Barry Schuler: An introduction to genomics

72,073 views ใƒป 2009-01-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Oran Tzuman ืžื‘ืงืจ: Uri Yaffe
00:16
What's happening in genomics,
0
16160
2000
ืžื” ืฉืงื•ืจื” ื‘ื’ื ื•ืžื™ืงื”,
00:18
and how this revolution is about to change everything we know
1
18160
5000
ื•ื›ื™ืฆื“ ื”ืžื”ืคื›ื” ื”ื–ื• ืขื•ืžื“ืช ืœืฉื ื•ืช ืืช ื›ืœ ืžื” ืฉืื ื• ื™ื•ื“ืขื™ื
00:23
about the world, life, ourselves, and how we think about them.
2
23160
7000
ืขืœ ื”ืขื•ืœื, ืขืœ ื”ื—ื™ื™ื, ืขืœ ืขืฆืžื ื•, ื•ืขืœ ื”ื“ืจืš ื‘ื” ืื ื• ื—ื•ืฉื‘ื™ื ืขืœื™ื”ื.
00:30
If you saw 2001: A Space Odyssey,
3
30160
3000
ืื ืจืื™ืชื "2001: ืื•ื“ื™ืกืื” ื‘ื—ืœืœ",
00:33
and you heard the boom, boom, boom, boom, and you saw the monolith,
4
33160
4000
ื•ืฉืžืขืชื ืืช ื”ื‘ื•ื, ื‘ื•ื, ื‘ื•ื, ื•ืจืื™ืชื ืืช ื”ืžื•ื ื•ืœื™ืช (ืื‘ืŸ ื’ื“ื•ืœื” ืœืžื˜ืจื•ืช ืคื•ืœื—ืŸ),
00:37
you know, that was Arthur C. Clarke's representation
5
37160
4000
ื–ื” ื”ื™ื” ื”ื™ื™ืฆื•ื’ ืฉืœ ืืจืชื•ืจ ืกื™. ืงืœืืจืง
00:41
that we were at a seminal moment in the evolution of our species.
6
41160
4000
ืฉื”ื™ื™ื ื• ื‘ืจื’ืข ืžื›ืจื™ืข ื‘ืื‘ื•ืœื•ืฆื™ื” ืฉืœ ื”ืžื™ืŸ ืฉืœื ื•.
00:45
In this case, it was picking up bones and creating a tool,
7
45160
4000
ื‘ืžืงืจื” ื”ื”ื•ื, ื–ื” ื”ื™ื” ืœืงื—ืช ืขืฆืžื•ืช ื•ืœื™ืฆื•ืจ ื›ืœื™ื,
00:49
using it as a tool, which meant that apes just, sort of,
8
49160
4000
ื–ืืช ืื•ืžืจืช, ืฉื”ืงื•ืคื™ื
00:53
running around and eating and doing each other
9
53160
2000
ืฉื”ืชืจื•ืฆืฆื• ืœื”ื, ืื›ืœื• ื•ื”ื–ื“ื•ื•ื’ื•
00:55
figured out they can make things if they used a tool.
10
55160
6000
ื”ื‘ื™ื ื• ืฉื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ืื ื™ืฉืชืžืฉื• ื‘ื›ืœื™ื.
01:01
And that moved us to the next level.
11
61160
3000
ื›ืš ื”ืชืงื“ืžื ื• ืœืฉืœื‘ ื”ื‘ื.
01:04
And, you know, we in the last 30 years in particular
12
64160
4000
ื•ื›ืžื• ืฉืืชื ื™ื•ื“ืขื™ื, ื‘ืฉืœื•ืฉื™ื ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื‘ืžื™ื•ื—ื“
01:08
have seen this acceleration in knowledge and technology,
13
68160
4000
ื”ื™ื™ื ื• ืขื“ื™ื ืœืชืื•ืฆื” ื‘ื™ื“ืข ื•ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”,
01:12
and technology has bred more knowledge and given us tools.
14
72160
3000
ื•ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื™ื™ืฆืจื” ืœื ื• ืขื•ื“ ื™ื“ืข ืฉื ืชืŸ ืœื ื• ืขื•ื“ ื›ืœื™ื.
01:15
And we've seen many seminal moments.
15
75160
2000
ื•ืจืื™ื ื• ืจื’ืขื™ื ืžื›ืจื™ืขื™ื ืจื‘ื™ื.
01:17
We've seen the creation of small computers in the '70s and early '80s,
16
77160
4000
ืจืื™ื ื• ืืช ื™ื™ืฆื•ืจ ื”ืžื—ืฉื‘ื™ื ื”ืงื˜ื ื™ื ื‘ืฉื ื•ืช ื”-70 ื•ื”-80,
01:21
and who would have thought back then that every single person
17
81160
3000
ื•ืžื™ ื—ืฉื‘ ืื– ืฉืœื›ืœ ืื—ื“ ื™ื”ื™ื”
01:24
would not have just one computer but probably 20,
18
84160
3000
ืœื ืžื—ืฉื‘ ืื—ื“ ืืœื ืื•ืœื™ 20 ื‘ื‘ื™ืช,
01:27
in your home, and in not just your P.C. but in every device --
19
87160
5000
ื•ื–ื” ืœื ืจืง ื”ืžื—ืฉื‘ ื”ืื™ืฉื™ ืืœื ื‘ื›ืœ ืžื›ืฉื™ืจ-
01:32
in your washing machine, your cell phone.
20
92160
3000
ื‘ืžื›ื•ื ืช ื”ื›ื‘ื™ืกื”, ื‘ื˜ืœืคื•ืŸ ื”ืกืœื•ืœืจื™.
01:35
You're walking around; your car has 12 microprocessors.
21
95160
4000
ื‘ืžื›ื•ื ื™ืช ืฉืœื›ื ื™ืฉื ื 12 ืžื™ืงืจื• ืžืขื‘ื“ื™ื.
01:39
Then we go along and create the Internet
22
99160
2000
ืื– ื”ืžืฉื›ื ื• ื•ื™ืฆืจื ื• ืืช ื”ืื™ื ื˜ืจื ื˜
01:41
and connect the world together; we flatten the world.
23
101160
3000
ืฉื—ื™ื‘ืจ ืืช ื”ืขื•ืœื, ืฉื™ื˜ื—ื ื• ืืช ื”ืขื•ืœื.
01:44
We've seen so much change, and we've given ourselves these tools now --
24
104160
5000
ืจืื™ื ื• ืฉื™ื ื•ื™ื™ื ืจื‘ื™ื ื›ืœ ื›ืš, ื•ื ืชื ื• ืœืขืฆืžื ื• ืืช ื”ื›ืœื™ื ื”ืœืœื•-
01:49
these high-powered tools --
25
109160
2000
ื›ืœื™ื ืจื‘ื™ ืขื•ืฆืžื”-
01:51
that are allowing us to turn the lens inward
26
111160
4000
ืฉืžืืคืฉืจื™ื ืœื ื• ืœื›ื•ื•ืŸ ืืช ื”ืขื“ืฉื” ืคื ื™ืžื”
01:55
into something that is common to all of us, and that is a genome.
27
115160
5000
ืœืžืฉื”ื• ืฉืžืฉื•ืชืฃ ืœื›ื•ืœื ื•, ื”ื’ื ื•ื.
02:00
How's your genome today? Have you thought about it lately?
28
120160
5000
ืื™ืš ื”ื’ื ื•ื ืฉืœื›ื ื”ื™ื•ื? ื—ืฉื‘ืชื ืขืœ ื–ื” ืœืื—ืจื•ื ื”?
02:05
Heard about it, at least? You probably hear about genomes these days.
29
125160
5000
ืœืคื—ื•ืช ืฉืžืขืชื ืขืœ ื–ื”? ื™ื™ืชื›ืŸ ืฉืฉืžืขืชื ืขืœ ื’ื ื•ืžื™ื ื‘ื–ืžืŸ ื”ืื—ืจื•ืŸ.
02:10
I thought I'd take a moment to tell you what a genome is.
30
130160
3000
ื—ืฉื‘ืชื™ ืœืงื—ืช ื“ืงื” ืœืกืคืจ ืœื›ื ืžื”ื• ื”ื’ื ื•ื.
02:13
It's, sort of, like if you ask people,
31
133160
2000
ืื ืืชื ืฉื•ืืœื™ื ืื ืฉื™ื,
02:15
Well, what is a megabyte or megabit? And what is broadband?
32
135160
3000
ืžื”ื• ืžื’ื”ื‘ื™ื™ื˜ ืื• ืžื’ื”ื‘ื™ื˜? ื•ืžื”ื• ืคืก ืจื—ื‘?
02:18
People never want to say, I really don't understand.
33
138160
3000
ืื ืฉื™ื ืืฃ ืคืขื ืœื ืจื•ืฆื™ื ืœื•ืžืจ, ืื ื™ ืœื ื‘ืืžืช ืžื‘ื™ืŸ ืืช ื–ื”.
02:21
So, I will tell you right off of the bat.
34
141160
1000
ืื– ืื•ืžืจ ืœื›ื ื‘ื™ืฉื™ืจื•ืช.
02:22
You've heard of DNA; you probably studied a little bit in biology.
35
142160
4000
ืฉืžืขืชื ืขืœ ื”ื“ื "ื. ืœืžื“ืชื ืงืฆืช ื‘ื™ื•ืœื•ื’ื™ื”.
02:26
A genome is really a description for all of the DNA that is in a living organism.
36
146160
7000
ื”ื’ื ื•ื ื”ื•ื ืชื™ืื•ืจ ื›ืœ ื”ื“ื "ื ื‘ืื•ืจื’ื ื™ื–ื ื”ื—ื™.
02:33
And one thing that is common to all of life is DNA.
37
153160
6000
ื•ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืžืฉื•ืชืคื™ื ืœื›ืœ ื”ื—ื™ื™ื ื”ื•ื ื”ื“ื "ื.
02:39
It doesn't matter whether you're a yeast;
38
159160
2000
ืœื ืžืฉื ื” ืื ื–ื• ืคื˜ืจื™ื”,
02:41
it doesn't matter whether you're a mouse;
39
161160
2000
ืื ื–ื” ืขื›ื‘ืจ,
02:43
doesn't matter whether you're a fly; we all have DNA.
40
163160
4000
ืื ื–ื” ื–ื‘ื•ื‘, ืœื›ื•ืœื ื• ื™ืฉ ื“ื "ื.
02:47
The DNA is organized in words, call them: genes and chromosomes.
41
167160
7000
ื”ื“ื "ื ืžืื•ืจื’ืŸ ื‘ืžื™ืœื™ื, ื ืงืจื ืœื”ื: ื’ื ื™ื ื•ื›ืจื•ืžื•ื–ื•ืžื™ื.
02:54
And when Watson and Crick in the '50s
42
174160
4000
ื•ืื– ื•ื•ื˜ืกื•ืŸ ื•ืงืจื™ืง ื‘ืฉื ื•ืช ื”ื—ืžื™ืฉื™ื
02:58
first decoded this beautiful double helix that we know as the DNA molecule --
43
178160
6000
ืคื™ืฆื—ื• ืœืจืืฉื•ื ื” ืืช ืžื‘ื ื” ื”ืกืœื™ืœ ื”ื›ืคื•ืœ ื”ื™ืคื” ืฉื”ื™ื•ื ืื ื• ืงื•ืจืื™ื ืœื• ืžื•ืœืงื•ืœืช ื”ื“ื "ื.
03:04
very long, complicated molecule --
44
184160
2000
ืžื•ืœืงื•ืœื” ืžืื•ื“ ืืจื•ื›ื” ื•ืžื•ืจื›ื‘ืช.
03:06
we then started on this journey to understand that
45
186160
4000
ืื– ื”ืชื—ืœื ื• ืืช ื”ืžืกืข ืฉืœ ืœื”ื‘ื™ืŸ ืฉื”ื“ื "ื
03:10
inside of that DNA is a language that determines the characteristics, our traits,
46
190160
6000
ื”ื•ื ืฉืคื” ืฉืงื•ื‘ืขืช ืืช ื”ืžืืคื™ื™ื ื™ื ืฉืœื ื•, ื”ืชื›ื•ื ื•ืช ืฉืœื ื•,
03:16
what we inherit, what diseases we may get.
47
196160
3000
ืžื” ืื ื• ื™ื•ืจืฉื™ื ื•ืืœื• ืžื—ืœื•ืช ื™ืชืงืคื• ืื•ืชื ื•.
03:19
We've also along the way discovered that this is a very old molecule,
48
199160
6000
ื‘ื“ืจืš ืžืฆืื ื• ืฉื”ื™ื ืžื•ืœืงื•ืœื” ืžืื•ื“ ืขืชื™ืงื”,
03:25
that all of the DNA in your body has been around forever,
49
205160
6000
ื•ืฉื›ืœ ื”ื“ื "ื ื‘ื’ื•ืฃ ืฉืœื›ื ืงื™ื™ื ื›ื‘ืจ ืชืงื•ืคื” ืขืฆื•ืžื”,
03:31
since the beginning of us, of us as creatures.
50
211160
4000
ืžื”ื”ืชื—ืœื” ืฉืœื ื• ื›ื™ื™ืฆื•ืจื™ื.
03:35
There is a historical archive.
51
215160
2000
ื™ืฉื ื• ืืจื›ื™ื•ืŸ ื”ื™ืกื˜ื•ืจื™.
03:37
Living in your genome is the history of our species,
52
217160
5000
ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื”ืžื™ืŸ ืฉืœื ื• ืฉื•ื›ื ืช ื‘ืชื•ืš ื”ื’ื ื•ื ืฉืœื›ื,
03:42
and you as an individual human being, where you're from,
53
222160
6000
ืืชื” ื›ืื“ื ื™ื—ื™ื“, ืžืื™ืคื” ื‘ืืช,
03:48
going back thousands and thousands and thousands of years,
54
228160
3000
ื•ืื—ื•ืจื” ืืœืคื™ ืฉื ื™ื,
03:51
and that's now starting to be understood.
55
231160
3000
ื•ื–ื” ื”ื™ื•ื ืžืชื—ื™ืœ ืœื”ื™ื•ืช ืžื•ื‘ืŸ.
03:54
But also, the genome is really the instruction manual.
56
234160
5000
ืืš ื‘ื ื•ืกืฃ, ื”ื’ื ื•ื ื”ื•ื ืžื“ืจื™ืš ื”ื•ืจืื•ืช.
03:59
It is the program. It is the code of life.
57
239160
3000
ื”ื•ื ืชื•ื›ื ื™ืช. ื”ืงื•ื“ ืฉืœ ื”ื—ื™ื™ื.
04:02
It is what makes you function;
58
242160
2000
ื”ื•ื ื–ื” ื”ืžืืคืฉืจ ืœื›ื ืœืชืคืงื“,
04:04
it is what makes every organism function.
59
244160
4000
ืฉืžืืคืฉืจ ืœื›ืœ ื™ื™ืฆื•ืจ ื—ื™ ืœืชืคืงื“.
04:08
DNA is a very elegant molecule.
60
248160
3000
ื”ื“ื "ื ื”ื™ื ืžื•ืœืงื•ืœื” ืžืื•ื“ ืืœื’ื ื˜ื™ืช.
04:11
It's long and it's complicated.
61
251160
2000
ื”ื™ื ืืจื•ื›ื” ื•ืžื•ืจื›ื‘ืช.
04:13
Really all you have to know about it is that there's four letters:
62
253160
5000
ื›ืœ ืžื” ืฉืฆืจื™ืš ืœื“ืขืช ืฉื™ืฉื ื ืืจื‘ืข ืื•ืชื™ื•ืช:
04:18
A, T, C, G; they represent the name of a chemical.
63
258160
4000
A, T, C, G ืฉืžื™ื™ืฆื’ื™ื ืืช ืฉืžื•ืช ื”ื›ื™ืžื™ืงืœื™ื.
04:22
And with these four letters, you can create a language:
64
262160
5000
ื•ืขื ืืจื‘ืข ื”ืื•ืชื™ื•ืช ื”ืœืœื• ื ื™ืชืŸ ืœื™ืฆื•ืจ ืฉืคื”:
04:27
a language that can describe anything, and very complicated things.
65
267160
5000
ืฉืคื” ื”ื™ื›ื•ืœื” ืœืชืืจ ื›ืœ ื“ื‘ืจ, ื•ื’ื ื“ื‘ืจื™ื ืžื•ืจื›ื‘ื™ื ืžืื•ื“.
04:32
You know, they are generally put together in pairs,
66
272160
3000
ื”ื ื‘ืื™ื ื‘ื“ืจืš ื›ืœืœ ื‘ื–ื•ื’ื•ืช,
04:35
creating a word or what we call base pairs.
67
275160
3000
ื•ื™ื•ืฆืจื™ื ืžื™ืœื” ืฉืื ื• ืงื•ืจืื™ื ืœื” ื–ื•ื’ ื‘ืกื™ืกื™ื.
04:38
And you would, you know, when you think about it,
68
278160
3000
ื•ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
04:41
four letters, or the representation of four things, makes us work.
69
281160
6000
ืืจื‘ืข ืื•ืชื™ื•ืช, ืื• ื”ื™ื™ืฆื•ื’ ืฉืœ ืืจื‘ืขื” ื“ื‘ืจื™ื, ื’ื•ืจืžื™ื ืœื ื• ืœืคืขื•ืœ.
04:47
And that may not sound very intuitive,
70
287160
3000
ื–ื” ื‘ื˜ื— ืœื ื ืฉืžืข ืžื•ื‘ืŸ ืžืืœื™ื•,
04:50
but let me flip over to something else you know about, and that's computers.
71
290160
4000
ืื‘ืœ ืชืจืฉื• ืœื™ ืœืขื‘ื•ืจ ืœืžืฉื”ื• ืื—ืจ ืฉืืชื ืžื›ื™ืจื™ื, ื”ืžื—ืฉื‘ื™ื.
04:54
Look at this screen here and, you know, you see pictures
72
294160
4000
ืชืกืชื›ืœื• ืขืœ ื”ืžืกืš ื›ืืŸ, ืืชื ืจื•ืื™ื ืชืžื•ื ื•ืช
04:58
and you see words, but really all there are are ones and zeros.
73
298160
4000
ื•ืžื™ืœื™ื, ืืš ื›ืœ ืžื” ืฉื™ืฉ ื‘ืืžืช ื–ื” ืžืกืคืจื™ ืื—ื“ ื•ืืคืก.
05:02
The language of technology is binary;
74
302160
4000
ื”ืฉืคื” ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ื‘ื™ื ืจื™ืช,
05:06
you've probably heard that at some point in time.
75
306160
2000
ื‘ื•ื•ื“ืื™ ืฉืžืขืชื ืขืœ ื›ืš ืžืชื™ืฉื”ื•.
05:08
Everything that happens in digital is converted,
76
308160
4000
ื›ืœ ืžื” ืฉืงื•ืจื” ื‘ืขื•ืœื ื”ื“ื™ื’ื™ื˜ืœื™ ืžื•ืžืจ,
05:12
or a representation, of a one and a zero.
77
312160
3000
ืื• ืžื™ื•ืฆื’ ืขืœ ื™ื“ื™ ืื—ื“ ื•ืืคืก.
05:15
So, when you're listening to iTunes and your favorite music,
78
315160
5000
ืื– ื›ืฉืืชื ืžืื–ื™ื ื™ื ืœืื™ื™ ื˜ื™ื•ื ืก ืื• ืœืžื•ืกื™ืงื” ืฉืœื›ื,
05:20
that's really just a bunch of ones and zeros playing very quickly.
79
320160
3000
ื–ื” ื‘ืขืฆื ืจืง ืื•ืกืฃ ืฉืœ ืื—ื“ื™ื ื•ืืคืกื™ื ืฉืžืชื ื’ื ื™ื ืžืื•ื“ ืžื”ืจ.
05:23
When you're seeing these pictures, it's all ones and zeros,
80
323160
3000
ื›ืฉืืชื ืžืกืชื›ืœื™ื ืขืœ ื”ืชืžื•ื ื•ืช ื”ืœืœื•, ื”ื ื›ื•ืœื ืื—ื“ื™ื ื•ืืคืกื™ื,
05:26
and when you're talking on your telephone, your cell phone,
81
326160
3000
ื•ื›ืฉืืชื ืžื“ื‘ืจื™ื ื‘ืกืœื•ืœืจื™,
05:29
and it's going over the network,
82
329160
2000
ื•ื–ื” ื”ื•ืœืš ื“ืจืš ื”ืจืฉืช,
05:31
your voice is all being turned into ones and zeros and magically whizzed around.
83
331160
4000
ื”ืงื•ืœ ืฉืœื›ื ื›ื•ืœื• ืžื•ืžืจ ืœืื—ื“ื™ื ื•ืืคืกื™ื ื•ื‘ืื•ืคืŸ ืงืกื•ื ื™ื•ืฆืจ ืฆืœื™ืœื™ื.
05:35
And look at all the complex things and wonderful things
84
335160
3000
ืชืจืื• ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืžื•ืจื›ื‘ื™ื ื•ื”ื ืคืœืื™ื
05:38
we've been able to create with just a one and a zero.
85
338160
3000
ืฉื™ื›ื•ืœื ื• ืœื™ืฆื•ืจ ืจืง ืขืœ ื™ื“ื™ ืื—ื“ ื•ืืคืก.
05:41
Well, now you ramp that up to four, and you have a lot of complexity,
86
341160
6000
ืขื›ืฉื™ื• ืชืขืœื• ืืช ื–ื” ืœืืจื‘ืข, ื•ืืชื ืžืงื‘ืœื™ื ืžื•ืจื›ื‘ื•ืช ืจื‘ื”,
05:47
a lot of ways to describe mechanisms.
87
347160
4000
ื•ื“ืจื›ื™ื ืจื‘ื•ืช ืœืชืืจ ืžื ื’ื ื•ื ื™ื.
05:51
So, let's talk about what that means.
88
351160
2000
ืื– ื‘ื•ืื• ื ื“ื‘ืจ ืขืœ ืžื” ื–ื” ืื•ืžืจ.
05:53
So, if you look at a human genome,
89
353160
2000
ืื ืืชื ืžืกืชื›ืœื™ื ืขืœ ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
05:55
they consist of 3.2 billion of these base pairs. That's a lot.
90
355160
6000
ื”ื•ื ืžื›ื™ืœ 3.2 ืžื™ืœื™ืืจื“ ื–ื•ื’ื•ืช ื‘ืกื™ืกื™ื. ื–ื” ื”ืžื•ืŸ.
06:01
And they mix up in all different fashions,
91
361160
2000
ื•ื”ื ืžืขื•ืจื‘ื‘ื™ื ื‘ื›ืœ ืžื™ื ื™ ืฆื•ืจื•ืช,
06:03
and that makes you a human being.
92
363160
3000
ืฉื™ื•ืฆืจื™ื ืืช ื‘ืŸ ื”ืื“ื ืฉืืชื.
06:06
If you convert that to binary, just to give you a little bit of sizing,
93
366160
5000
ืื ืืชื ืžืžื™ืจื™ื ืืช ื–ื” ืœืฉื™ื˜ื” ื‘ื™ื ืืจื™ืช, ืจืง ืœืฆื•ืจืš ืงืฆืช ื”ืฉื•ื•ืื”,
06:11
we're actually smaller than the program Microsoft Office.
94
371160
4000
ื”ืืžืช ืฉืื ื• ืงื˜ื ื™ื ื™ื•ืชืจ ืžืชื•ื›ื ืช ืื•ืคื™ืก ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜.
06:15
It's not really all that much data.
95
375160
4000
ืœื ื›ืœ ื›ืš ื”ืจื‘ื” ื ืชื•ื ื™ื.
06:19
I will also tell you we're at least as buggy.
96
379160
3000
ื–ื” ื’ื ื™ืืžืจ ืœื›ื ืฉื™ืฉ ืœื ื• ื‘ืื’ื™ื ืœืคื—ื•ืช ื›ืžื• ืœืชื•ื›ื ื”.
06:22
(Laughter)
97
382160
3000
(ืฆื—ื•ืง)
06:25
This here is a bug in my genome
98
385160
4000
ื”ื ื” ื‘ืื’ ื‘ื’ื ื•ื ืฉืœื™
06:29
that I have struggled with for a long, long time.
99
389160
5000
ืฉื ืื‘ืงืชื™ ื‘ื• ื–ืžืŸ ืจื‘.
06:34
When you get sick, it is a bug in your genome.
100
394160
5000
ื›ืฉืืชื ื—ื•ืœื™ื, ื–ื”ื• ื‘ืื’ ื‘ื’ื ื•ื ืฉืœื›ื.
06:39
In fact, many, many diseases we have struggled with for a long time,
101
399160
5000
ืœืžืขืฉื”, ื”ืžื•ืŸ ืžื—ืœื•ืช ืฉื ืื‘ืงื ื• ื‘ื”ื ื–ืžืŸ ืจื‘,
06:44
like cancer, we haven't been able to cure
102
404160
3000
ื›ืžื• ืกืจื˜ืŸ, ืœื ื”ืฆืœื—ื ื• ืœืจืคื
06:47
because we just don't understand how it works at the genomic level.
103
407160
4000
ื›ื™ ืœื ื”ืฆืœื—ื ื• ืœื”ื‘ื™ืŸ ืื™ืš ื”ื ืขื•ื‘ื“ื™ื ื‘ืจืžื” ื”ื’ื ื•ืžื™ืช.
06:51
We are starting to understand that.
104
411160
2000
ืื ื• ืžืชื—ื™ืœื™ื ืœื”ื‘ื™ืŸ ื–ืืช.
06:53
So, up to this point we tried to fix it
105
413160
2000
ืื– ืขื“ ื”ื™ื•ื ื ื™ืกื™ื ื• ืœืชืงืŸ ืืช ื–ื”
06:55
by using what I call shit-against-the-wall pharmacology,
106
415160
4000
ืขืœ ื™ื“ื™ ืฉื™ื˜ื” ืคืจืžืงื•ืœื•ื’ื™ืช ืฉืœ "ื–ืจื•ืง ื”ื›ืœ ืขืœ ื”ืงื™ืจ",
06:59
which means, well, let's just throw chemicals at it,
107
419160
3000
ืฉืื•ืžืจืช, ื‘ื•ืื• ื ื–ืจื•ืง ืขืœ ื–ื” ื›ื™ืžื™ืงืœื™ื,
07:02
and maybe it's going to make it work.
108
422160
2000
ื•ืื•ืœื™ ื ื’ืจื•ื ืœื–ื” ืœืขื‘ื•ื“.
07:04
But if you really understand why does a cell go from normal cell to cancer?
109
424160
7000
ืืš ืื ืืชื ื‘ืืžืช ืžื‘ื™ื ื™ื, ืžื“ื•ืข ืชื ื ื•ืจืžืœื™ ื™ื”ืคื•ืš ืœืชื ืกืจื˜ื ื™?
07:11
What is the code?
110
431160
2000
ืžื”ื• ื”ืงื•ื“?
07:13
What are the exact instructions that are making it do that?
111
433160
4000
ืžื”ืŸ ื”ื”ื•ืจืื•ืช ื”ืžื“ื•ื™ืงื•ืช ืฉื’ื•ืจืžื•ืช ืœื• ืœืขืฉื•ืช ืืช ื–ื”?
07:17
then you can go about the process of trying to fix it and figure it out.
112
437160
4000
ืื– ื ื™ืชืŸ ืœืขื‘ื•ืจ ืขืœ ื”ืชื”ืœื™ืš ื•ืœื ืกื•ืช ืœืชืงืŸ ื•ืœืคืฆื— ืืช ื–ื”.
07:21
So, for your next dinner over a great bottle of wine, here's a few factoids for you.
113
441160
5000
ืื– ื‘ืฉื‘ื™ืœ ืืจื•ื—ืช ื”ืขืจื‘ ื”ื‘ืื” ืฉืœื›ื, ื”ื ื” ื›ืžื” ืขื•ื‘ื“ื•ืช ื‘ืฉื‘ื™ืœื›ื.
07:26
We actually have about 24,000 genes that do things.
114
446160
4000
ื™ืฉ ืœื ื• ืžืฉื”ื• ื›ืžื• 24,000 ื’ื ื™ื ืฉืžืชืคืงื“ื™ื.
07:30
We have about a hundred, 120,000 others
115
450160
4000
ื™ืฉ ืœื ื• ืžืฉื”ื• ื›ืžื• 100,000-120,000 ืื—ืจื™ื
07:34
that don't appear to function every day,
116
454160
3000
ืืš ืœื ื ืจืื” ืฉื”ื ืžืชืคืงื“ื™ื ื‘ื™ื•ืžื™ื•ื,
07:37
but represent this archival history of how we used to work as a species
117
457160
5000
ืืš ื”ื ืžื™ื™ืฆื’ื™ื ืืช ืื•ืชื• ืืจื›ื™ื•ืŸ ื”ื™ืกื˜ื•ืจื™ ืฉืœ ืื™ืš ืชื™ืคืงื“ื ื• ื›ืžื™ืŸ
07:42
going back tens of thousands of years.
118
462160
3000
ื‘ืžืฉืš ืขืฉืจื•ืช ืืœืคื™ ืฉื ื™ื.
07:45
You might also be interested in knowing
119
465160
2000
ื‘ื•ื•ื“ืื™ ืชืชืขื ื™ื™ื ื• ืœื“ืขืช
07:47
that a mouse has about the same amount of genes.
120
467160
2000
ืฉืœืขื›ื‘ืจ ื™ืฉ ื‘ืขืจืš ืืช ืื•ืชื• ืžืกืคืจ ื’ื ื™ื.
07:49
They recently sequenced Pinot Noir, and it also has about 30,000 genes,
121
469160
7000
ืœืื—ืจื•ื ื” ืžื™ืคื• ืืช ืขื™ื ื‘ื™ ื”ืคื™ื ื• ื ื•ืืจ, ื•ื’ื ืœื”ื ื™ืฉ ื‘ืขืจืš 30,000 ื’ื ื™ื,
07:56
so the number of genes you have may not necessarily represent the complexity
122
476160
4000
ืื– ื›ืžื•ืช ื”ื’ื ื™ื ืœื ื‘ื”ื›ืจื— ืžื™ื™ืฆื’ืช ืžื•ืจื›ื‘ื•ืช
08:00
or the evolutionary order of any particular species.
123
480160
5000
ืื• ืืช ื”ืกื“ืจ ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ืฉืœ ืžื™ื ื™ื ืžืกื•ื™ื™ืžื™ื.
08:05
Now, look around: just look next to your neighbor,
124
485160
3000
ืขื›ืฉื™ื•, ืชืกืชื›ืœื• ืžืกื‘ื™ื‘ื›ื, ืขืœ ื”ืฉื›ืŸ ืœื™ื“ื›ื,
08:08
look forward, look backward. We all look pretty different.
125
488160
2000
ืžืœืคื ื™ื›ื ื•ืžืื—ื•ืจื™ื›ื. ื›ื•ืœื ื• ื ืจืื™ื ื“ื™ ืฉื•ื ื™ื.
08:10
A lot of very handsome and pretty people here, skinny, chubby,
126
490160
4000
ื”ืžื•ืŸ ืื ืฉื™ื ื™ืคื™ื ื›ืืŸ, ืจื–ื™ื, ืฉืžื ื™ื,
08:14
different races, cultures. We are all 99.9% genetically equal.
127
494160
8000
ื’ื–ืขื™ื ืฉื•ื ื™ื, ืชืจื‘ื•ื™ื•ืช. ื›ื•ืœื ื• 99.9% ื–ื”ื™ื ื’ื ื˜ื™ืช.
08:22
It is one one-hundredth of one percent of genetic material
128
502160
4000
ื–ื•ื”ื™ ืžืื™ืช ื”ืื—ื•ื– ืฉืœ ื”ื—ื•ืžืจ ื”ื’ื ื˜ื™
08:26
that makes the difference between any one of us.
129
506160
3000
ืฉืขื•ืฉื” ืืช ื”ื”ื‘ื“ืœ ื‘ื™ื ื ื•.
08:29
That's a tiny amount of material,
130
509160
2000
ื›ืžื•ืช ืžืื•ื“ ืงื˜ื ื” ืฉืœ ื—ื•ืžืจ,
08:31
but the way that ultimately expresses itself
131
511160
4000
ืืš ื”ื“ืจืš ืฉื‘ื” ื”ื™ื ืžืชื‘ื˜ืืช
08:35
is what makes changes in humans and in all species.
132
515160
5000
ื”ื™ื ื–ื• ืฉื™ื•ืฆืจืช ืฉื•ื ื•ืช ืืฆืœ ื‘ื ื™ ืื“ื ื•ืืฆืœ ืžื™ื ื™ื ืื—ืจื™ื.
08:40
So, we are now able to read genomes.
133
520160
3000
ืื– ื›ืขืช ืื ื• ื™ื›ื•ืœื™ื ืœืงืจื•ื ื’ื ื•ืžื™ื.
08:43
The first human genome took 10 years, three billion dollars.
134
523160
5000
ืืช ื’ื ื•ื ื”ืื ื•ืฉื™ ื”ืจืืฉื•ืŸ ืœืงื— ืขืฉืจ ืฉื ื™ื ื•-3 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ.
08:48
It was done by Dr. Craig Venter.
135
528160
3000
ื–ื” ื ืขืฉื” ืขืœ ื™ื“ื™ ื“"ืจ ืงืจื™ื™ื’ ื•ื ื˜ืจ.
08:51
And then James Watson's -- one of the co-founders of DNA --
136
531160
4000
ื•ืื– ื’'ื™ื™ืžืก ื•ื•ื˜ืกื•ืŸ - ืื—ื“ ืžืžื’ืœื™ ื”ื“ื "ื-
08:55
genome was done for two million dollars, and in just two months.
137
535160
4000
ืžื™ืคื” ื’ื ื•ื ื‘-2 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ ื‘ื—ื•ื“ืฉื™ื™ื ื‘ืœื‘ื“.
08:59
And if you think about the computer industry
138
539160
2000
ื•ืื ื—ื•ืฉื‘ื™ื ืขืœ ืชืขืฉื™ื™ืช ื”ืžื—ืฉื‘ื™ื
09:01
and how we've gone from big computers to little ones
139
541160
3000
ื•ืขืœ ืื™ืš ืขื‘ืจื ื• ืžืžื—ืฉื‘ื™ื ื’ื“ื•ืœื™ื ืœืงื˜ื ื™ื
09:04
and how they get more powerful and faster all the time,
140
544160
4000
ื•ืื™ืš ื”ื ื ืขืฉื™ื ื—ื–ืงื™ื ื•ืžื”ื™ืจื™ื ื™ื•ืชืจ ื›ืœ ื”ื–ืžืŸ,
09:08
the same thing is happening with gene sequencing now:
141
548160
2000
ืื•ืชื• ื”ื“ื‘ืจ ื ืขืฉื” ื‘ืžื™ืคื•ื™ ื”ื’ื ื˜ื™ ืขื›ืฉื™ื•:
09:10
we are on the cusp of being able to sequence human genomes
142
550160
4000
ืื ื• ืขืœ ื”ื’ื‘ื•ืœ ืฉืœ ื”ื™ื›ื•ืœืช ืœืžืคื•ืช ื’ื ื•ื ืื ื•ืฉื™
09:14
for about 5,000 dollars in about an hour or a half-hour;
143
554160
5000
ื‘ื—ืžืฉืช ืืœืคื™ื ื“ื•ืœืจ ื‘ืฉืขื” ืื• ื—ืฆื™ ืฉืขื”.
09:19
you will see that happen in the next five years.
144
559160
2000
ื ืจืื” ืืช ื–ื” ืงื•ืจื” ื‘ื—ืžืฉ ื”ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช.
09:21
And what that means is, you are going to walk around
145
561160
2000
ื•ื–ื” ืื•ืžืจ, ืฉืืชื ื”ื•ืœื›ื™ื ืœื”ืกืชื•ื‘ื‘
09:23
with your own personal genome on a smart card. It will be here.
146
563160
6000
ืขื ื”ื’ื ื•ื ื”ืื™ืฉื™ ืฉืœื›ื ืขืœ ื›ืจื˜ื™ืก ื—ื›ื. ื–ื” ื™ื”ื™ื” ื›ืืŸ.
09:29
And when you buy medicine,
147
569160
2000
ื•ื›ืฉืืชื ืงื•ื ื™ื ืชืจื•ืคื”,
09:31
you won't be buying a drug that's used for everybody.
148
571160
3000
ืืชื ืœื ืชืงื ื• ืืช ืื•ืชื” ืชืจื•ืคื” ืฉื›ื•ืœื ืฆื•ืจื›ื™ื.
09:34
You will give your genome to the pharmacist,
149
574160
3000
ืืชื ืชื™ืชื ื• ืืช ื”ื’ื ื•ื ืœืจื•ืงื—,
09:37
and your drug will be made for you
150
577160
2000
ื•ื”ืชืจื•ืคื” ืชื™ื•ืฆืจ ืขื‘ื•ืจื›ื
09:39
and it will work much better than the ones that were --
151
579160
2000
ื•ืชืขื‘ื•ื“ ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ืžืืœื• ืฉื”ื™ื•.
09:41
you won't have side effects.
152
581160
2000
ืœื ื™ื”ื™ื• ืœื›ื ืชื•ืคืขื•ืช ืœื•ื•ืื™.
09:43
All those side effects, you know, oily residue and, you know,
153
583160
3000
ืื•ืชืŸ ืชื•ืคืขื•ืช ืœื•ื•ืื™, ืฉืžืกืคืจื™ื ืœื›ื ื‘ืคืจืกื•ืžื•ืช:
09:46
whatever they say in those commercials: forget about that.
154
586160
4000
ืชืฉื›ื—ื• ืžื”ื.
09:50
They're going to make all that stuff go away.
155
590160
2000
ื”ื ื™ื’ืจืžื• ืœื›ืœ ื”ื“ื‘ืจื™ื ื”ืœืœื• ืœื”ืขืœื.
09:52
What does a genome look like?
156
592160
3000
ืื™ืš ื”ื’ื ื•ื ื ืจืื”?
09:55
Well, there it is. It is a long, long series of these base pairs.
157
595160
6000
ื•ื‘ื›ืŸ, ื”ื ื” ื”ื•ื. ืจืฆืฃ ืืจื•ืš ืžืื•ื“ ืฉืœ ื–ื•ื’ื•ืช ื‘ืกื™ืกื™ื.
10:01
If you saw the genome for a mouse or for a human it would look no different than this,
158
601160
4000
ืื ื”ื™ื™ืชื ืจื•ืื™ื ื’ื ื•ื ืฉืœ ืขื›ื‘ืจ ืื• ืฉืœ ืื“ื ื”ื•ื ืœื ื”ื™ื” ื ืจืื” ืื—ืจืช,
10:05
but what scientists are doing now is
159
605160
2000
ืืš ืžื” ืฉืžื“ืขื ื™ื ืขื•ืฉื™ื ื”ื™ื•ื,
10:07
they're understanding what these do and what they mean.
160
607160
4000
ื”ื•ื ืœื”ื‘ื™ืŸ ืžื” ื”ื ืขื•ืฉื™ื ื•ืžื” ื”ืžืฉืžืขื•ืช ืฉืœื”ื.
10:11
Because what Nature is doing is double-clicking all the time.
161
611160
4000
ื›ื™ ืžื” ืฉื”ื˜ื‘ืข ืขื•ืฉื” ื–ื” ื›ืœ ื”ื–ืžืŸ ื“ืื‘ืœ-ืงืœื™ืง.
10:15
In other words, the first couple of sentences here,
162
615160
4000
ื‘ืžื™ืœื™ื ืื—ืจื•ืช,ื›ืžื” ืžื”ืžืฉืคื˜ื™ื ื”ืจืืฉื•ื ื™ื ื›ืืŸ,
10:19
assuming this is a grape plant:
163
619160
2000
ื ื ื™ื— ืฉื–ื•ื”ื™ ื’ืคืŸ:
10:21
make a root, make a branch, create a blossom.
164
621160
4000
ืชื™ืฆื•ืจ ืฉื•ืจืฉ, ืชื™ืฆื•ืจ ืขื ืฃ, ืชื™ืฆื•ืจ ืคืจื™ื—ื”.
10:25
In a human being, down in here it could be:
165
625160
4000
ืืฆืœ ืื“ื, ื›ืืŸ ืœืžื˜ื” ื–ื” ื™ื›ื•ืœ ื”ื™ื” ืœื”ื™ื•ืช:
10:29
make blood cells, start cancer.
166
629160
4000
ืชื™ืฆื•ืจ ืชืื™ ื“ื, ื”ืชื—ืœ ืกืจื˜ืŸ.
10:33
For me it may be: every calorie you consume, you conserve,
167
633160
7000
ืขื‘ื•ืจื™ ื™ื›ื•ืœ ืœื”ื™ื•ืช: ื›ืœ ืงืœื•ืจื™ื” ืฉืืชื” ืื•ื›ืœ- ืชืื’ื•ืจ,
10:40
because I come from a very cold climate.
168
640160
3000
ื›ื™ ืื ื™ ืžื’ื™ืข ืžืืงืœื™ื ืงืจ ืžืื•ื“.
10:43
For my wife: eat three times as much and you never put on any weight.
169
643160
4000
ืขื‘ื•ืจ ืืฉืชื™: ืชืื›ืœื™ ืคื™ ืฉืœื•ืฉ ื•ืืฃ ืคืขื ืœื ืชืขืœื™ ื‘ืžืฉืงืœ.
10:47
It's all hidden in this code,
170
647160
2000
ื›ืœ ื–ืืช ืžืชื—ื‘ื ื‘ืงื•ื“ ื”ื–ื”,
10:49
and it's starting to be understood at breakneck pace.
171
649160
4000
ื•ืžืชื—ื™ืœ ืœื”ื™ื•ืช ืžื•ื‘ืŸ ื‘ืงืฆื‘ ืžืกื—ืจืจ.
10:54
So, what can we do with genomes now that we can read them,
172
654160
3000
ืื– ืžื” ืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืขื ื’ื ื•ืžื™ื ืขื›ืฉื™ื•, ื›ืฉืื ื• ื™ื›ื•ืœื™ื ืœืงืจื•ื ืื•ืชื,
10:57
now that we're starting to have the book of life?
173
657160
2000
ื›ืฉืกืคืจ ื”ื—ื™ื™ื ื ืคืจืฉ ืœืคื ื™ื ื•?
10:59
Well, there's many things. Some are exciting.
174
659160
3000
ื™ืฉ ื”ืจื‘ื” ื“ื‘ืจื™ื. ื—ืœืงื ืžืจื’ืฉื™ื.
11:02
Some people will find very scary. I will tell you a couple of things
175
662160
4000
ื—ืœืงื ื™ืคื—ื™ื“ื• ืื ืฉื™ื: ืื ื™ ืื•ืžืจ ืœื›ื ื›ืžื” ื“ื‘ืจื™ื
11:06
that will probably make you want to projectile puke on me, but that's okay.
176
666160
4000
ืฉื™ืชื›ืŸ ื•ืชืจืฆื• ืœืคืœื•ื˜ ืขืœื™, ืืš ื–ื” ื‘ืกื“ืจ.
11:10
So, you know, we now can learn the history of organisms.
177
670160
4000
ืื–, ื›ืขืช ืื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืขืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื”ืื•ืจื’ื ื™ื–ืžื™ื.
11:14
You can do a very simple test: scrape your cheek; send it off.
178
674160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื‘ื“ื™ืงื” ืžืื•ื“ ืคืฉื•ื˜ื”: ื’ืจื“ื• ืืช ื”ืœื—ื™ ืฉืœื›ื, ื•ืฉืœื—ื• ืืช ื”ื‘ื“ื™ืงื”.
11:17
You can find out where your relatives come from;
179
677160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืžืฆื•ื ืžื”ื™ื›ืŸ ื”ืงืจื•ื‘ื™ื ืฉืœื›ื ื”ื’ื™ืขื•,
11:20
you can do your genealogy going back thousands of years.
180
680160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืขืฅ ื’ื ื˜ื™ ืื—ื•ืจื” ืืœืคื™ ืฉื ื™ื.
11:23
We can understand functionality. This is really important.
181
683160
3000
ืœื”ื‘ื™ืŸ ืชืคืงื•ื“ื™ื. ื–ื” ืžืžืฉ ื—ืฉื•ื‘.
11:26
We can understand, for example, why we create plaque in our arteries,
182
686160
5000
ืœื“ื•ื’ืžื, ืœื”ื‘ื™ืŸ ืžื“ื•ืข ืื ื• ื™ื•ืฆืจื™ื ื˜ืจืฉืช ืขื•ืจืงื™ื,
11:31
what creates the starchiness inside of a grain,
183
691160
4000
ืžื” ื™ื•ืฆืจ ืืช ื”ืขืžื™ืœืŸ ื‘ืชื•ืš ื”ื’ืจืขื™ืŸ,
11:35
why does yeast metabolize sugar and produce carbon dioxide.
184
695160
7000
ืžื“ื•ืข ืคื˜ืจื™ื•ืช ืžืคืจืงื•ืช ืกื•ื›ืจ ื•ืžื™ืฆืจื•ืช ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™.
11:43
We can also look at, at a grander scale, what creates problems,
185
703160
3000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืžื” ื™ื•ืฆืจ ื‘ืขื™ื•ืช ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ ื™ื•ืชืจ,
11:46
what creates disease, and how we may be able to fix them.
186
706160
4000
ืžื” ืžื—ื•ืœืœ ืžื—ืœื” ื•ืื™ืš ื ื•ื›ืœ ืœืชืงืŸ ืืช ื–ื”.
11:50
Because we can understand this,
187
710160
2000
ืžืคื ื™ ืฉืื ื• ืžื‘ื™ื ื™ื ืืช ื–ื”,
11:52
we can fix them, make better organisms.
188
712160
3000
ื ื•ื›ืœ ืœืชืงืŸ ืืช ื–ื”, ืœื™ืฆื•ืจ ืื•ืจื’ื ื™ื–ื ื˜ื•ื‘ ื™ื•ืชืจ.
11:55
Most importantly, what we're learning
189
715160
2000
ื”ื›ื™ ื—ืฉื•ื‘, ืื ื• ืœื•ืžื“ื™ื ืฉื”ื˜ื‘ืข
11:57
is that Nature has provided us a spectacular toolbox.
190
717160
5000
ื”ื’ื™ืฉ ืœื ื• ืงื•ืคืกืช ื›ืœื™ื ืžืจื”ื™ื‘ื”.
12:02
The toolbox exists.
191
722160
2000
ืงื•ืคืกืช ื”ื›ืœื™ื ืงื™ื™ืžืช.
12:04
An architect far better and smarter than us has given us that toolbox,
192
724160
5000
ืืจื›ื™ื˜ืงื˜ ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ื•ื—ื›ื ืžืื™ืชื ื• ื ืชืŸ ืœื ื• ืืช ืชื™ื‘ืช ื”ื›ืœื™ื ื”ื–ื•,
12:09
and we now have the ability to use it.
193
729160
3000
ื•ื›ืขืช ื™ืฉ ืœื ื• ืืช ื”ื™ื›ื•ืœืช ืœื”ืฉืชืžืฉ ื‘ื”.
12:12
We are now not just reading genomes; we are writing them.
194
732160
4000
ื›ืขืช ืื ื• ืœื ืจืง ืงื•ืจืื™ื ื’ื ื•ืžื™ื, ืื ื• ื›ื•ืชื‘ื™ื ืื•ืชื.
12:16
This company, Synthetic Genomics, I'm involved with,
195
736160
2000
ื”ื—ื‘ืจื”, "ืกื™ื ื˜ื˜ื™ืง ื’ื ื•ืžื™ืงืก", ืฉืื ื™ ืžืฉืชื™ื™ืš ืืœื™ื”,
12:18
created the first full synthetic genome for a little bug,
196
738160
4000
ื™ืฆืจื” ืืช ื”ื’ื ื•ื ื”ืกื™ื ื˜ื˜ื™ ื”ืจืืฉื•ืŸ ืœื—ื™ื™ื“ืง ืงื˜ืŸ,
12:22
a very primitive creature called Mycoplasma genitalium.
197
742160
3000
ื™ืฆื•ืจ ืคืจื™ืžื™ื˜ื™ื‘ ืฉื ืงืจื ืžื™ืงื•ืคืœืกืžื”-ื’'ื ื™ื˜ึทืœื™ื•ื.
12:25
If you have a UTI, you've probably -- or ever had a UTI --
198
745160
4000
ืื ื”ื™ืชื” ืœื›ื ืคืขื ื“ืœืงืช ื‘ื“ืจื›ื™ ื”ืฉืชืŸ,
12:29
you've come in contact with this little bug.
199
749160
3000
ื›ื›ืœ ื”ื ืจืื” ืฉื ืชืงืœืชื ื‘ื—ื™ื™ื“ืง ื”ื–ื”.
12:32
Very simple -- only has about 246 genes --
200
752160
3000
ืžืื•ื“ ืคืฉื•ื˜, ืจืง 246 ื’ื ื™ื,
12:35
but we were able to completely synthesize that genome.
201
755160
6000
ืืš ื™ื›ื•ืœื ื• ืœืกื ื˜ื– ืืช ื›ืœ ื”ื’ื ื•ื.
12:42
Now, you have the genome and you say to yourself,
202
762160
3000
ืื– ื™ืฉ ืœื ื• ืืช ื”ื’ื ื•ื ื•ืืชื” ืื•ืžืจ ืœืขืฆืžืš,
12:45
So, if I plug this synthetic genome -- if I pull the old one out and plug it in --
203
765160
5000
ืื ืื ื™ ืžื•ืฆื™ื ืืช ื”ื’ื ื•ื ื”ื™ืฉืŸ ื•ืžื›ื ื™ืก ืืช ื”ื’ื ื•ื ื”ืกื™ื ื˜ื˜ื™,
12:50
does it just boot up and live?
204
770160
2000
ื”ืื ื”ื•ื ืขื•ืฉื” ืื™ืชื—ื•ืœ ื•ื—ื™?
12:52
Well, guess what. It does.
205
772160
3000
ื ื—ืฉื• ืžื”? ื›ืŸ.
12:56
Not only does it do that; if you took the genome -- that synthetic genome --
206
776160
6000
ื•ืœื ืจืง ื–ื”. ืื ืืชื” ืœื•ืงื— ืืช ื”ื’ื ื•ื ื”ืกื™ื ื˜ื˜ื™,
13:02
and you plugged it into a different critter, like yeast,
207
782160
3000
ื•ืžื›ื ื™ืก ืื•ืชื• ืœื™ืฆื•ืจ ืื—ืจ, ืœื“ื•ื’ืžื ืคื˜ืจื™ื”,
13:05
you now turn that yeast into Mycoplasma.
208
785160
4000
ื”ืคื›ืช ืืช ื”ืคื˜ืจื™ื” ืœืžื™ืงื•ืคืœืกืžื”.
13:09
It's, sort of, like booting up a PC with a Mac O.S. software.
209
789160
5000
ื–ื” ื›ืžื• ืœืืชื—ืœ ืืช ื”-PC ืฉืœื›ื ืขื ืชื•ื›ื ื” ืฉืœ ืžืงื™ื ื˜ื•ืฉ.
13:14
Well, actually, you could do it the other way.
210
794160
2000
ืื• ื”ื”ื™ืคืš.
13:16
So, you know, by being able to write a genome
211
796160
4000
ืื– ืขืœ ื™ื“ื™ ื”ื™ื›ื•ืœืช ืœื›ืชื•ื‘ ื’ื ื•ื
13:20
and plug it into an organism,
212
800160
3000
ื•ืœื”ื—ื“ื™ืจ ืื•ืชื• ืœืื•ืจื’ื ื™ื–ื,
13:23
the software, if you will, changes the hardware.
213
803160
5000
ื”ืชื•ื›ื ื” ืžืฉื ื” ืืช ื”ื—ื•ืžืจื”.
13:28
And this is extremely profound.
214
808160
2000
ื•ื–ื” ืžืžืฉ ืžืจื—ื™ืง ืœื›ืช.
13:30
So, last year the French and Italians announced
215
810160
3000
ื‘ืฉื ื” ืฉืขื‘ืจื” ื”ืฆืจืคืชื™ื ื•ื”ืื™ื˜ืœืงื™ื ื”ื›ืจื™ื–ื•
13:33
they got together and they went ahead and they sequenced Pinot Noir.
216
813160
4000
ืฉื”ื ื—ื•ื‘ืจื™ื ื™ื—ื“ ื•ืžืžืคื™ื ืืช ื”ืคื™ื ื• ื ื•ืืจ.
13:37
The genomic sequence now exists for the entire Pinot Noir organism,
217
817160
6000
ื”ืจืฆืฃ ื”ื’ื ื˜ื™ ืฉืœ ื”ืคื™ื ื• ื ื•ืืจ ืงื™ื™ื ื›ืขืช ื‘ืžืœื•ืื•.
13:43
and they identified, once again, about 29,000 genes.
218
823160
4000
ื•ื”ื ื–ื™ื”ื• ืžืฉื”ื• ื›ืžื• 29,000 ื’ื ื™ื.
13:47
They have discovered pathways that create flavors,
219
827160
3000
ื”ื ืžืฆืื• ื ืชื™ื‘ื™ื ืฉื™ื•ืฆืจื™ื ื˜ืขืžื™ื,
13:50
although it's very important to understand
220
830160
2000
ืืš ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ
13:52
that those compounds that it's cranking out
221
832160
3000
ืฉื”ืชืจื›ื•ื‘ื•ืช ื”ืœืœื• ืฉืžืคืฆื—ื™ื
13:55
have to match a receptor in our genome, in our tongue,
222
835160
3000
ืฆืจื™ื›ื•ืช ืœื”ืชืื™ื ืœืงื•ืœื˜ื ื™ื ืฉืขืœ ื”ืœืฉื•ืŸ ืฉืœื ื•,
13:58
for us to understand and interpret those flavors.
223
838160
3000
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื”ื‘ื™ืŸ ื•ืœืคืจืฉ ืืช ื”ื˜ืขืžื™ื ื”ืœืœื•.
14:01
They've also discovered that
224
841160
2000
ื”ื ื’ื ื’ื™ืœื• ืฉื™ืฉื ื
14:03
there's a heck of a lot of activity going on producing aroma as well.
225
843160
4000
ื“ื‘ืจื™ื ืจื‘ื™ื ืฉืื—ืจืื™ื ืขืœ ื™ืฆื•ืจ ื”ืจื™ื—.
14:07
They've identified areas of vulnerability to disease.
226
847160
3000
ื”ื ื–ื™ื”ื• ืื–ื•ืจื™ื ืฉืœ ืจื’ื™ืฉื•ืช ืœืžื—ืœื•ืช.
14:10
They now are understanding, and the work is going on,
227
850160
4000
ื”ื ืขื›ืฉื™ื• ืขื•ืกืงื™ื ื‘ืœื”ื‘ื™ืŸ, ื•ื”ืขื‘ื•ื“ื” ื ืžืฉื›ืช,
14:14
exactly how this plant works, and we have the capability to know,
228
854160
4000
ื›ื™ืฆื“ ื‘ื“ื™ื•ืง ื”ืฆืžื— ื”ื–ื” ืขื•ื‘ื“, ื•ื™ืฉ ื›ืขืช ืืช ื”ื™ื›ื•ืœืช
14:18
to read that entire code and understand how it ticks.
229
858160
4000
ืœืงืจื•ื ืืช ื”ืงื•ื“ ื›ื•ืœื• ื•ืœื”ื‘ื™ืŸ ืื™ืš ื”ื•ื ืขื•ื‘ื“.
14:22
So, then what do you do?
230
862160
2000
ืื– ืžื” ืขื•ืฉื™ื ืขื ื–ื”?
14:24
Knowing that we can read it, knowing that we can write it, change it,
231
864160
4000
ืขื ื”ื™ื›ื•ืœืช ืœืงืจื•ื ืืช ื–ื”, ืœื›ืชื•ื‘ ื•ืœืฉื ื•ืช ืืช ื–ื”,
14:28
maybe write its genome from scratch. So, what do you do?
232
868160
4000
ืื•ืœื™ ืœื›ืชื•ื‘ ืืช ื”ื’ื ื•ื ืžื“ื’ื™ืžื”. ืื– ืžื” ืขื•ืฉื™ื?
14:32
Well, one thing you could do is what some people might call Franken-Noir.
233
872160
4000
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืืคืฉืจ ืœืขืฉื•ืช ื”ื•ื ืžื” ืฉื™ืฉ ื”ืžื›ื ื™ื "ืคืจื ืงืŸ-ื ื•ืืจ".
14:36
(Laughter)
234
876160
3000
(ืฆื—ื•ืง)
14:39
We can build a better vine.
235
879160
2000
ื ื•ื›ืœ ืœื™ืฆื•ืจ ื’ืคืŸ ื˜ื•ื‘ื” ื™ื•ืชืจ.
14:41
By the way, just so you know:
236
881160
2000
ื“ืจืš ืื’ื‘, ืจืง ืฉืชื“ืขื•:
14:43
you get stressed out about genetically modified organisms;
237
883160
4000
ืืชื ื ืœื—ืฆื™ื ืžืื•ืจื’ื ื™ื–ืžื™ื ืฉืขื•ื‘ืจื™ื ืฉื™ื ื•ื™ื™ื ื’ื ื˜ื™ื™ื.
14:47
there is not one single vine in this valley or anywhere
238
887160
3000
ืื™ืŸ ื•ืœื• ื’ืคืŸ ืื—ื“ ื‘ืขืžืง ื”ื–ื” ืื• ื‘ื›ืœ ืžืงื•ื ืื—ืจ
14:50
that is not genetically modified.
239
890160
2000
ืฉืœื ืขื‘ืจ ืฉื™ื ื•ื™ื™ื ื’ื ื˜ื™ื™ื.
14:52
They're not grown from seeds; they're grafted into root stock;
240
892160
3000
ืœื ืžื’ื“ืœื™ื ืื•ืชื ืžื–ืจืขื™ื. ืžื’ื“ืœื™ื ืื•ืชื ืžื™ื™ื—ื•ืจื™ื.
14:55
they would not exist in nature on their own.
241
895160
2000
ื”ื ืœื ื”ื™ื• ืงื™ื™ืžื™ื ื‘ื˜ื‘ืข ื‘ืขืฆืžื.
14:57
So, don't worry about, don't stress about that stuff. We've been doing this forever.
242
897160
4000
ืื– ืืœ ืชื™ืœื—ืฆื• ื‘ืงืฉืจ ืœื–ื”. ืื ื• ืขื•ืฉื™ื ื–ืืช ื›ื‘ืจ ื”ืžื•ืŸ ื–ืžืŸ.
15:01
So, we could, you know, focus on disease resistance;
243
901160
3000
ืื– ื ื•ื›ืœ ืœื”ืชืžืงื“ ื‘ืขืžื™ื“ื•ืช ืœืžื—ืœื•ืช.
15:04
we can go for higher yields without necessarily having
244
904160
4000
ื ื•ื›ืœ ืœื”ื ื™ื‘ ื™ื•ืชืจ ื‘ืœื™ ืฉื™ื”ื™ื” ื”ืฆื•ืจืš
15:08
dramatic farming techniques to do it, or costs.
245
908160
3000
ื‘ื˜ื›ื ื™ืงื•ืช ื—ืงืœืื™ื•ืช ื“ืจืžื˜ื™ื•ืช ืื• ืขืœื•ื™ื•ืช.
15:11
We could conceivably expand the climate window:
246
911160
3000
ื ื•ื›ืœ ืœื”ืจื—ื™ื‘ ืืช ื—ืœื•ืŸ ื”ืืงืœื™ื:
15:14
we could make Pinot Noir grow maybe in Long Island, God forbid.
247
914160
5000
ื ื•ื›ืœ ืœื’ื“ืœ ืคื™ื ื•-ื ื•ืืจ ื‘ืœื•ื ื’ ืื™ื™ืœื ื“, ื”ืฉื ื™ืฉืžื•ืจ.
15:19
(Laughter)
248
919160
3000
(ืฆื—ื•ืง)
15:23
We could produce better flavors and aromas.
249
923160
3000
ื ื•ื›ืœ ืœื™ืฆื•ืจ ื˜ืขืžื™ื ื•ืจื™ื—ื•ืช ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
15:26
You want a little more raspberry, a little more chocolate here or there?
250
926160
3000
ืืชื ืจื•ืฆื™ื ืงืฆืช ื™ื•ืชืจ ืคื˜ืœ, ืงืฆืช ื™ื•ืชืจ ืฉื•ืงื•ืœื“ ื›ืืŸ ืื• ืฉื?
15:29
All of these things could conceivably be done,
251
929160
3000
ื›ืœ ื”ื“ื‘ืจื™ื ื”ืœืœื•, ืžืชืงื‘ืœ ืขืœ ื”ื“ืขืช ืฉื™ื”ื™ื” ื ื™ืชืŸ ืœืขืฉื•ืช,
15:32
and I will tell you I'd pretty much bet that it will be done.
252
932160
3000
ื•ืื ื™ ืžื•ื›ืŸ ืœื”ืชืขืจื‘ ืฉื”ื ื’ื ื™ื™ืขืฉื•.
15:35
But there's an ecosystem here.
253
935160
2000
ืืš ื™ืฉ ื›ืืŸ ื’ื ืžืขืจื›ืช ืืงื•ืœื•ื’ื™ืช.
15:37
In other words, we're not, sort of, unique little organisms running around;
254
937160
5000
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ืื ื• ืœื ื™ืฆื•ืจื™ื ืžื™ื•ื—ื“ื™ื ื•ืงื˜ื ื™ื ืฉืžืชืจื•ืฆืฆื™ื-
15:42
we are part of a big ecosystem.
255
942160
2000
ืื ื• ื—ืœืง ืžืžืขืจื›ืช ืืงื•ืœื•ื’ื™ืช ื’ื“ื•ืœื”.
15:44
In fact -- I'm sorry to inform you --
256
944160
3000
ืœืžืขืฉื” - ืžืฆื˜ืขืจ ืœื”ื•ื“ื™ืข ืœื›ื-
15:47
that inside of your digestive tract is about 10 pounds of microbes
257
947160
4000
ื™ืฉื ื ื‘ืžืขืจื›ืช ื”ืขื™ื›ื•ืœ ืฉืœื›ื 4.5 ืง"ื’ ืฉืœ ื—ื™ื™ื“ืงื™ื
15:51
which you're circulating through your body quite a bit.
258
951160
3000
ืฉื ืขื™ื ื‘ืชื•ืš ื”ื’ื•ืฃ ืฉืœื›ื ื“ื™ ื”ืจื‘ื”.
15:54
Our ocean's teaming with microbes;
259
954160
3000
ื”ืื•ืงื™ื™ื ื•ืกื™ื ืฉื•ืจืฆื™ื ื‘ืžื™ืงืจื•ื‘ื™ื.
15:57
in fact, when Craig Venter went and sequenced the microbes in the ocean,
260
957160
5000
ืœืžืขืฉื”, ื›ืฉืงืจื™ื™ื’ ื•ื ื˜ืจ ืžื™ืคื” ืืช ื”ื—ื™ื™ื“ืงื™ื ื‘ืื•ืงื™ื™ื ื•ืก,
16:02
in the first three months tripled the known species on the planet
261
962160
4000
ื”ื•ื ืฉื™ืœืฉ ืืช ืžืกืคืจ ื”ืžื™ื ื™ื ื”ื™ื“ื•ืขื™ื ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ ื‘ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื
16:06
by discovering all-new microbes in the first 20 feet of water.
262
966160
3000
ืขืœ ื™ื“ื™ ื’ื™ืœื•ื™ ื—ื™ื™ื“ืงื™ื ื—ื“ืฉื™ื ืœื’ืžืจื™ ื‘ืฉื‘ืขืช ื”ืžื˜ืจื™ื ื”ืขืœื™ื•ื ื™ื.
16:09
We now understand that those microbes have more impact on our climate
263
969160
4000
ืื ื• ืขื›ืฉื™ื• ืžื‘ื™ื ื™ื ืฉื”ื—ื™ื™ื“ืงื™ื ื”ืœืœื• ืžืฉืคื™ืขื™ื ืขืœ ื”ืืงืœื™ื ืฉืœื ื•
16:13
and regulating CO2 and oxygen than plants do,
264
973160
4000
ื•ืžื•ื•ืกืชื™ื ืืช ื”ืคื—ืžืŸ ื”ื“ื• ื—ืžืฆื ื™ ื•ื”ื—ืžืฆืŸ, ื™ื•ืชืจ ืžืืฉืจ ื”ืฆืžื—ื™ื,
16:17
which we always thought oxygenate the atmosphere.
265
977160
2000
ืฉืชืžื™ื“ ื—ืฉื‘ื ื• ืฉืžื—ืžืฆื ื™ื ืืช ื”ืื˜ืžื•ืกืคื™ืจื”.
16:19
We find microbial life in every part of the planet:
266
979160
4000
ืื ื• ืžื•ืฆืื™ื ื—ื™ื™ื“ืงื™ื ื‘ื›ืœ ืžืงื•ื ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ:
16:23
in ice, in coal, in rocks, in volcanic vents; it's an amazing thing.
267
983160
8000
ื‘ืงืจื—, ื‘ืคื—ื, ื‘ืกืœืขื™ื, ื‘ื”ืชืคืจืฆื•ื™ื•ืช ื•ื•ืœืงื ื™ื•ืช, ื–ื” ืžืžืฉ ืžื“ื”ื™ื.
16:31
But we've also discovered, when it comes to plants, in plants,
268
991160
5000
ืืš ืชืžื™ื“ ื’ื™ืœื™ื ื•, ื›ืฉื–ื” ืžื’ื™ืข ืœืฆืžื—ื™ื, ื‘ืฆืžื—ื™ื,
16:36
as much as we understand and are starting to understand their genomes,
269
996160
4000
ื›ื›ืœ ืฉืื ื• ืžื‘ื™ื ื™ื ื•ืžืชื—ื™ืœื™ื ืœื”ื‘ื™ืŸ ืืช ื”ื’ื ื•ื ืฉืœื”ื,
16:40
it is the ecosystem around them,
270
1000160
3000
ื–ื•ื”ื™ ื”ืžืขืจื›ืช ื”ืืงื•ืœื•ื’ื™ืช ืฉืžืกื‘ื™ื‘ื,
16:43
it is the microbes that live in their root systems,
271
1003160
3000
ื”ื—ื™ื™ื“ืงื™ื ืฉืฉื•ื›ื ื™ื ื‘ืฉื•ืจืฉื™ื ืฉืœื”ื,
16:46
that have just as much impact on the character of those plants
272
1006160
4000
ื”ืžืฉืคื™ืขื™ื ืขืœ ื”ืชื›ื•ื ื•ืช ืฉืœ ื”ืฆืžื—ื™ื ื”ืœืœื•
16:50
as the metabolic pathways of the plants themselves.
273
1010160
4000
ืžืžืฉ ื›ืžื• ื”ืชื”ืœื™ื›ื™ื ื”ืžื˜ื‘ื•ืœื™ื™ื ืขืฆืžื.
16:54
If you take a closer look at a root system,
274
1014160
3000
ืื ืชืกืชื›ืœื• ืžืงืจื•ื‘ ืขืœ ืžืขืจื›ืช ื”ืฉื•ืจืฉื™ื,
16:57
you will find there are many, many, many diverse microbial colonies.
275
1017160
4000
ืชืžืฆืื• ื”ืžื•ืŸ ื”ืžื•ืŸ ืžื•ืฉื‘ื•ืช ื—ื™ื™ื“ืงื™ื ืฉื•ื ื•ืช.
17:01
This is not big news to viticulturists;
276
1021160
2000
ืืœื• ืœื ื—ื“ืฉื•ืช ื’ื“ื•ืœื•ืช ืœืžื’ื“ืœื™ ื”ื’ืคื ื™ื.
17:03
they have been, you know, concerned with water and fertilization.
277
1023160
4000
ื”ื ื“ื•ืื’ื™ื ืœืžื™ื ื•ืœื“ืฉื ื™ื.
17:07
And, again, this is, sort of, my notion of shit-against-the-wall pharmacology:
278
1027160
6000
ื•ื–ื” ืฉื•ื‘, ื”ื“ืขื” ืฉืœื™ ืœื’ื‘ื™ ืคืจืžืงื•ืœื•ื’ื™ืช "ื–ืจื•ืง ื”ื›ืœ ืขืœ ื”ืงื™ืจ":
17:13
you know certain fertilizers make the plant more healthy so you put more in.
279
1033160
4000
ืืชื” ื™ื•ื“ืข ืฉื“ืฉื ื™ื ืžืกื•ื™ืžื™ื ืขื•ืฉื™ื ืืช ื”ืฆืžื— ืœื‘ืจื™ื ื™ื•ืชืจ ืื– ืืชื” ืฉื ืขื•ื“.
17:17
You don't necessarily know with granularity
280
1037160
4000
ืืชื” ืœื ื‘ื”ื›ืจื— ื™ื•ื“ืข ืœืคืจื•ื˜ืจื•ื˜
17:21
exactly what organisms are providing what flavors and what characteristics.
281
1041160
6000
ืืœื• ืื•ืจื’ื ื™ื–ืžื™ื ืžืขื ื™ืงื™ื ืืœื• ื˜ืขืžื™ื ื•ืืœื• ืชื›ื•ื ื•ืช.
17:27
We can start to figure that out.
282
1047160
3000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœืคืชื•ืจ ืืช ื–ื”.
17:30
We all talk about terroir; we worship terroir;
283
1050160
3000
ื›ื•ืœื ื• ืžื“ื‘ืจื™ื ืขืœ ื˜ืจื•ืืจ (ืžื›ืœื•ืœ ืฉืœ ืชื ืื™ ืกื‘ื™ื‘ื” ืœื’ื™ื“ื•ืœ ื—ืงืœืื™). ืžืขืจื™ืฆื™ื ืฉืœ ื˜ืจื•ืืจ.
17:33
we say, Wow, is my terroir great! It's so special.
284
1053160
3000
ืื•ืžืจื™ื, ื•ื•ืื•, ื”ื˜ืจื•ืืจ ืฉืœื™ ื ืคืœื! ื›ืœ ื›ืš ืžื™ื•ื—ื“!
17:36
I've got this piece of land and it creates terroir like you wouldn't believe.
285
1056160
4000
ื™ืฉ ืœื™ ืื“ืžื” ื•ื”ื™ื ื™ื•ืฆืจืช ื˜ืจื•ืืจ ืฉืœื ืชืืžื™ืŸ.
17:40
Well, you know, we really, we argue and debate about it --
286
1060160
4000
ืืชื ื™ื•ื“ืขื™ื ืžื”, ืื ื• ืžืชื•ื•ื›ื—ื™ื ืขืœ ื–ื” ื•ืื•ืžืจื™ื
17:44
we say it's climate, it's soil, it's this. Well, guess what?
287
1064160
3000
ืฉื–ื” ื”ืืงืœื™ื, ื”ืื“ืžื” ื•ื›ื•ืœื™. ื ื—ืฉื• ืžื”?
17:47
We can figure out what the heck terroir is.
288
1067160
3000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืŸ ืžื” ืœืขื–ืื–ืœ ื–ื” ื˜ืจื•ืืจ.
17:50
It's in there, waiting to be sequenced.
289
1070160
3000
ื–ื” ืฉื, ืžื—ื›ื” ืœืžื™ืคื•ื™.
17:53
There are thousands of microbes there.
290
1073160
2000
ื™ืฉ ืืœืคื™ ื—ื™ื™ื“ืงื™ื ืฉื.
17:55
They're easy to sequence: unlike a human,
291
1075160
2000
ืงืœ ืœืžืคื•ืช ืื•ืชื: ืฉืœื ื›ืžื• ืื“ื,
17:57
they, you know, have a thousand, two thousand genes;
292
1077160
2000
ื™ืฉ ืœื”ื ืืœืฃ, ืืœืคื™ื™ื ื’ื ื™ื.
17:59
we can figure out what they are.
293
1079160
2000
ื ื•ื›ืœ ืœื“ืขืช ืžื”ื.
18:01
All we have to do is go around and sample, dig into the ground, find those bugs,
294
1081160
7000
ื›ืœ ืžื” ืฉืื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื”ื•ื ืœืงื—ืช ื“ื’ื™ืžื”, ืœื—ืคื•ืจ ื‘ืื“ืžื” ื•ืœืžืฆื•ื ืืช ื”ื—ื™ื™ื“ืงื™ื ื”ืœืœื•,
18:08
sequence them, correlate them to the kinds of characteristics we like and don't like --
295
1088160
5000
ืœืžืคื•ืช ืื•ืชื, ืœืงืฉืจ ืื•ืชื ืœืชื›ื•ื ื•ืช ืฉืื ื• ืื•ื”ื‘ื™ื ืื• ืœื ืื•ื”ื‘ื™ื-
18:13
that's just a big database -- and then fertilize.
296
1093160
3000
ื–ื” ืจืง ื‘ืกื™ืก ื ืชื•ื ื™ื ื’ื“ื•ืœ- ื•ืื– ืœื“ืฉืŸ.
18:16
And then we understand what is terroir.
297
1096160
3000
ื•ืื– ื ื‘ื™ืŸ ืžื”ื• ื˜ืจื•ืืจ.
18:20
So, some people will say, Oh, my God, are we playing God?
298
1100160
2000
ืื ืฉื™ื ืžืกื•ื™ืžื™ื ื™ืฉืืœื•, ื”ืื ืื ื• ืžืฉื—ืงื™ื ืืช ืืœื•ื”ื™ื?
18:22
Are we now, if we engineer organisms, are we playing God?
299
1102160
5000
ื”ืื ืขื›ืฉื™ื•, ื›ืฉืื ื• ืžื”ื ื“ืกื™ื ืื•ืจื’ื ื™ื–ืžื™ื, ื”ืื ืื ื• ืžืฉื—ืงื™ื ืืช ืืœื•ื”ื™ื?
18:27
And, you know, people would always ask James Watson --
300
1107160
3000
ืื ืฉื™ื ื›ืœ ื”ื–ืžืŸ ืฉื•ืืœื™ื ืืช ื’'ื™ื™ืžืก ื•ื•ื˜ืกื•ืŸ-
18:30
he's not always the most politically correct guy ...
301
1110160
2000
ื”ื•ื ืœื ืชืžื™ื“ ื”ืื“ื ื”ื›ื™ ืคื•ืœื™ื˜ื™ืงืœื™ ืงื•ืจืงื˜-
18:32
(Laughter)
302
1112160
1000
(ืฆื—ื•ืง)
18:33
... and they would say, "Are, you know, are you playing God?"
303
1113160
5000
ื•ืื•ืžืจื™ื, "ื”ืื ืืชื” ืžืฉื—ืง ืืช ืืœื•ื”ื™ื?"
18:38
And he had the best answer I ever heard to this question:
304
1118160
3000
ื•ื™ืฉ ืœื• ืืช ื”ืชืฉื•ื‘ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืฉืฉืžืขืชื™ ืœืฉืืœื” ื”ื–ื•:
18:41
"Well, somebody has to."
305
1121160
2000
"ื•ื‘ื›ืŸ, ืžื™ืฉื”ื• ืฆืจื™ืš".
18:43
(Laughter)
306
1123160
3000
(ืฆื—ื•ืง)
18:46
I consider myself a very spiritual person,
307
1126160
4000
ืื ื™ ืจื•ืื” ืืช ืขืฆืžื™ ื›ืื“ื ื“ื™ ืจื•ื—ื ื™,
18:50
and without, you know, the organized religion part,
308
1130160
3000
ื‘ืœื™ ื”ื—ืœืง ืฉืœ ื”ื“ืช ื”ืžืื•ืจื’ื ืช,
18:53
and I will tell you: I don't believe there's anything unnatural.
309
1133160
4000
ื•ืื•ืžืจ ืœื›ื: ืื ื™ ืœื ืžืืžื™ืŸ ืฉื™ืฉ ืžืฉื”ื• ืœื ื˜ื‘ืขื™.
18:57
I don't believe that chemicals are unnatural.
310
1137160
4000
ืื ื™ ืœื ืžืืžื™ืŸ ืฉื›ื™ืžื™ืงืœื™ื ื”ื ืœื ื˜ื‘ืขื™ื™ื.
19:01
I told you I'm going to make some of you puke.
311
1141160
2000
ืืžืจืชื™ ืœื›ื ืฉืื’ืจื•ื ืœื—ืœืงื›ื ืœื”ืงื™ื.
19:03
It's very simple: we don't invent molecules, compounds.
312
1143160
4000
ื–ื” ืžืื•ื“ ืคืฉื•ื˜: ืื ื• ืœื ืžืžืฆื™ืื™ื ืžื•ืœืงื•ืœื•ืช ืื• ืชืจื›ื•ื‘ื•ืช.
19:07
They're here. They're in the universe.
313
1147160
2000
ื”ืŸ ืฉื. ื”ืŸ ืงื™ื™ืžื•ืช ื‘ื™ืงื•ื.
19:09
We reorganize things, we change them around,
314
1149160
3000
ืื ื• ืžืกื“ืจื™ื ืžื—ื“ืฉ ื“ื‘ืจื™ื, ืื ื• ืžืฉื ื™ื ืื•ืชื,
19:12
but we don't make anything unnatural.
315
1152160
3000
ืืš ืื ื• ืœื ื™ื•ืฆืจื™ื ื“ื‘ืจ ืฉื”ื•ื ืœื ื˜ื‘ืขื™.
19:15
Now, we can create bad impacts --
316
1155160
2000
ืขื›ืฉื™ื•, ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืืคืงื˜ื™ื ืฉืœื™ืœื™ื™ื-
19:17
we can poison ourselves; we can poison the Earth --
317
1157160
2000
ืœื”ืจืขื™ืœ ืืช ืขืฆืžื ื•, ืœื”ืจืขื™ืœ ืืช ื”ืขื•ืœื-
19:19
but that's just a natural outcome of a mistake we made.
318
1159160
4000
ืืš ื–ื•ื”ื™ ืจืง ืชื•ืฆืื” ื˜ื‘ืขื™ืช ืฉืœ ื˜ืขื•ืช ืฉืื ื• ืขื•ืฉื™ื.
19:23
So, what's happening today is, Nature is presenting us with a toolbox,
319
1163160
4000
ืื–, ืžื” ืฉืงื•ืจื” ื›ื™ื•ื, ืฉื”ื˜ื‘ืข ืžืฆื™ืข ืœื ื• ืงื•ืคืกืช ื›ืœื™ื,
19:27
and we find that this toolbox is very extensive.
320
1167160
4000
ื•ืื ื• ืžื•ืฆืื™ื ืฉื”ืงื•ืคืกื ื”ื–ื• ืžืื•ื“ ืจื—ื‘ื”.
19:31
There are microbes out there that actually make gasoline, believe it or not.
321
1171160
4000
ื™ืฉื ื ืื™ืคืฉื”ื• ื—ื™ื™ื“ืงื™ื ืฉื™ื•ืฆืจื™ื ื“ืœืง, ืชืืžื™ื ื• ืื• ืœื.
19:35
There are microbes, you know -- go back to yeast.
322
1175160
2000
ื™ืฉื ื ื—ื™ื™ื“ืงื™ื- ื—ื•ื–ืจื™ื ืœืคื™ื˜ืจื™ื”.
19:37
These are chemical factories;
323
1177160
2000
ืืœื• ื”ื ืžืคืขืœื™ื ื›ื™ืžื™ื™ื.
19:39
the most sophisticated chemical factories are provided by Nature,
324
1179160
4000
ื”ืžืคืขืœื™ื ื”ื›ื™ืžื™ื™ื ื”ืžืชื•ื—ื›ืžื™ื ื‘ื™ื•ืชืจ ืžืกื•ืคืงื™ื ืขืœ ื™ื“ื™ ื”ื˜ื‘ืข,
19:43
and we now can use those.
325
1183160
3000
ื•ื›ืขืช ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื”ื.
19:46
There also is a set of rules.
326
1186160
2000
ื™ืฉ ื’ื ื›ืžื” ื›ืœืœื™ื.
19:48
Nature will not allow you to --
327
1188160
3000
ื”ื˜ื‘ืข ื™ืืคืฉืจ ืœื›ื ืœ-
19:51
we could engineer a grape plant, but guess what.
328
1191160
2000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื ื“ืก ืฉื™ื— ืขื ื‘ื™ื, ืืš ื ื—ืฉื• ืžื”.
19:53
We can't make the grape plant produce babies.
329
1193160
2000
ืื ื• ืœื ื™ื›ื•ืœื™ื ืœื’ืจื•ื ืœืฉื™ื— ื”ืขื ื‘ื™ื ืœื™ืฆื•ืจ ืชื™ื ื•ืงื•ืช.
19:55
Nature has put a set of rules out there.
330
1195160
3000
ื”ื˜ื‘ืข ืฉื ืžืขืจื›ืช ื›ืœืœื™ื.
19:58
We can work within the rules; we can't break the rules;
331
1198160
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ื‘ืชื•ื›ื. ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœืฉื‘ื•ืจ ืื•ืชื.
20:01
we're just learning what the rules are.
332
1201160
2000
ืื ื• ืจืง ืœื•ืžื“ื™ื ืžื”ื ื”ื›ืœืœื™ื.
20:03
I just ask the question, if you could cure all disease --
333
1203160
4000
ืจืง ืืฉืืœ ืฉืืœื”, ืื ื™ื›ื•ืœืชื ืœืจืคื ืืช ื›ืœ ื”ื—ื•ืœื™-
20:07
if you could make disease go away,
334
1207160
2000
ืœื’ืจื•ื ืœืžื—ืœื•ืช ืœื”ืขืœื,
20:09
because we understand how it actually works,
335
1209160
2000
ื›ื™ ืื ื• ืžื‘ื™ื ื™ื ืื™ืš ื”ื ืœืžืขืฉื” ืขื•ื‘ื“ื™ื,
20:11
if we could end hunger by being able to create nutritious, healthy plants
336
1211160
5000
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœืžื’ืจ ืจืขื‘ ืขืœ ื™ื“ื™ ื™ืฆื™ืจืช ืฆืžื—ื™ื ื‘ืจื™ืื™ื ื•ืžื–ื™ื ื™ื
20:16
that grow in very hard-to-grow environments,
337
1216160
3000
ืฉื’ื“ืœื™ื ื‘ืกื‘ื™ื‘ื” ืžืื•ื“ ืงืฉื” ืœื’ื™ื“ื•ืœ,
20:19
if we could create clean and plentiful energy --
338
1219160
3000
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืื ืจื’ื™ื” ืขืฉื™ืจื” ื•ื ืงื™ื”-
20:22
we, right in the labs at Synthetic Genomics,
339
1222160
3000
ื™ืฉ ืœื ื• ื‘ืžืขื‘ื“ืช "ืกื™ื ื˜ื˜ื™ืง ื’ื ื•ืžื™ืงืก",
20:25
have single-celled organisms that are taking carbon dioxide
340
1225160
4000
ื™ืฆื•ืจื™ื ื—ื“ ืชืื™ื™ื ืฉื™ื›ื•ืœื™ื ืœืกืคื•ื— ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™
20:29
and producing a molecule very similar to gasoline.
341
1229160
4000
ื•ืœื™ืฆื•ืจ ืžื•ืœืงื•ืœื” ืžืื•ื“ ื“ื•ืžื” ืœืžื•ืœืงื•ืœืช ื“ืœืง.
20:33
So, carbon dioxide -- the stuff we want to get rid of -- not sugar, not anything.
342
1233160
5000
ืื–, ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™- ื”ื“ื‘ืจ ืฉืื ื• ืจื•ืฆื™ื ืœื”ื™ืคื˜ืจ ืžืžื ื•- ืœื ืกื•ื›ืจ, ืœื ื›ืœื•ื.
20:38
Carbon dioxide, a little bit of sunlight,
343
1238160
3000
ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™, ืงืฆืช ืื•ืจ ืฉืžืฉ,
20:41
you end up with a lipid that is highly refined.
344
1241160
5000
ื•ืžืงื‘ืœื™ื ืœื™ืคื™ื“ ืžืื•ื“ ืžื–ื•ืงืง.
20:46
We could solve our energy problems; we can reduce CO2,;
345
1246160
4000
ื™ื›ื•ืœื ื• ืœืคืชื•ืจ ืืช ื‘ืขื™ืช ื”ืื ืจื’ื™ื”, ืœื”ืคื—ื™ืช ืืช ื”ืคื—ืžืŸ ื”ื“ื•-ื—ืžืฆื ื™,
20:50
we could clean up our oceans; we could make better wine.
346
1250160
3000
ืœื ืงื•ืช ืืช ื”ืื•ืงื™ื ื•ืกื™ื, ืœื™ืฆื•ืจ ื™ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ.
20:53
If we could, would we?
347
1253160
3000
ืื ื™ื›ื•ืœื ื•, ื”ื™ื™ื ื• ืขื•ืฉื™ื?
20:56
Well, you know, I think the answer is very simple:
348
1256160
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื”ืชืฉื•ื‘ื” ืžืื•ื“ ืคืฉื•ื˜ื”:
20:59
working with Nature, working with this tool set that we now understand,
349
1259160
5000
ืœืขื‘ื•ื“ ืขื ื”ื˜ื‘ืข, ืœืขื‘ื•ื“ ืขื ื”ื›ืœื™ื ืฉื›ืขืช ืื ื• ืžื‘ื™ื ื™ื,
21:04
is the next step in humankind's evolution.
350
1264160
3000
ื”ื•ื ื”ืฆืขื“ ื”ื‘ื ื‘ืื‘ื•ืœื•ืฆื™ื” ื”ืื ื•ืฉื™ืช.
21:07
And all I can tell you is, stay healthy for 20 years.
351
1267160
4000
ื•ื›ืœ ืžื” ืฉืื ื™ ื™ื›ื•ืœ ืœื•ืžืจ ืœื›ื ื”ื•ื, ืชื™ืฉืืจื• ื‘ืจื™ืื™ื ืœืขื•ื“ 20 ืฉื ื”.
21:11
If you can stay healthy for 20 years, you'll see 150, maybe 300.
352
1271160
3000
ืื ืชื™ืฉืืจื• ื‘ืจื™ืื™ื ืœืขื•ื“ 20 ืฉื ื”, ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื’ื™ืœ 150, ืื•ืœื™ 300.
21:14
Thank you.
353
1274160
2000
ืชื•ื“ื” ืจื‘ื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7