–ื‘ื•ื‘ื™ื ืœืžืขืฉื” ืขืกื•ืงื™ื ื‘ื”ืชื ื”ื’ื•ื™ื•ืช ืคืขื™ืœื•ืช
13:40
like flying and walking and so forth.
280
820646
2539
ื›ืžื• ื˜ื™ืกื” ื•ื”ืœื™ื›ื”, ื•ื›ืŸ ื”ืœืื”.
13:43
And why is the physiology different?
281
823185
2925
ื•ืžื”ื™ ื”ืกื™ื‘ื” ืฉื”ืคื™ื–ื™ื•ืœื•ื’ื™ื” ืฉื•ื ื”?
13:46
Well it turns out it's these neuromodulators,
282
826110
2057
ื•ื‘ื›ืŸ ืžืกืชื‘ืจ ืฉืืœื” ื”ื ืืคื ื ื™ ื”ื ื•ื™ืจื•ื ื™ื
13:48
just like the neuromodulators in that little tiny ganglion in the crabs.
283
828167
3951
ื‘ื“ื™ื•ืง ื›ืžื• ืืคื ื ื™ ื”ืขืฆื‘ื™ื ื‘ืฆื‘ื™ืจ ื”ื–ืขื™ืจ ืฉื‘ืกืจื˜ื ื™ื.
13:52
So here's a picture of the octopamine system.
284
832118
2550
ืื– ื”ื ื” ืชืžื•ื ื” ืฉืœ ืžืขืจื›ืช ื”ืื•ืงื˜ื•ืคืžื™ืŸ.
13:54
Octopamine is a neuromodulator
285
834668
1754
ืื•ืงื˜ื•ืคืžื™ืŸ ื”ื•ื ืืคื ืŸ ื ื•ื™ืจื•ื ื™
13:56
that seems to play an important role in flight and other behaviors.
286
836422
4336
ืฉื ืจืื” ืฉื”ื•ื ืžืฉื—ืง ืชืคืงื™ื“ ื—ืฉื•ื‘ ื‘ื˜ื™ืกื” ื•ื‘ื”ืชื ื”ื’ื•ื™ื•ืช ืื—ืจื•ืช.
14:00
But this is just one of many neuromodulators
287
840758
2472
ืื‘ืœ ื–ื” ืจืง ืื—ื“ ืžืชื•ืš ืืคื ื ื™ ื ื•ื™ืจื•ืŸ ืจื‘ื™ื
14:03
that's in the fly's brain.
288
843230
1071
ืฉื‘ืžื•ื—ื• ืฉืœ ื”ื–ื‘ื•ื‘.
14:04
So I really think that, as we learn more,
289
844301
2666
ืื– ืื ื™ ื‘ืืžืช ื—ื•ืฉื‘, ืฉื›ื›ืœ ืฉืื ื• ืœื•ืžื“ื™ื ื™ื•ืชืจ,
14:06
it's going to turn out that the whole fly brain
290
846967
2527
ื™ืœืš ื•ื™ืชื‘ืจืจ ืฉื›ืœ ื”ืžื•ื— ืฉืœ ื”ื–ื‘ื•ื‘
14:09
is just like a large version of this stomatogastric ganglion,
291
849494
3089
ื”ื•ื ื‘ื“ื™ื•ืง ื›ืžื• ื’ืจืกื” ื’ื“ื•ืœื” ืฉืœ ืฆื‘ื™ืจ ืกื˜ื•ืžื˜ื•ื’ืกื˜ืจื™ ื–ื”,
14:12
and that's one of the reasons why it can do so much with so few neurons.
292
852583
4360
ื•ื–ื• ืื—ืช ื”ืกื™ื‘ื•ืช ืžื“ื•ืข ื”ื•ื ื™ื›ื•ืœ ืœืขืฉื•ืช ื›ืœ ื›ืš ื”ืจื‘ื” ืขื ื›ืœ ื›ืš ืžืขื˜ ื ื•ื™ืจื•ื ื™ื.
14:16
Now, another idea, another way of multiplexing
293
856943
2787
ืขื›ืฉื™ื•, ืขื•ื“ ืจืขื™ื•ืŸ, ื“ืจืš ื ื•ืกืคืช ืœืจื™ื‘ื•ื‘
14:19
is multiplexing in space,
294
859730
1656
ื”ื™ื ืจื™ื‘ื•ื‘ ื‘ื—ืœืœ,
14:21
having different parts of a neuron
295
861386
1694
ืฉื™ืฉ ื‘ื• ื—ืœืงื™ื ืฉื•ื ื™ื ืฉืœ ื ื•ื™ืจื•ืŸ
14:23
do different things at the same time.
296
863080
2122
ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื ื‘ืื•ืชื• ื–ืžืŸ.
14:25
So here's two sort of canonical neurons
297
865202
1833
ืื– ื”ื ื” ืกื•ื’ ืฉืœ ืฉื ื™ ื ื•ื™ืจื•ื ื™ื ืงืื ื•ื ื™ื™ื
14:27
from a vertebrate and an invertebrate,
298
867035
2285
ืฉืœ ื‘ืขืœื™ ื—ื•ืœื™ื•ืช, ื•ืฉืœ ื—ืกืจื™ ื—ื•ืœื™ื•ืช,
14:29
a human pyramidal neuron from Ramon y Cajal,
299
869320
3250
ื ื•ื™ืจื•ืŸ ืคื™ืจืžื™ื“ืœื™ ืื ื•ืฉื™ ืžืจืžื•ืŸ ื•ืงื–'ืืœ,
14:32
and another cell to the right, a non-spiking interneuron,
300
872570
4003
ื•ืชื ืื—ืจ ืžื™ืžื™ืŸ, ืชื ืขืฆื‘ ืžืชื•ื•ืš ื‘ืœืชื™ ืžืžืกืžืจ
14:36
and this is the work of Alan Watson and Malcolm Burrows many years ago,
301
876573
4147
ื•ื–ื•ื”ื™ ื”ืขื‘ื•ื“ื” ืฉืœ ื•ื•ื˜ืกื•ืŸ ืืœืŸ ื•ืžืœืงื•ืœื ื‘ื•ืจื•ื•ื– ืžืœืคื ื™ ืฉื ื™ื ืจื‘ื•ืช,
14:40
and Malcolm Burrows came up with a pretty interesting idea
302
880720
3075
ื•ืžืœืงื•ืœื ื‘ื•ืจื•ื– ื‘ื ืขื ืจืขื™ื•ืŸ ืžืขื ื™ื™ืŸ ืœืžื“ื™
14:43
based on the fact that this neuron from a locust
303
883795
2882
ืฉื”ืชื‘ืกืก ืขืœ ื”ืขื•ื‘ื“ื” ืฉื ื•ื™ืจื•ืŸ ื–ื” ืฉืœ ืืจื‘ื”
14:46
does not fire action potentials.
304
886677
1959
ืื™ื ื• ืžืฆื™ืช ืคื•ื˜ื ืฆื™ืืœ ืคืขื•ืœื”.
14:48
It's a non-spiking cell.
305
888636
1748
ื–ื”ื• ืชื ื‘ืœืชื™ ืžืžืกืžืจ.
14:50
So a typical cell, like the neurons in our brain,
306
890384
2780
ืื– ืœืชื ืื•ืคื™ื™ื ื™, ื›ืžื• ื”ื ื•ื™ืจื•ื ื™ื ื‘ืžื•ื—ื ื•,
14:53
has a region called the dendrites that receives input,
307
893164
2752
ื™ืฉ ืื–ื•ืจ ืฉื ืงืจื ื”ื“ื ื“ืจื™ื˜ื™ื ืฉืžืงื‘ืœ ืงืœื˜,
14:55
and that input sums together
308
895916
2589
ื•ืงืœื˜ ื–ื” ืžืกื›ื ื™ื—ื“
14:58
and will produce action potentials
309
898505
2296
ื•ื™ื™ืฆืจ ืคื•ื˜ื ืฆื™ืืœื™ ืคืขื•ืœื”
15:00
that run down the axon and then activate
310
900801
2331
ืฉืจืฆื™ื ืžื˜ื” ื‘ืืงืกื•ืŸ ื•ืœืื—ืจ ืžื›ืŸ ืžืคืขื™ืœื™ื
15:03
all the output regions of the neuron.
311
903132
2296
ืืช ื›ืœ ืื–ื•ืจื™ ื”ืคืœื˜ ืฉืœ ื”ื ื•ื™ืจื•ืŸ.
15:05
But non-spiking neurons are actually quite complicated
312
905428
2876
ืื‘ืœ ื ื•ื™ืจื•ื ื™ื ื‘ืœืชื™ ืžืžื•ืกืžืจื™ื ื”ื™ื ื ืœืžืขืฉื” ืžืกื•ื‘ื›ื™ื ืœืžื“ื™
15:08
because they can have input synapses and output synapses
313
908304
3112
ื›ื™ ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืœื”ื ืกื™ื ืคืกื•ืช ืงืœื˜ ืื• ืกื™ื ืคืกื•ืช ืคืœื˜
15:11
all interdigitated, and there's no single action potential
314
911416
3663
ื›ื•ืœื ืžืฉื•ืœื‘ื™ื ื•ืื™ืŸ ืคื•ื˜ื ืฆื™ืืœ ืฉืœ ืคืขื•ืœื” ื‘ื•ื“ื“ืช
15:15
that drives all the outputs at the same time.
315
915079
3126
ืฉืžื•ื‘ื™ืœ ืืช ื›ืœ ื›ืœ ืชื•ืฆืจื™ ื”ืคืœื˜ ื‘ืื•ืชื• ื–ืžืŸ.
15:18
So there's a possibility that you have computational compartments
316
918205
3907
ืื– ื™ืฉ ืืคืฉืจื•ืช ืฉื™ืฉ ืœื›ื ืชืื™ื ื—ื™ืฉื•ื‘ื™ื™ื
15:22
that allow the different parts of the neuron
317
922112
3978
ืฉืžืืคืฉืจื™ื ืœื—ืœืงื™ื ื”ืฉื•ื ื™ื ืฉืœ ื”ื ื•ื™ืจื•ืŸ
15:26
to do different things at the same time.
318
926090
2560
ืœืขืฉื•ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื ื‘ืื•ืชื• ื–ืžืŸ.
15:28
So these basic concepts of multitasking in time
319
928650
4671
ืื– ืžื•ืฉื’ื™ ื™ืกื•ื“ ืืœื” ืฉืœ ืจื™ื‘ื•ื™ ืžืฉื™ืžื•ืช ื‘ื–ืžืŸ
15:33
and multitasking in space,
320
933321
2361
ื•ืจื™ื‘ื•ื™ ืžืฉื™ืžื•ืช ื‘ื—ืœืœ,
15:35
I think these are things that are true in our brains as well,
321
935682
2832
ืœื“ืขืชื™ ืืœื” ื”ื ื“ื‘ืจื™ื ืฉื”ื ื ื›ื•ื ื™ื ื’ื ื‘ืžื•ื—ื ื•,
15:38
but I think the insects are the true masters of this.
322
938514
2577
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื”ื—ืจืงื™ื ื”ื ื”ืžืืกื˜ืจื™ื ื”ืืžื™ืชื™ื™ื ืฉืœ ื–ื”.
15:41
So I hope you think of insects a little bit differently next time,
323
941091
3116
ืื– ืื ื™ ืžืงื•ื•ื” ืฉืชื—ืฉื‘ื• ืžืขื˜ ืื—ืจืช ืขืœ ื—ืจืงื™ื ื‘ืขืชื™ื“,
15:44
and as I say up here, please think before you swat.
324
944207
2935
ื•ื›ืคื™ ืฉืืžืจืชื™ ื›ืืŸ ืœืžืขืœื”, ื‘ื‘ืงืฉื” ื—ื™ืฉื‘ื• ืœืคื ื™ ืฉืืชื ื—ื•ื‘ื˜ื™ื ื‘ื”ื.
15:47
(Applause)
325
947142
2953
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7