The age of genetic wonder | Juan Enriquez

125,868 views ใƒป 2019-03-01

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Roni Weisman ืขืจื™ื›ื”: Ido Dekkers
00:13
So let me with start with Roy Amara.
0
13134
2390
ื”ืจืฉื• ืœื™ ืœื”ืชื—ื™ืœ ืขื ืจื•ื™ ืืžืืจื”.
00:16
Roy's argument is that most new technologies tend to be overestimated
1
16350
4211
ื”ื˜ื™ืขื•ืŸ ืฉืœ ืจื•ื™ ื”ื•ื ืฉื™ืฉื ื” ื ื˜ื™ื™ื” ืœื”ืขืจื›ืช ื™ืชืจ ืฉืœ ืจื•ื‘ ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ื—ื“ืฉื•ืช
00:20
in their impact to begin with,
2
20585
2068
ื‘ืชื—ื™ืœืช ื”ื“ืจืš, ืžื‘ื—ื™ื ืช ื”ื”ืฉืคืขื” ืฉืœื”ื,
00:22
and then they get underestimated in the long term
3
22677
2402
ื•ืื—ืจ ื›ืš ื™ืฉื ื” ื”ืขืจื›ืช ื—ืกืจ ื‘ื˜ื•ื•ื— ื”ืืจื•ืš
00:25
because we get used to them.
4
25103
1364
ื›ื™ ืื ื—ื ื• ืžืชืจื’ืœื™ื ืืœื™ื”ืŸ.
00:26
These really are days of miracle and wonder.
5
26491
2196
ืื ื—ื ื• ื ืžืฆืื™ื ื‘ืืžืช ื‘ืชืงื•ืคื” ืฉืœ ื ืกื™ื ื•ื ืคืœืื•ืช.
00:29
You remember that wonderful song by Paul Simon?
6
29433
2381
ืืชื ื–ื•ื›ืจื™ื ืืช ื”ืฉื™ืจ ื”ื ืคืœื ื”ื–ื” ืฉืœ ืคื•ืœ ืกื™ื™ืžื•ืŸ?
00:32
There were two lines in it.
7
32365
1338
ื”ื™ื• ื‘ื• ืฉืชื™ ืฉื•ืจื•ืช.
00:33
So what was it that was considered miraculous back then?
8
33727
3687
ืื– ืžื” ื”ื™ื” ื–ื” ืฉื ื—ืฉื‘ ืœื ืก ื‘ืื•ืชื ื™ืžื™ื?
00:38
Slowing down things -- slow motion --
9
38393
2072
ื”ืื˜ืช ื”ื“ื‘ืจื™ื -- ื”ื™ืœื•ืš ืื™ื˜ื™ --
00:41
and the long-distance call.
10
41371
1728
ื•ืฉื™ื—ื•ืช ื‘ื™ื ืœืื•ืžื™ื•ืช.
00:43
Because, of course, you used to get interrupted by operators
11
43941
2859
ื–ืืช ืžืฉื•ื ืฉื”ื™ื” ื ื”ื•ื’ ื›ืฉื’ืจื” ืฉืžืจื›ื–ื ื™ื ื™ื™ื›ื ืกื• ืœื›ื ื‘ืืžืฆืข ืฉื™ื—ื”
00:46
who'd tell you, "Long distance calling. Do you want to hang up?"
12
46824
2997
ื•ื™ื’ื™ื“ื• ืœื›ื: "ืฉื™ื—ื” ืžื—ื•"ืœ. ืืชื ืจื•ืฆื™ื ืœื ืชืง?"
00:49
And now we think nothing of calling all over the world.
13
49845
2702
ื•ื›ื™ื•ื ื–ื” ื ื—ืฉื‘ ื“ื‘ืจ ืจื’ื™ืœ ืœื”ืชืงืฉืจ ืœื›ืœ ืžืงื•ื ื‘ืขื•ืœื.
00:53
Well, something similar may be happening
14
53040
2630
ื•ื‘ื›ืŸ, ืžืฉื”ื• ื“ื•ืžื” ืขืฉื•ื™ ืœื”ืชืจื—ืฉ
00:55
with reading and programming life.
15
55694
2072
ืœื’ื‘ื™ ืงืจื™ืื” ื•ืชื›ื ื•ืช ืฉืœ ื—ื™ื™ื.
00:58
But before I unpack that,
16
58636
1728
ืื‘ืœ ืœืคื ื™ ืฉืืจื“ ืœืคืจื˜ื™ื ืฉืœ ืืœื”,
01:01
let's just talk about telescopes.
17
61069
2684
ื‘ื•ืื• ื ื“ื‘ืจ ืœืจื’ืข ืขืœ ื˜ืœืกืงื•ืคื™ื.
01:04
Telescopes were overestimated originally in their impact.
18
64798
4311
ื‘ืžืงื•ืจ, ื”ื™ืชื” ื”ืขืจื›ืช ื™ืชืจ ืœื’ื‘ื™ ื”ืฉืคืขืช ื”ื˜ืœืกืงื•ืคื™ื.
01:09
This is one of Galileo's early models.
19
69133
2169
ื–ื”ื• ืื—ื“ ืžื”ื“ื’ืžื™ื ื”ืžื•ืงื“ืžื™ื ืฉืœ ื’ืœื™ืœืื•.
01:12
People thought it was just going to ruin all religion.
20
72090
3359
ืื ืฉื™ื ื—ืฉื‘ื• ืฉื–ื” ื”ื•ืœืš ืœื”ื—ืจื™ื‘ ืœื’ืžืจื™ ืืช ื”ื“ืช.
01:15
(Laughter)
21
75473
1150
(ืฆื—ื•ืง)
01:18
So we're not paying that much attention to telescopes.
22
78862
2714
ืื– ืื ื—ื ื• ืœื ืžืžืฉ ืฉืžื™ื ืœื‘ ืœื˜ืœืกืงื•ืคื™ื.
01:22
But, of course, telescopes launched 10 years ago, as you just heard,
23
82628
4082
ืื‘ืœ ื›ืžื•ื‘ืŸ, ื˜ืœืกืงื•ืคื™ื ืฉืฉื•ื’ืจื• ืœืคื ื™ 10 ืฉื ื™ื, ื›ืคื™ ืฉืฉืžืขืชื ื–ื” ืขืชื”,
01:26
could take this Volkswagen, fly it to the moon,
24
86734
2991
ื™ื›ืœื• ืœืงื—ืช ืืช ื”ืคื•ืœืงืกื•ื•ื’ืŸ ื”ื–ื”, ืœื”ื˜ื™ืก ืื•ืชื• ืœื™ืจื—,
01:29
and you could see the lights on that Volkswagen light up on the moon.
25
89749
5856
ื•ืื– ื™ื›ื•ืœืชื ืœืจืื•ืช ืืช ื”ืื•ืจื•ืช ืฉืœ ื”ืคื•ืœืงืกื•ื•ื’ืŸ ื”ื–ื” ื ื“ืœืงื™ื ืขืœ ื”ื™ืจื—.
01:36
And that's the kind of resolution power that allowed you to see
26
96624
3262
ื•ื–ื•ื”ื™ ืขื•ืฆืžืช ื”ืจื–ื•ืœื•ืฆื™ื” ืฉืื™ืคืฉืจื” ืœื›ื ืœืจืื•ืช
01:40
little specks of dust floating around distant suns.
27
100592
3604
ื’ืจื’ืจื™ ืื‘ืง ืงื˜ื ื™ื ืžืจื—ืคื™ื ืกื‘ื™ื‘ ืฉืžืฉื•ืช ืจื—ื•ืงื•ืช.
01:44
Imagine for a second that this was a sun a billion light years away,
28
104220
3464
ืฉืขืจื• ื‘ื ืคืฉื›ื ืœืจื’ืข ืฉื–ื• ื”ื™ืชื” ืฉืžืฉ ื‘ืžืจื—ืง ืžื™ืœื™ืืจื“ ืฉื ื•ืช ืื•ืจ,
01:48
and you had a little speck of dust that came in front of it.
29
108310
2927
ื•ืฉืจืื™ืชื ื’ืจื’ืจ ืื‘ืง ืงื˜ืŸ ืฉื”ื•ืคื™ืข ืœืคื ื™ื”.
01:51
That's what detecting an exoplanet is like.
30
111566
2501
ื”ื“ื‘ืจ ื“ื•ืžื” ืœื’ื™ืœื•ื™ ื›ื•ื›ื‘ ืœื›ืช ืžื—ื•ืฅ ืœืžืขืจื›ืช ื”ืฉืžืฉ.
01:55
And the cool thing is, the telescopes that are now being launched
31
115268
3790
ื•ื”ื“ื‘ืจ ื”ืžื“ืœื™ืง ื”ื•ื, ืฉื”ื˜ืœืกืงื•ืคื™ื ืื•ืชื ืžืฉื’ืจื™ื ื‘ื™ืžื™ื ื•
02:00
would allow you to see a single candle lit on the moon.
32
120138
3005
ื™ืืคืฉืจื• ืœืจืื•ืช ืื•ืจ ืฉืœ ื ืจ ื‘ื•ื“ื“ ืขืœ ืคื ื™ ื”ื™ืจื—.
02:04
And if you separated it by one plate,
33
124279
2828
ื•ืื ืชืคืจื™ื“ื• ืื•ืชื• ื‘ืืžืฆืขื•ืช ืœื•ื—ื™ืช ืื—ืช,
02:07
you could see two candles separately at that distance.
34
127131
2794
ืชื•ื›ืœื• ืœืจืื•ืช ืฉื ื™ ื ืจื•ืช ื ืคืจื“ื™ื ื‘ืžืจื—ืง ื”ื–ื”.
02:11
And that's the kind of resolution that you need
35
131124
2813
ื•ื–ื”ื• ืกื“ืจ ื”ื’ื•ื“ืœ ืฉืœ ืจื–ื•ืœื•ืฆื™ื” ืฉืชืฆื˜ืจื›ื•
02:13
to begin to image that little speck of dust
36
133961
2468
ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœื‘ื ื•ืช ืืช ื”ืชืžื•ื ื” ืฉืœ ื’ืจื’ืจ ื”ืื‘ืง ื”ื–ื”
02:16
as it comes around the sun
37
136453
1286
ื›ืืฉืจ ื”ื•ื ืžื•ืคื™ืข ืกื‘ื™ื‘ ื”ืฉืžืฉ
02:17
and see if it has a blue-green signature.
38
137763
2049
ื•ืœืจืื•ืช ืื ื™ืฉ ืœื• ื—ืชื™ืžื” ื›ื—ื•ืœื”-ื™ืจื•ืงื”.
02:21
And if it does have a blue-green signature,
39
141120
2071
ื•ืื ื™ืฉ ืœื• ื—ืชื™ืžื” ื›ื—ื•ืœื”-ื™ืจื•ืงื”,
02:23
it means that life is common in the universe.
40
143215
2220
ื–ื” ืื•ืžืจ ืฉื—ื™ื™ื ื”ื ื ืคื•ืฆื™ื ื‘ื™ืงื•ื.
02:25
The first time you ever see a blue-green signature on a distant planet,
41
145459
4196
ื‘ืคืขื ื”ืจืืฉื•ื ื” ืฉืชืจืื• ื—ืชื™ืžื” ื›ื—ื•ืœื”-ื™ืจื•ืงื” ืขืœ ื›ื•ื›ื‘ ืœื›ืช ืžืจื•ื—ืง,
02:29
it means there's photosynthesis there,
42
149679
1993
ืชื“ืขื• ืฉื™ืฉ ืฉื ืคื•ื˜ื•ืกื™ื ื˜ื–ื”,
02:31
there's water there,
43
151696
1281
ื™ืฉ ืฉื ืžื™ื,
02:33
and the chances that you saw the only other planet with photosynthesis
44
153001
3872
ื•ืฉื”ืกื™ื›ื•ื™ ืฉืจืื™ืชื ืืช ื›ื•ื›ื‘ ื”ืœื›ืช ื”ืื—ืจ ื”ื™ื—ื™ื“ ืฉื™ืฉ ื‘ื• ืคื•ื˜ื•ืกื™ื ื˜ื–ื”
02:36
are about zero.
45
156897
1363
ืฉื•ืืฃ ืœืืคืก.
02:39
And that's a calendar-changing event.
46
159108
1896
ื•ื–ื”ื• ืื™ืจื•ืข ืžื›ืจื™ืข ื‘ื–ืžืŸ.
02:41
There's a before and after we were alone in the universe:
47
161670
2752
ื™ืฉ ืœืคื ื™ ื•ืื—ืจื™ ื”ื™ื•ื ืฉื‘ื• ื”ื™ื™ื ื• ืœื‘ื“ ื‘ื™ืงื•ื,
02:44
forget about the discovery of whatever continent.
48
164446
2470
ืฉื›ื—ื• ืžื”ื’ื™ืœื•ื™ ืฉืœ ื™ื‘ืฉืช ื–ื• ืื• ืื—ืจืช.
02:48
So as you're thinking about this,
49
168751
1580
ืื– ื›ื›ืœ ืฉื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
02:50
we're now beginning to be able to image most of the universe.
50
170355
2902
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขื›ืฉื™ื• ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืงื‘ืœ ืชืžื•ื ื•ืช ืฉืœ ืจื•ื‘ื• ืฉืœ ื”ื™ืงื•ื.
02:53
And that is a time of miracle and wonder.
51
173281
2254
ื•ื–ื”ื• ืขื™ื“ืŸ ืฉืœ ื ืกื™ื ื•ื ืคืœืื•ืช.
02:55
And we kind of take that for granted.
52
175559
2352
ื•ืื ื—ื ื• ื“ื™ ืœื•ืงื—ื™ื ืืช ื–ื” ื›ืžื•ื‘ืŸ ืžืืœื™ื•.
02:59
Something similar is happening in life.
53
179562
1915
ืžืฉื”ื• ื“ื•ืžื” ืงื•ืจื” ื‘ื”ืงืฉืจ ืฉืœ ื”ื—ื™ื™ื.
03:01
So we're hearing about life in these little bits and pieces.
54
181501
3038
ืื ื—ื ื• ืฉื•ืžืขื™ื ืขืœ ื”ื—ื™ื™ื ื“ืจืš ื”ืคื™ืกื•ืช ื•ื”ื—ืชื™ื›ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื”:
03:04
We hear about CRISPR, and we hear about this technology,
55
184563
2658
ืื ื—ื ื• ืฉื•ืžืขื™ื ืขืœ CRISPR, ื•ืื ื—ื ื• ืฉื•ืžืขื™ื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ืืช,
03:07
and we hear about this technology.
56
187245
1666
ื•ืขืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื”ื™ื.
03:08
But the bottom line on life is that life turns out to be code.
57
188935
3388
ืื‘ืœ ื”ืฉื•ืจื” ื”ืชื—ืชื•ื ื” ืœื’ื‘ื™ ื”ื—ื™ื™ื ื”ื™ื ืฉืžืกืชื‘ืจ ืฉื”ื—ื™ื™ื ื”ื ืงื•ื“.
03:13
And life as code is a really important concept because it means,
58
193900
3950
ื•ื”ื—ื™ื™ื ื›ืงื•ื“ ื”ื•ื ืขืงืจื•ืŸ ืžืžืฉ ื—ืฉื•ื‘, ื›ื™ ืžืฉืžืขื•ืชื•,
03:17
just in the same way as you can write a sentence
59
197874
3210
ืฉื‘ื“ื™ื•ืง ื›ืžื• ืฉืืชื ื™ื›ื•ืœื™ื ืœื›ืชื•ื‘ ืžืฉืคื˜
03:21
in English or in French or Chinese,
60
201108
3118
ื‘ืื ื’ืœื™ืช ืื• ื‘ืฆืจืคืชื™ืช ืื• ื‘ืกื™ื ื™ืช,
03:25
just in the same way as you can copy a sentence,
61
205146
2906
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ืขืชื™ืง ืžืฉืคื˜,
03:28
just in the same way as you can edit a sentence,
62
208076
2526
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืชื ื™ื›ื•ืœื™ื ืœืขืจื•ืš ืžืฉืคื˜,
03:30
just in the same way as you can print a sentence,
63
210626
2350
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ื“ืคื™ืก ืžืฉืคื˜,
03:33
you're beginning to be able to do that with life.
64
213000
2719
ื›ืš ืืชื ืžืชื—ื™ืœื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื ื”ื—ื™ื™ื.
03:37
It means that we're beginning to learn how to read this language.
65
217237
3511
ื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืœืžื•ื“ ืื™ืš ืœืงืจื•ื ืืช ื”ืฉืคื” ื”ื–ืืช.
03:40
And this, of course, is the language that is used by this orange.
66
220772
3236
ื•ื–ืืช, ื›ืžื•ื‘ืŸ, ื”ื™ื ื”ืฉืคื” ืฉืžืฉืžืฉืช ืืช ื”ืชืคื•ื– ื”ื–ื”.
03:44
So how does this orange execute code?
67
224702
1796
ืื– ืื™ืš ื”ืชืคื•ื– ื”ื–ื” ืžื‘ืฆืข ืงื•ื“?
03:46
It doesn't do it in ones and zeroes like a computer does.
68
226522
2708
ื”ื•ื ืื™ื ื• ืขื•ืฉื” ื–ืืช ื‘ืฆื•ืจื” ืฉืœ ืื—ื“ื™ื ื•ืืคืกื™ื ื›ืžื• ืฉืขื•ืฉื” ืžื—ืฉื‘.
03:49
It sits on a tree, and one day it does:
69
229254
1885
ื”ื•ื ื™ื•ืฉื‘ ืขืœ ืขืฅ, ื•ื™ื•ื ืื—ื“ ืžื” ืฉื”ื•ื ืขื•ืฉื”:
03:51
plop!
70
231163
1150
ืคืœื•ืค!
03:52
And that means: execute.
71
232819
1805
ื•ื–ื” ืžืฉืžืขื•: ื‘ืฆืข ืงื•ื“.
03:55
AATCAAG: make me a little root.
72
235149
3272
ืงื•ื“ AATCAAG: ืฆื•ืจ ืœื™ ืฉื•ืจืฉ ืงื˜ืŸ.
03:59
TCGACC: make me a little stem.
73
239057
2502
ืงื•ื“ TCGACC: ืฆื•ืจ ืœื™ ื’ื‘ืขื•ืœ ืงื˜ืŸ.
04:01
GAC: make me some leaves. AGC: make me some flowers.
74
241583
3438
ืงื•ื“ GAC: ืฆื•ืจ ืœื™ ื›ืžื” ืขืœื™ื. ืงื•ื“ AGC: ืฆื•ืจ ืœื™ ื›ืžื” ืคืจื—ื™ื.
04:05
And then GCAA: make me some more oranges.
75
245045
2857
ื•ืื—ืจ GCAA: ืฆื•ืจ ืœื™ ืขื•ื“ ื›ืžื” ืชืคื•ื–ื™ื.
04:08
If I edit a sentence in English on a word processor,
76
248984
4073
ื›ืืฉืจ ืื ื™ ืขื•ืจืš ืžืฉืคื˜ ื‘ืื ื’ืœื™ืช ื‘ืืžืฆืขื•ืช ืžืขื‘ื“ ืชืžืœื™ืœื™ื,
04:15
then what happens is you can go from this word to that word.
77
255153
3441
ืžื” ืฉืงื•ืจื” ื”ื•ื ืฉืื ื™ ื™ื›ื•ืœ ืœืขื‘ื•ืจ ืžื”ืžื™ืœื” ื”ื–ื• ืœืžื™ืœื” ื”ื–ืืช.
04:20
If I edit something in this orange
78
260134
2136
ืื ืื ื™ ืขื•ืจืš ืžืฉื”ื• ื‘ืชืคื•ื– ื”ื–ื”
04:22
and put in GCAAC, using CRISPR or something else that you've heard of,
79
262294
4983
ื•ืžื›ื ื™ืก ืคื ื™ืžื” GCAAC, ื‘ืืžืฆืขื•ืช CRISPR ืื• ืžืฉื”ื• ืื—ืจ ืฉืฉืžืขืชื ืขืœื™ื•,
04:28
then this orange becomes a lemon,
80
268261
1797
ืื– ื”ืชืคื•ื– ื”ื–ื” ื”ื•ืคืš ืœืœื™ืžื•ืŸ,
04:30
or it becomes a grapefruit,
81
270957
1548
ืื• ืฉื”ื•ื ื”ื•ืคืš ืœืืฉื›ื•ืœื™ืช,
04:32
or it becomes a tangerine.
82
272529
1657
ืื• ืฉื”ื•ื ื”ื•ืคืš ืœืžื ื“ืจื™ื ื”.
04:35
And if I edit one in a thousand letters,
83
275102
2018
ื•ืื ืื ื™ ืขื•ืจืš ืื—ืช ืžื›ืœ ืืœืฃ ืื•ืชื™ื•ืช,
04:37
you become the person sitting next to you today.
84
277144
2360
ืืชื” ื”ื•ืคืš ืœื”ื™ื•ืช ื”ืื“ื ืฉื™ื•ืฉื‘ ืœื™ื“ืš ื”ื™ื•ื.
04:40
Be more careful where you sit.
85
280757
1520
ืชื”ื™ื• ื™ื•ืชืจ ื–ื”ื™ืจื™ื ื‘ื‘ื—ื™ืจืช ืžืงื•ื ื”ื™ืฉื™ื‘ื” ืฉืœื›ื.
04:42
(Laughter)
86
282301
1189
(ืฆื—ื•ืง)
04:45
What's happening on this stuff is it was really expensive to begin with.
87
285014
3475
ืžื” ืฉืงื•ืจื” ืขื ื”ื ื•ืฉื ื”ื–ื” ื”ื•ื ืฉื–ื” ื”ื™ื” ืžืžืฉ ื™ืงืจ ื‘ืชื—ื™ืœื”.
04:48
It was like long-distance calls.
88
288513
1695
ื–ื” ื”ื™ื” ื“ื•ืžื” ืœืฉื™ื—ื•ืช ื‘ื™ื ืœืื•ืžื™ื•ืช.
04:51
But the cost of this is dropping 50 percent faster than Moore's law.
89
291399
3606
ืื‘ืœ ื”ืขืœื•ืช ืฉืœ ื–ื” ืฆื•ื ื—ืช ื‘-50 ืื—ื•ื– ื™ื•ืชืจ ืžื”ืจ ืžืืฉืจ ื—ื•ืง ืžื•ึผืจ.
04:55
The first $200 full genome was announced yesterday by Veritas.
90
295909
3832
ื”ื’ื ื•ื ื”ืžืœื ื”ืจืืฉื•ืŸ ื‘-200 ื“ื•ืœืจ ื”ื•ื›ืจื– ืืชืžื•ืœ ืข"ื™ "ื•ืจื™ื˜ืืก".
05:00
And so as you're looking at these systems,
91
300494
2130
ื•ื›ืš ื›ืืฉืจ ืืชื ืžืชื‘ื•ื ื ื™ื ื‘ืžืขืจื›ื•ืช ื”ืืœื”,
05:02
it doesn't matter, it doesn't matter, it doesn't matter, and then it does.
92
302648
3802
ื–ื” ืœื ืžืฉื ื”, ื–ื” ืœื ืžืฉื ื”, ื–ื” ืœื ืžืฉื ื”, ื•ืื– ื–ื” ืžืฉื ื”.
05:06
So let me just give you the map view of this stuff.
93
306474
3405
ืื– ื”ืจืฉื• ืœื™ ืœื”ืฆื™ื’ ืœื›ื ืชืฆื•ืจืช ืžืคื” ืฉืœ ื”ื ื•ืฉื ื”ื–ื”.
05:10
This is a big discovery.
94
310973
2559
ื–ื•ื”ื™ ืชื’ืœื™ืช ื’ื“ื•ืœื”.
05:13
There's 23 chromosomes.
95
313556
1923
ื™ืฉื ื 23 ื›ืจื•ืžื•ื–ื•ืžื™ื.
05:15
Cool.
96
315503
1228
ื’ื“ื•ืœ!
05:17
Let's now start using a telescope version, but instead of using a telescope,
97
317287
3679
ื”ื‘ื” ื ืชื—ื™ืœ ืขื ื’ื™ืจืกืช ื˜ืœืกืงื•ืค, ืืœื ืฉื‘ืžืงื•ื ืœื”ืฉืชืžืฉ ื‘ื˜ืœืกืงื•ืค,
05:20
let's use a microscope to zoom in
98
320990
2320
ื”ื‘ื” ื ืฉืชืžืฉ ื‘ืžื™ืงืจื•ืกืงื•ืค ื›ื“ื™ ืœื”ื’ื“ื™ืœ
05:23
on the inferior of those chromosomes,
99
323334
2072
ืืช ื”ื ื—ื•ึผืช ืฉื‘ื›ืจื•ืžื•ื–ื•ืžื™ื ื”ืืœื”,
05:25
which is the Y chromosome.
100
325430
1621
ืฉื”ื•ื ื›ืจื•ืžื•ื–ื•ื ื”-Y.
05:28
It's a third the size of the X. It's recessive and mutant.
101
328432
3014
ื”ื•ื ืฉืœื™ืฉ ืžื’ื•ื“ืœื• ืฉืœ ื”-X. ื”ื•ื ืจืฆืกื™ื‘ื™ ื•ื‘ืขืœ ืžื•ื˜ืฆื™ื”.
05:32
But hey,
102
332443
1151
ืื‘ืœ ื”ึตื™ื™,
05:34
just a male.
103
334262
1219
ืจืง ื–ื›ืจ.
05:36
And as you're looking at this stuff,
104
336914
2280
ื•ื›ืืฉืจ ืืชื ืžืชื‘ื•ื ื ื™ื ื‘ื“ื‘ืจ ื”ื–ื”,
05:39
here's kind of a country view
105
339218
3450
ื›ืืŸ ื–ื” ืžืขื™ืŸ ืžื‘ื˜ ื‘ืจืžืช ื”ืืจืฅ ื›ื•ืœื”,
05:42
at a 400 base pair resolution level,
106
342692
2204
ื‘ืจืžืช ืจื–ื•ืœื•ืฆื™ื” ื‘ืกื™ืกื™ืช ืฉืœ 400,
05:44
and then you zoom in to 550, and then you zoom in to 850,
107
344920
3419
ื•ืื– ืืชื ืžื’ื“ื™ืœื™ื ืขื•ื“ ืœ-550, ื•ืื– ืืชื ืžื’ื“ื™ืœื™ื ืœ-850,
05:48
and you can begin to identify more and more genes as you zoom in.
108
348363
3285
ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœื–ื”ื•ืช ืขื•ื“ ื•ืขื•ื“ ื’ึถื ื™ื ื›ื›ืœ ืฉืืชื ืžื’ื“ื™ืœื™ื ืืช ื”ืชืžื•ื ื”.
05:52
Then you zoom in to the state level,
109
352249
2304
ืื—ืจ ื›ืš ืืชื ืžื’ื“ื™ืœื™ื ืขื•ื“ ืขื“ ืœืจืžืช ื”ืžื“ื™ื ื” ื”ื‘ื•ื“ื“ืช,
05:55
and you can begin to tell who's got leukemia,
110
355473
2804
ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืœืืžืจ ืœืžื™ ื™ืฉ ืกืจื˜ืŸ-ื“ื,
05:59
how did they get leukemia, what kind of leukemia do they have,
111
359543
3024
ืื™ืš ื”ื ืงื™ื‘ืœื• ืกืจื˜ืŸ-ื“ื, ืื™ื–ื” ืกื•ื’ ืฉืœ ืกืจื˜ืŸ ื“ื ื™ืฉ ืœื”ื,
06:02
what shifted from what place to what place.
112
362591
2064
ืžื” ื ื“ื“ ืžืื™ื–ื” ืื™ื–ื•ืจ ืœืื™ื–ื” ืื™ื–ื•ืจ.
06:05
And then you zoom in to the Google street view level.
113
365330
2858
ื•ืื– ืืชื ืžื’ื“ื™ืœื™ื ืขื•ื“ ืœืจืžืช ื”ืจื—ื•ื‘ ื”ื‘ื•ื“ื“.
06:09
So this is what happens if you have colorectal cancer
114
369387
2673
ืื– ื–ื” ืžื” ืฉืงื•ืจื” ืื ื™ืฉ ืœื›ื ืกืจื˜ืŸ ื‘ืžืขืจื›ืช ื”ืขื™ื›ื•ืœ ื”ืชื—ืชื•ื ื”
06:12
for a very specific patient on the letter-by-letter resolution.
115
372084
4207
ืขื‘ื•ืจ ื—ื•ืœื” ืžืื“ ืžืกื•ื™ื™ื, ื‘ืจื–ื•ืœื•ืฆื™ื” ืฉืœ ืื•ืช-ืื—ืจ-ืื•ืช.
06:18
So what we're doing in this stuff is we're gathering information
116
378148
3110
ืื– ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ืขื ื”ื“ื‘ืจ ื”ื–ื” ื”ื•ื ืื™ืกื•ืฃ ื ืชื•ื ื™ื
06:21
and just generating enormous amounts of information.
117
381282
2516
ื•ื™ืฆื™ืจืช ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืžื™ื“ืข.
06:23
This is one of the largest databases on the planet
118
383822
2874
ื–ื”ื• ืื—ื“ ืžื‘ืกื™ืกื™ ื”ื ืชื•ื ื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ,
06:26
and it's growing faster than we can build computers to store it.
119
386720
3872
ื”ื•ื ื’ื“ืœ ืžื”ืจ ื™ื•ืชืจ ืžืงืฆื‘ ื™ื™ืฆื•ืจ ื”ืžื—ืฉื‘ื™ื ืฉื™ื›ื•ืœื™ื ืœืื’ื•ืจ ืื•ืชื•.
06:32
You can create some incredible maps with this stuff.
120
392063
2466
ืืชื ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืžืคื•ืช ืžื“ื”ื™ืžื•ืช ืขื ื”ื—ื•ืžืจ ื”ื–ื”.
06:35
You want to understand the plague and why one plague is bubonic
121
395292
2971
ืืชื ืจื•ืฆื™ื ืœื”ื‘ื™ืŸ ืืช ื”ื ึถื’ืข ื•ืžื“ื•ืข ื ื’ืข ืื—ื“ ื”ื•ื ื“ึถื‘ึถืจ
06:38
and the other one is a different kind of plague
122
398287
2224
ื•ื”ืื—ืจ ื”ื•ื ืกื•ื’ ืื—ืจ ืฉืœ ื ื’ืข
06:40
and the other one is a different kind of plague?
123
400535
2310
ื•ื”ืื—ืจ ื”ื•ื ืขื•ื“ ืกื•ื’ ืื—ืจ ืฉืœ ื ื’ืข?
06:42
Well, here's a map of the plague.
124
402869
1730
ื•ื‘ื›ืŸ, ื”ื ื” ื”ืžืคื” ืฉืœ ื”ื ื’ืข.
06:45
Some are absolutely deadly to humans,
125
405037
1820
ื›ืžื” ืžื”ื ืœืœื ืกืคืง ืงื˜ืœื ื™ื™ื ืขื‘ื•ืจ ื‘ื ื™-ืื“ื,
06:46
some are not.
126
406881
1185
ื›ืžื” ืžื”ื ืœื.
06:48
And note, by the way, as you go to the bottom of this,
127
408486
2596
ื•ืฉื™ืžื• ืœื‘, ื“ืจืš ืื’ื‘, ื›ืืฉืจ ืืชื ื™ื•ืจื“ื™ื ืœืฉื•ืจืฉื• ืฉืœ ื”ื“ื‘ืจ ื”ื–ื”,
06:51
how does it compare to tuberculosis?
128
411106
1753
ืื™ืš ื”ื•ื ื‘ื”ืฉื•ื•ืื” ืœืฉื—ืคืช?
06:53
So this is the difference between tuberculosis and various kinds of plagues,
129
413708
3629
ืื– ื–ื”ื• ื”ื”ื‘ื“ืœ ืฉื‘ื™ืŸ ืฉื—ืคืช ืœื‘ื™ืŸ ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื ื’ืขื™ื,
06:57
and you can play detective with this stuff,
130
417361
2335
ื•ืืชื ื™ื›ื•ืœื™ื ืœืฉื—ืง ื›ื‘ืœืฉื™ื ืขื ื”ื—ื•ืžืจื™ื ื”ืืœื”,
06:59
because you can take a very specific kind of cholera
131
419720
2475
ื›ื™ ืืชื ื™ื›ื•ืœื™ื ืœืงื—ืช ืกื•ื’ ืžืื“ ืžืกื•ื™ื™ื ืฉืœ ื›ื•ืœืจื”
07:02
that affected Haiti,
132
422219
1190
ืฉืคื’ืข ื‘ื”ืื™ื˜ื™,
07:04
and you can look at which country it came from,
133
424377
2686
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžืื™ื–ื• ืžื“ื™ื ื” ื”ื•ื ื”ื’ื™ืข,
07:07
which region it came from,
134
427087
1726
ืžืื™ื–ื” ืื™ื–ื•ืจ ื”ื•ื ื”ื’ื™ืข,
07:09
and probably which soldier took that from that African country to Haiti.
135
429496
4742
ื•ืงืจื•ื‘ ืœื•ื“ืื™ ืžื™ ื”ื•ื ื”ื—ื™ื™ืœ ืฉื ืฉื ืื•ืชื• ืžื”ืžื“ื™ื ื” ื”ืืคืจื™ืงืื™ืช ื”ื”ื™ื ืœื”ืื™ื˜ื™.
07:17
Zoom out.
136
437133
1512
ืžืชืจื—ืงื™ื ื•ืžืงื˜ื™ื ื™ื.
07:18
It's not just zooming in.
137
438669
1571
ืœื ืžื“ื•ื‘ืจ ืจืง ื‘ื”ืชืงืจื‘ื•ืช ื•ื”ื’ื“ืœื”.
07:21
This is one of the coolest maps ever done by human beings.
138
441042
2854
ื–ื•ื”ื™ ืื—ืช ื”ืžืคื•ืช ื”ื ื”ื“ืจื•ืช ื‘ื™ื•ืชืจ ืฉื ื•ืฆืจื” ืื™ ืคืขื ืข"ื™ ื‘ื ื™-ืื“ื.
07:24
What they've done is taken all the genetic information they have
139
444446
3056
ืžื” ืฉื”ื ืขืฉื• ื–ื” ืฉื”ื ืœืงื—ื• ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื’ื ื˜ื™ ืฉื”ื™ื” ืœื”ื
07:27
about all the species,
140
447526
1481
ืขืœ ื›ืœ ื”ืžื™ื ื™ื,
07:29
and they've put a tree of life on a single page
141
449031
3430
ื•ื”ื ื™ืฆืจื• ืืช ืขืฅ ื”ื—ื™ื™ื ืขืœ ื“ืฃ ื™ื—ื™ื“
07:32
that you can zoom in and out of.
142
452485
1578
ื‘ืชื•ื›ื• ืืชื ื™ื›ื•ืœื™ื ืœื”ื’ื“ื™ืœ ื•ืœื”ืงื˜ื™ืŸ ืืช ื”ืชืžื•ื ื”.
07:34
So this is what came first, how did it diversify, how did it branch,
143
454484
3721
ืื– ื–ื” ืžื” ืฉื”ื•ืคื™ืข ื‘ื”ืชื—ืœื”, ืื™ืš ื”ื•ื ื”ืชื’ื•ื•ืŸ, ืื™ืš ื”ื•ื ื”ืกืชืขืฃ,
07:38
how large is that genome,
144
458229
1230
ื›ืžื” ื’ื“ื•ืœ ื”ื•ื ื”ื’ื ื•ื ื”ื–ื”,
07:39
on a single page.
145
459483
1197
ืขืœ ื“ืฃ ื™ื—ื™ื“.
07:41
It's kind of the universe of life on Earth,
146
461619
2063
ื–ื”ื• ืžืขื™ืŸ ืขื•ืœื ื”ื—ื™ื™ื ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ,
07:43
and it's being constantly updated and completed.
147
463706
2449
ื•ื”ื•ื ืขื•ื‘ืจ ื›ืœ ื”ื–ืžืŸ ืขื“ื›ื•ื ื™ื ื•ื”ืฉืœืžื•ืช.
07:46
And so as you're looking at this stuff,
148
466982
1859
ื•ื›ืš ื›ืืฉืจ ืืชื ืžืกืชื›ืœื™ื ืขืœ ื”ื“ื‘ืจ ื”ื–ื”,
07:48
the really important change is the old biology used to be reactive.
149
468865
3351
ื”ืฉื™ื ื•ื™ ื”ื—ืฉื•ื‘ ื‘ืืžืช ื”ื•ื ืฉื”ื‘ื™ื•ืœื•ื’ื™ื” ื”ื™ืฉื ื” ื”ื™ืชื” ืจึตื™ืึทืงื˜ื™ื‘ื™ืช --
07:52
You used to have a lot of biologists that had microscopes,
150
472240
2720
ื”ื™ื• ืœื›ื ื”ืจื‘ื” ื‘ื™ื•ืœื•ื’ื™ื ืžืื—ื•ืจื™ ืžื™ืงืจื•ืกืงื•ืคื™ื,
07:54
and they had magnifying glasses and they were out observing animals.
151
474984
3299
ื•ื”ื™ื• ืœื”ื ื–ื›ื•ื›ื™ื•ืช ืžื’ื“ืœืช ื•ื”ื ืฆืคื• ื‘ื—ื™ื•ืช ืฉื ื‘ื—ื•ืฅ.
07:58
The new biology is proactive.
152
478897
1869
ื”ื‘ื™ื•ืœื•ื’ื™ื” ื”ื—ื“ืฉื” ื”ื™ื ืคืจื•ืืงื˜ื™ื‘ื™ืช.
08:01
You don't just observe stuff, you make stuff.
153
481433
3019
ืืชื ืœื ืจืง ืžืชื‘ื•ื ื ื™ื ื‘ื“ื‘ืจื™ื, ืืชื ืžื™ื™ืฆืจื™ื ื“ื‘ืจื™ื.
08:05
And that's a really big change
154
485135
1648
ื•ื–ื”ื• ืื›ืŸ ืฉื™ื ื•ื™ ื’ื“ื•ืœ
08:06
because it allows us to do things like this.
155
486807
2809
ื›ื™ ื”ื•ื ืžืืคืฉืจ ืœื ื• ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืžื• ื–ื”.
08:10
And I know you're really excited by this picture.
156
490559
2467
ื•ืื ื™ ื™ื•ื“ืข ืฉืืชื ืžืžืฉ ืžืชืœื”ื‘ื™ื ืžื”ืชืžื•ื ื” ื”ื–ืืช.
08:13
(Laughter)
157
493050
1111
(ืฆื—ื•ืง)
08:14
It only took us four years and 40 million dollars
158
494185
2374
ื–ื” ืœืงื— ืœื ื• ืจืง 4 ืฉื ื™ื ื•-40 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ
08:16
to be able to take this picture.
159
496583
1602
ื›ื“ื™ ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืงื‘ืœ ืืช ื”ืชืžื•ื ื” ื”ื–ืืช.
08:18
(Laughter)
160
498209
1230
(ืฆื—ื•ืง)
08:19
And what we did
161
499463
1371
ื•ืžื” ืฉืขืฉื™ื ื•
08:21
is we took the full gene code out of a cell --
162
501586
3275
ื”ื•ื ืฉื”ื•ืฆืื ื• ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื”ืฉืœื ืžืชื•ืš ื”ืชื --
08:24
not a gene, not two genes, the full gene code out of a cell --
163
504885
3911
ืœื ื’ืŸ ืื—ื“, ืœื ืฉื ื™ ื’ื ื™ื, ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื”ืฉืœื ืฉืœ ืชื ื™ื—ื™ื“ --
08:30
built a completely new gene code,
164
510016
1840
ื‘ื ื™ื ื• ืงื•ื“ ื’ื ื˜ื™ ื—ื“ืฉ ืœื’ืžืจื™,
08:32
inserted it into the cell,
165
512825
1575
ื”ื›ื ืกื ื• ืื•ืชื• ืœืชื•ืš ื”ืชื,
08:34
figured out a way to have the cell execute that code
166
514424
2932
ืžืฆืื ื• ื“ืจืš ืœื’ืจื•ื ืœืชื ืœื‘ืฆืข ืืช ื”ืงื•ื“ ื”ื–ื”
08:37
and built a completely new species.
167
517380
2254
ื•ื›ืš ื™ืฆืจื ื• ืžื™ืŸ ื—ื“ืฉ ืœื—ืœื•ื˜ื™ืŸ.
08:40
So this is the world's first synthetic life form.
168
520884
2485
ื–ื•ื”ื™ ืฆื•ืจืช ื”ื—ื™ื™ื ื”ืกื™ื ื˜ื˜ื™ืช ื”ืจืืฉื•ื ื” ื‘ืขื•ืœื.
08:45
And so what do you do with this stuff?
169
525810
1895
ื•ืžื” ืืชื ืขื•ืฉื™ื ืขื ื”ื“ื‘ืจ ื”ื–ื”?
08:48
Well, this stuff is going to change the world.
170
528430
2204
ื•ื‘ื›ืŸ, ื”ื“ื‘ืจ ื”ื–ื” ืขื•ืžื“ ืœืฉื ื•ืช ืืช ื”ืขื•ืœื.
08:51
Let me give you three short-term trends
171
531417
1939
ื”ืจืฉื• ืœื™ ืœื”ืฆื™ื’ ืœื›ื ืฉืœื•ืฉ ืžื’ืžื•ืช ืœื˜ื•ื•ื— ื”ืงืฆืจ
08:53
in terms of how it's going to change the world.
172
533380
2255
ืฉืงืฉื•ืจื•ืช ืœืื™ืš ื”ื“ื‘ืจ ื”ื–ื” ืขื•ืžื“ ืœืฉื ื•ืช ืืช ื”ืขื•ืœื.
08:56
The first is we're going to see a new industrial revolution.
173
536269
2921
ื”ืจืืฉื•ื ื”, ืื ื—ื ื• ืขื•ืžื“ื™ื ืœืจืื•ืช ืžื”ืคื™ื›ื” ืชืขืฉื™ื™ืชื™ืช ื—ื“ืฉื”.
08:59
And I actually mean that literally.
174
539674
1701
ื•ืื ื™ ืžืชื›ื•ื•ืŸ ืœื–ื” ืคืฉื•ื˜ื• ื›ืžืฉืžืขื•.
09:01
So in the same way as Switzerland and Germany and Britain
175
541992
4491
ื‘ืื•ืชื” ื”ื“ืจืš ื‘ื” ืฉื•ื•ื™ื™ืฅ ื•ื’ืจืžื ื™ื” ื•ื‘ืจื™ื˜ื ื™ื”
09:06
changed the world with machines like the one you see in this lobby,
176
546507
3658
ืฉื™ื ื• ืืช ื”ืขื•ืœื ืขื ื”ืžื›ื•ื ื•ืช ื›ืžื• ื”ืื—ืช ืฉืืชื ืจื•ืื™ื ื‘ืœื•ื‘ื™ ื”ื–ื”,
09:11
created power --
177
551537
1196
ื™ืฆืจื• ืขื•ืฆืžื” --
09:13
in the same way CERN is changing the world,
178
553273
2664
ื‘ืื•ืชื” ื”ื“ืจืš ื‘ื” CERN ืžืฉื ื” ืืช ื”ืขื•ืœื,
09:15
using new instruments and our concept of the universe --
179
555961
3347
ื‘ืืžืฆืขื•ืช ืžื›ืฉื™ืจื™ื ื—ื“ืฉื™ื ื•ืชืคื™ืกืชื ื• ืืช ื”ื™ืงื•ื --
09:20
programmable life forms are also going to change the world
180
560060
2894
ืฆื•ืจื•ืช ื—ื™ื™ื ื‘ืจื•ืช-ืชื›ื ื•ืช ืขื•ืžื“ื•ืช ืืฃ ื”ืŸ ืœืฉื ื•ืช ืืช ื”ืขื•ืœื
09:23
because once you can program cells
181
563810
1655
ื›ื™ ืžืจื’ืข ืฉืืชื ื™ื›ื•ืœื™ื ืœืชื›ื ืช ืชืื™ื
09:25
in the same way as you program your computer chip,
182
565489
2528
ื‘ืื•ืชื” ื”ื“ืจืš ื‘ื” ืืชื ืžืชื›ื ืชื™ื ืืช ืจื›ื™ื‘ ื”ืžื—ืฉื‘ ืฉืœื›ื,
09:29
then you can make almost anything.
183
569736
1693
ืื– ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื›ืžืขื˜ ื›ืœ ื“ื‘ืจ.
09:32
So your computer chip can produce photographs,
184
572369
2779
ืจื›ื™ื‘ ื”ืžื—ืฉื‘ ืฉืœื›ื ื™ื›ื•ืœ ืœื”ืคื™ืง ืฆื™ืœื•ืžื™ื,
09:35
can produce music, can produce film,
185
575172
2073
ื™ื›ื•ืœ ืœื”ืคื™ืง ืžื•ื–ื™ืงื”, ื™ื›ื•ืœ ืœื”ืคื™ืง ืกืจื˜,
09:37
can produce love letters, can produce spreadsheets.
186
577269
2413
ื™ื›ื•ืœ ืœื”ืคื™ืง ืžื›ืชื‘ื™ ืื”ื‘ื”, ื™ื›ื•ืœ ืœื”ืคื™ืง ื’ืœื™ื•ื ื•ืช-ื ืชื•ื ื™ื.
09:39
It's just ones and zeroes flying through there.
187
579706
2244
ืืœื• ืจืง ืืคืกื™ื ื•ืื—ื“ื™ื ืฉืžืจื—ืคื™ื ืœื”ื ืฉื.
09:42
If you can flow ATCGs through cells,
188
582604
2605
ืื ื ื•ื›ืœ ืœื’ืจื•ื ืœืื•ืชื™ื•ืช ATCG ืœืจื—ืฃ ื“ืจืš ืชืื™ื,
09:46
then this software makes its own hardware,
189
586123
3054
ืื– ื”ืชื•ื›ื ื” ื”ื–ืืช ืชื™ืฆื•ืจ ื—ื•ืžืจื” ืžืฉืœื”,
09:49
which means it scales very quickly.
190
589201
2072
ืžื” ืฉืื•ืžืจ ืฉื”ื™ื ืชื™ื’ื“ืœ ื‘ืžื”ื™ืจื•ืช ืจื‘ื”.
09:52
No matter what happens,
191
592487
1651
ืœื ืžืฉื ื” ืžื” ื™ืงืจื”,
09:54
if you leave your cell phone by your bedside,
192
594162
2158
ืื ืืชื ืžืฉืื™ืจื™ื ืืช ื”ื˜ืœืคื•ืŸ ื”ืกืœื•ืœืจื™ ืฉืœื›ื ืœื™ื“ ื”ืžื™ื˜ื” ืฉืœื›ื,
09:56
you will not have a billion cell phones in the morning.
193
596344
2586
ืœื ืชืžืฆืื• ืžื™ืœื™ืืจื“ ื˜ืœืคื•ื ื™ื ืกืœื•ืœืจื™ื™ื ื‘ื‘ื•ืงืจ.
09:59
But if you do that with living organisms,
194
599489
4913
ืื‘ืœ ืื ืชืขืฉื• ื–ืืช ืขื ืื•ืจื’ื ื™ื–ืžื™ื ื—ื™ื™ื,
10:05
you can make this stuff at a very large scale.
195
605222
2389
ืชื•ื›ืœื• ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจ ื”ื–ื” ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ ืžืื“.
10:09
One of the things you can do is you can start producing
196
609390
2896
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื ื™ืชืŸ ืœืขืฉื•ืช ื”ื•ื ืœื”ืชื—ื™ืœ ืœื™ื™ืฆืจ
10:12
close to carbon-neutral fuels
197
612310
2223
ื“ืœืงื™ื ื ื™ื˜ืจืœื™ื™ื ืžื‘ื™ื ืช ืคื—ืžืŸ
10:14
on a commercial scale by 2025,
198
614557
2426
ื‘ืงื ื” ืžื™ื“ื” ืžืกื—ืจื™ ืขื“ 2025,
10:18
which we're doing with Exxon.
199
618054
1761
ืžื” ืฉืื ื• ืขื•ืฉื™ื ืขื ื—ื‘ืจืช "ืืงืกื•ืŸ".
10:20
But you can also substitute for agricultural lands.
200
620870
2409
ืื‘ืœ ื ื™ืชืŸ ื’ื ืœื”ืกื‘ ืื“ืžื•ืช ื—ืงืœืื™ื•ืช.
10:23
Instead of having 100 hectares to make oils or to make proteins,
201
623303
4751
ื‘ืžืงื•ื ืฉืชื–ื“ืงืงื• ืœืง"ืž ืžืจื•ื‘ืข ืื—ื“ ืœื™ื™ืฆื•ืจ ืฉืžื ื™ื ืื• ืœื™ื™ืฆื•ืจ ื—ืœื‘ื•ื ื™ื,
10:28
you can make it in these vats
202
628078
1859
ืชื•ื›ืœื• ืœืขืฉื•ืช ื–ืืช ื‘ืชื•ืš ืžื™ื›ืœื™ื
10:29
at 10 or 100 times the productivity per hectare.
203
629961
2868
ื‘ื™ืขื™ืœื•ืช ื’ื‘ื•ื”ื” ืคื™ 10 ืขื“ ืคื™ 100 ืœื›ืœ ื™ื—ื™ื“ืช ืฉื˜ื—.
10:33
Or you can store information, or you can make all the world's vaccines
204
633488
3382
ืื• ืฉืชื•ื›ืœื• ืœืื—ืกืŸ ื ืชื•ื ื™ื, ืื• ืฉืชื•ื›ืœื• ืœื™ื™ืฆืจ ืืช ื›ืœ ื”ื—ื™ืกื•ื ื™ื ืฉื‘ืขื•ืœื
10:36
in those three vats.
205
636894
1299
ื‘ืชื•ืš ืฉืœื•ืฉื” ืžื™ื›ืœื™ื ืืœื”.
10:39
Or you can store most of the information that's held at CERN in those three vats.
206
639276
3949
ืื• ืฉืชื•ื›ืœื• ืœืื—ืกืŸ ืืช ืจื•ื‘ ื”ืื™ื ืคื•ืจืžืฆื™ื” ืฉืฉืžื•ืจื” ื‘-CERN ื‘ืชื•ืš ืื•ืชื 3 ืžื™ื›ืœื™ื.
10:44
DNA is a really powerful information storage device.
207
644350
3209
ื”-DNA ื”ื•ื ื”ืชืงืŸ ืื™ื—ืกื•ืŸ ืžื™ื“ืข ืžืื“ ื™ืขื™ืœ.
10:48
Second turn:
208
648806
1588
ืชืคื ื™ืช ืฉื ื™ื”:
10:50
you're beginning to see the rise of theoretical biology.
209
650418
2784
ืžืชื—ื™ืœื™ื ืœืจืื•ืช ืืช ืฆืžื™ื—ืชื” ืฉืœ ื”ื‘ื™ื•ืœื•ื’ื™ื” ื”ืชืื•ืจื˜ื™ืช.
10:54
So, medical school departments are one of the most conservative places on earth.
210
654256
4202
ืžื—ืœืงื•ืช ื‘ื‘ืชื™-ืกืคืจ ืœืจืคื•ืื” ื”ื™ื ืŸ ืžื”ืžืงื•ืžื•ืช ื”ืฉืžืจื ื™ื™ื ื‘ื™ื•ืชืจ ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ.
10:58
The way they teach anatomy is similar to the way they taught anatomy
211
658482
3417
ื”ื“ืจืš ื‘ื” ืžืœืžื“ื™ื ื‘ื”ืŸ ืื ื˜ื•ืžื™ื” ื“ื•ืžื” ืœื“ืจืš ื‘ื” ืœื™ืžื“ื• ืื ื˜ื•ืžื™ื”
11:01
100 years ago.
212
661923
1166
ืœืคื ื™ 100 ืฉื ื”.
11:03
"Welcome, student. Here's your cadaver."
213
663113
2024
"ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื, ืกื˜ื•ื“ื ื˜ื™ื. ื”ื ื” ื”ื’ื•ื•ื™ื” ืฉืœื›ื."
11:06
One of the things medical schools are not good at is creating new departments,
214
666149
3707
ืื—ื“ ื”ื“ื‘ืจื™ื ื‘ื”ื ื‘ืชื™-ืกืคืจ ืœืจืคื•ืื” ืื™ื ื ื—ื–ืงื™ื ื”ื•ื ื™ืฆื™ืจืช ืžื—ืœืงื•ืช ื—ื“ืฉื•ืช,
11:09
which is why this is so unusual.
215
669880
1749
ืœื›ืŸ ื”ื“ื‘ืจ ื”ื–ื” ื›ื” ื‘ืœืชื™-ืจื’ื™ืœ.
11:12
Isaac Kohane has now created a department based on informatics, data, knowledge
216
672351
6498
ืื™ื–ืง ื›ื”ืŸ ืคืชื— ื–ื” ืขืชื” ืžื—ืœืงื” ื”ืžื‘ื•ืกืกืช ืขืœ ื‘ื™ื•ืื™ื ืคื•ืจืžื˜ื™ืงื”, ืžื™ื“ืข, ื™ื“ืข
11:18
at Harvard Medical School.
217
678873
1511
ื‘ื‘ื™ืช ื”ืกืคืจ ืœืจืคื•ืื” ืฉืœ ื”ืจื•ื•ืืจื“.
11:21
And in a sense, what's beginning to happen is
218
681408
2177
ื•ื‘ืžื™ื“ื” ืžืกื•ื™ื™ืžืช, ืžื” ืฉืžืชื—ื™ืœ ืœื”ืชืจื—ืฉ ื”ื•ื
11:23
biology is beginning to get enough data
219
683609
2482
ืฉื‘ื™ื•ืœื•ื’ื™ื” ืžืชื—ื™ืœื” ืœืงื‘ืœ ืžืกืคื™ืง ืžื™ื“ืข
11:26
that it can begin to follow the steps of physics,
220
686115
2766
ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœืœื›ืช ื‘ืขืงื‘ื•ืช ื”ืคื™ื–ื™ืงื”,
11:28
which used to be observational physics
221
688905
3388
ืืฉืจ ื”ื™ืชื” ื‘ืขื‘ืจ ืคื™ื–ื™ืงื” ืžื‘ื•ืกืกืช ืชืฆืคื™ื•ืช
11:32
and experimental physicists,
222
692317
1971
ื•ืคื™ื–ื™ืงื” ืžื‘ื•ืกืกืช ื ื™ืกื•ื™ื™ื,
11:34
and then started creating theoretical biology.
223
694312
2162
ื•ืื– ื”ื—ืœื” ืœื™ืฆื•ืจ ื‘ื™ื•ืœื•ื’ื™ื” ืชื™ืื•ืจื˜ื™ืช.
11:36
Well, that's what you're beginning to see
224
696498
2004
ื•ื‘ื›ืŸ, ื–ื” ืžื” ืฉืžืชื—ื™ืœื™ื ืœืจืื•ืช
11:38
because you have so many medical records,
225
698526
1980
ื”ื•ื“ื•ืช ืœื›ืš ืฉื™ืฉื ื ื›ื” ื”ืจื‘ื” ืชื™ืงื™ื ืจืคื•ืื™ื™ื,
11:40
because you have so much data about people:
226
700530
2032
ื”ื•ื“ื•ืช ืœื›ืš ืฉื™ืฉื ื• ื›ืœ ื›ืš ื”ืจื‘ื” ืžื™ื“ืข ืขืœ ืื ืฉื™ื:
11:42
you've got their genomes, you've got their viromes,
227
702586
2410
ื™ืฉ ืœื ื• ืืช ื”ื’ื ื•ื ืฉืœื”ื, ื™ืฉ ืœื ื• ืืช ืžื™ืคื•ื™ ื”ื•ื™ืจื•ืกื™ื ืฉืœื”ื,
11:45
you've got their microbiomes.
228
705020
1494
ื™ืฉ ืœื ื• ืืช ื”ืžื™ืงืจื•ื‘ื™ื•ื ืฉืœื”ื.
11:46
And as this information stacks,
229
706538
1981
ื•ื›ื›ืœ ืฉื”ืžื™ื“ืข ื”ื–ื” ื ืขืจื,
11:48
you can begin to make predictions.
230
708543
2063
ื›ืš ืืคืฉืจ ืœื”ืชื—ื™ืœ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช.
11:52
The third thing that's happening is this is coming to the consumer.
231
712149
3255
ื”ื“ื‘ืจ ื”ืฉืœื™ืฉื™ ืฉืžืชืจื—ืฉ ื”ื•ื ื”ื”ืชืงืจื‘ื•ืช ืœืฆืจื›ืŸ.
11:56
So you, too, can get your genes sequenced.
232
716629
4156
ื›ืš, ื’ื ืืชื ื™ื›ื•ืœื™ื ืœื‘ืงืฉ ืืช ืจื™ืฆื•ืฃ ื”ื’ื ื•ื ืฉืœื›ื.
12:01
And this is beginning to create companies like 23andMe,
233
721698
2728
ื•ื–ื” ืžืชื—ื™ืœ ืœื™ืฆื•ืจ ื—ื‘ืจื•ืช ื›ืžื• "23 ืึตื ื“ ืžื™",
12:04
and companies like 23andMe are going to be giving you
234
724450
2478
ื•ื—ื‘ืจื•ืช ื›ืืœื” ืขื•ืžื“ื•ืช ืœืชืช ืœื›ื
12:06
more and more and more data,
235
726952
1352
ืขื•ื“ ื•ืขื•ื“ ื•ืขื•ื“ ืžื™ื“ืข,
12:08
not just about your relatives,
236
728328
1544
ืœื ืจืง ืœื’ื‘ื™ ื”ืงืจื•ื‘ื™ื ืฉืœื›ื,
12:10
but about you and your body,
237
730562
1360
ืืœื ื’ื ืขืœื™ื›ื ื•ืขืœ ื’ื•ืคื›ื,
12:11
and it's going to compare stuff,
238
731946
1531
ื•ื”ืŸ ืขื•ืžื“ื•ืช ืœื”ืฉื•ื•ืช ื ืชื•ื ื™ื,
12:13
and it's going to compare stuff across time,
239
733501
2093
ื•ื”ืŸ ืขื•ืžื“ื•ืช ืœื”ืฉื•ื•ืช ื ืชื•ื ื™ื ืœืื•ืจืš ื–ืžืŸ,
12:15
and these are going to become very large databases.
240
735618
2607
ื•ืืœื• ืขื•ืžื“ื™ื ืœื”ื™ืขืฉื•ืช ื‘ืกื™ืกื™-ื ืชื•ื ื™ื ื’ื“ื•ืœื™ื ืžืื“.
12:18
But it's also beginning to affect a series of other businesses
241
738249
2962
ืื‘ืœ ื–ื” ื’ื ืžืชื—ื™ืœ ืœื”ืฉืคื™ืข ืขืœ ืกื“ืจื” ืฉืœ ืขืกืงื™ื ืื—ืจื™ื
12:21
in unexpected ways.
242
741235
1537
ื‘ื“ืจื›ื™ื ื‘ืœืชื™ ืฆืคื•ื™ื•ืช.
12:23
Normally, when you advertise something, you really don't want the consumer
243
743802
3751
ื‘ืื•ืคืŸ ืจื’ื™ืœ, ื›ืืฉืจ ืืชื ืžืคืจืกืžื™ื ืžืฉื”ื•, ืืชื ืœื ื‘ืืžืช ืจื•ืฆื™ื ืฉื”ืฆืจื›ืŸ
12:27
to take your advertisement into the bathroom to pee on.
244
747577
4567
ื™ื™ืงื— ืืช ื”ืžื•ื“ืขื” ืฉืœื›ื ืœื—ื“ืจ ื”ืฉื™ืจื•ืชื™ื ื›ื“ื™ ืœื”ืฉืชื™ืŸ ืขืœื™ื”.
12:33
Unless, of course, if you're IKEA.
245
753993
2055
ืืœื ืื ื›ืŸ ืืชื "ืื™ืงืื”", ื›ืžื•ื‘ืŸ.
12:37
Because when you rip this out of a magazine and you pee on it,
246
757381
2906
ื›ื™ ื›ืืฉืจ ืืชื ืงื•ืจืขื™ื ืืช ื–ื” ืžืชื•ืš ื›ืชื‘ ืขืช ื•ืžืฉืชื™ื ื™ื ืขืœ ื–ื”,
12:40
it'll turn blue if you're pregnant.
247
760311
2069
ื–ื” ื™ื™ื”ืคืš ืœื›ื—ื•ืœ ืื ืืชื ื‘ื”ืจื™ื•ืŸ.
12:42
(Laughter)
248
762404
1213
(ืฆื—ื•ืง)
12:44
And they'll give you a discount on your crib.
249
764214
3873
ื•ื”ื ื™ืชื ื• ืœื›ื ื”ื ื—ื” ืขืœ ืžื™ื˜ืช ื”ืชื™ื ื•ืง.
12:48
(Laughter)
250
768111
1158
(ืฆื—ื•ืง)
12:49
Right? So when I say consumer empowerment,
251
769293
2015
ื ื›ื•ืŸ? ืื– ื›ืฉืื ื™ ืื•ืžืจ ื”ืขืฆืžื” ืฉืœ ื”ืฆืจื›ืŸ,
12:51
and this is spreading beyond biotech,
252
771332
2739
ื•ื–ื” ื ืคืจืฉ ืืœ ืžืขื‘ืจ ืœื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื”,
12:54
I actually really mean that.
253
774095
1819
ืื ื™ ื‘ืขืฆื ืžืชื›ื•ื•ืŸ ืœื–ื”.
12:58
We're now beginning to produce, at Synthetic Genomics,
254
778273
3365
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขื›ืฉื™ื• ืœื™ื™ืฆืจ, ื‘ื—ื‘ืจืช "ืกื™ื ืชื˜ื™ืง ื’'ื ื•ืžื™ืงืก",
13:02
desktop printers
255
782540
1471
ืžื“ืคืกื•ืช ืฉื•ืœื—ื ื™ื•ืช
13:05
that allow you to design a cell,
256
785228
3530
ืฉืชืืคืฉืจื ื” ืœื›ื ืœืชื›ื ืŸ ืชื ื—ื™,
13:08
print a cell,
257
788782
1167
ืœื”ื“ืคื™ืก ืชื,
13:09
execute the program on the cell.
258
789973
1845
ืœื‘ืฆืข ืืช ื”ืงื•ื“ ืฉื‘ืชื.
13:12
We can now print vaccines
259
792825
2103
ืื ื—ื ื• ื™ื›ื•ืœื™ื ื”ื™ื•ื ืœื”ื“ืคื™ืก ืชืจื›ื™ื‘ื™ ื—ื™ืกื•ืŸ
13:14
real time as an airplane takes off
260
794952
2247
ื‘ื–ืžืŸ ืืžืช ื‘ื™ืŸ ื–ืžืŸ ื”ื”ืžืจืื” ืฉืœ ืžื˜ื•ืก
13:17
before it lands.
261
797223
1190
ื•ืขื“ ื–ืžืŸ ื”ื ื—ื™ืชื” ืฉืœื•.
13:19
We're shipping 78 of these machines this year.
262
799929
2572
ืื ื—ื ื• ื ืฉื•ื•ืง 78 ืžื”ืžื›ื•ื ื•ืช ื”ืืœื” ื”ืฉื ื”.
13:24
This is not theoretical biology. This is printing biology.
263
804068
4473
ื–ื•ื”ื™ ืœื ื‘ื™ื•ืœื•ื’ื™ื” ืชื™ืื•ืจื˜ื™ืช. ื–ื•ื”ื™ ื”ื“ืคืกื” ื‘ื™ื•ืœื•ื’ื™ืช.
13:30
Let me talk about two long-term trends
264
810182
2196
ื”ืจืฉื• ืœื™ ืœื“ื‘ืจ ืขืœ ืฉืชื™ ืžื’ืžื•ืช ืœื˜ื•ื•ื— ืืจื•ืš
13:33
that are coming at you over a longer time period.
265
813374
3326
ืฉืชื’ืขื ื” ืืœื™ื›ื ื‘ืชื•ืš ืชืงื•ืคืช ื–ืžืŸ ืืจื•ื›ื” ื™ื•ืชืจ.
13:37
The first one is, we're starting to redesign species.
266
817658
2656
ื”ืจืืฉื•ื ื” ื”ื™ื ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืชื›ื ืŸ ืžื—ื“ืฉ ืžื™ื ื™ื.
13:41
And you've heard about that, right?
267
821055
1777
ืฉืžืขืชื ืขืœ ื›ืš, ื ื›ื•ืŸ?
13:42
We're redesigning trees. We're redesigning flowers.
268
822856
2681
ืื ื—ื ื• ืžืชื›ื ื ื™ื ืžื—ื“ืฉ ืขืฆื™ื. ืื ื—ื ื• ืžืชื›ื ื ื™ื ืžื—ื“ืฉ ืคืจื—ื™ื.
13:45
We're redesigning yogurt,
269
825561
2293
ืื ื—ื ื• ืžืชื›ื ื ื™ื ืžื—ื“ืฉ ื™ื•ื’ื•ืจื˜,
13:48
cheese, whatever else you want.
270
828513
2030
ื’ื‘ื™ื ื”, ื›ืœ ื“ื‘ืจ ืื—ืจ ืฉืชืจืฆื•.
13:51
And that, of course, brings up the interesting question:
271
831678
2650
ื•ื–ื”, ื›ืžื•ื‘ืŸ, ืžืขืœื” ืื™ืชื• ืืช ื”ืฉืืœื” ื”ืžืขื ื™ื™ื ืช:
13:54
How and when should we redesign humans?
272
834884
2336
ืื™ืš ื•ืžืชื™ ื›ื“ืื™ ืฉื ืชื›ื ืŸ ืžื—ื“ืฉ ื‘ื ื™-ืื“ื?
13:59
And a lot of us think, "Oh no, we never want to redesign humans."
273
839566
3557
ื•ืจื‘ื™ื ืžืื™ืชื ื• ื—ื•ืฉื‘ื™ื, "ื”ื• ืœื, ืœืขื•ืœื ืœื ื ืจืฆื” ืœืชื›ื ืŸ ืžื—ื“ืฉ ื‘ื ื™-ืื“ื."
14:04
Unless, of course, if your child has a Huntington's gene
274
844147
2715
ืืœื ืื ื›ืŸ, ื›ืžื•ื‘ืŸ, ื™ืฉ ืœื™ืœื“ื›ื ืืช ื’ืŸ ื”ื”ื ื˜ื™ื ื’ื˜ื•ืŸ
14:06
and is condemned to death.
275
846886
1389
ื•ื’ื•ืจืœื• ื ื—ืจืฅ.
14:09
Or, unless if you're passing on a cystic fibrosis gene,
276
849172
3363
ืื•, ืื ืืชื ืžืขื‘ื™ืจื™ื ื”ืœืื” ืืช ื’ืŸ ื”ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก,
14:12
in which case, you don't just want to redesign yourself,
277
852559
2690
ืžืงืจื” ืฉื‘ื• ืœื ืจืง ืชืจืฆื• ืœืชื›ื ืŸ ืžื—ื“ืฉ ืืช ืขืฆืžื›ื,
14:15
you want to redesign your children and their children.
278
855273
2539
ืืœื ื’ื ืชืจืฆื• ืœืชื›ื ืŸ ืžื—ื“ืฉ ืืช ื™ืœื“ื™ื›ื ื•ืืช ื™ืœื“ื™ื”ื.
14:18
And these are complicated debates and they're going to happen in real time.
279
858723
3645
ืืœื• ื”ื ื•ื™ื›ื•ื—ื™ื ืžืกื•ื‘ื›ื™ื ื•ื”ื ื™ื™ืชืจื—ืฉื• ื‘ื–ืžืŸ ืืžืช.
14:22
I'll give you one current example.
280
862839
1951
ืืชืŸ ืœื›ื ื“ื•ื’ืžื” ืื—ืช ืขื›ืฉื•ื•ื™ืช.
14:25
One of the debates going on at the National Academies today
281
865531
3072
ืื—ื“ ืžื”ื•ื™ื›ื•ื—ื™ื ื”ืžืชื ื”ืœื™ื ื›ื™ื•ื ื‘ืืงื“ืžื™ื•ืช ื”ืœืื•ืžื™ื•ืช
14:29
is you have the power to put a gene drive into mosquitoes
282
869896
4702
ื”ื•ื ืกื‘ื™ื‘ ื”ื™ื›ื•ืœืช ืœื™ืฆื•ืจ "ื“ื—ื™ืคืช ื’ื ื™ื" ื‘ื™ืชื•ืฉื™ื
14:34
so that you will kill all the malaria-carrying mosquitoes.
283
874622
2984
ื›ืš ืฉื ื”ืจื•ื’ ืืช ื›ืœ ื”ื™ืชื•ืฉื™ื ื ื•ืฉืื™ ื”ืžืœืจื™ื”.
14:39
Now, some people say,
284
879547
2560
ื•ื‘ื›ืŸ, ื™ืฉื ื ืื ืฉื™ื ืฉืื•ืžืจื™ื,
14:42
"That's going to affect the environment in an extreme way, don't do it."
285
882964
3465
"ื–ื” ื™ืฉืคื™ืข ืขืœ ื”ืกื‘ื™ื‘ื” ื‘ืื•ืคืŸ ืงื™ืฆื•ื ื™, ืืœ ืชืขืฉื• ืืช ื–ื”."
14:47
Other people say,
286
887326
1155
ืื—ืจื™ื ืื•ืžืจื™ื,
14:48
"This is one of the things that's killing millions of people yearly.
287
888505
3227
"ื–ื” ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื”ื•ืจื’ื™ื ืžื™ืœื™ื•ื ื™ ืื ืฉื™ื ื‘ื›ืœ ืฉื ื”.
14:51
Who are you to tell me that I can't save the kids in my country?"
288
891756
3548
ืžื™ ืืชื ืฉืชืืžืจื• ืœื™ ืฉืื ื™ ืœื ื™ื›ื•ืœ ืœื”ืฆื™ืœ ืืช ื™ืœื“ื™ื™ ื‘ืืจืฅ ืฉืœื™?"
14:57
And why is this debate so complicated?
289
897183
1853
ื•ืœืžื” ื”ื•ื™ื›ื•ื— ื”ื–ื” ื›ืœ ื›ืš ืžืกื•ื‘ืš?
14:59
Because as soon as you let this loose in Brazil
290
899060
2881
ืžื›ื™ื•ื•ืŸ ืฉื‘ืจื’ืข ืฉืืชื ืžืชื™ืจื™ื ืืช ื–ื” ื‘ื‘ืจื–ื™ืœ
15:01
or in Southern Florida --
291
901965
1423
ืื• ื‘ื“ืจื•ื ืคืœื•ืจื™ื“ื” --
15:03
mosquitoes don't respect walls.
292
903412
1541
ื™ืชื•ืฉื™ื ืœื ืžื›ื‘ื“ื™ื ื—ื•ืžื•ืช.
15:04
You're making a decision for the world
293
904977
2301
ืืชื ืœื•ืงื—ื™ื ื”ื—ืœื˜ื” ืขื‘ื•ืจ ื”ืขื•ืœื ื›ื•ืœื•
15:07
when you put a gene drive into the air.
294
907302
1907
ื›ืืฉืจ ืืชื ืžืขืœื™ื ืœืื•ื™ืจ ื“ื—ื™ืคืช ื’ื ื™ื.
15:14
This wonderful man won a Nobel Prize,
295
914145
2095
ื”ืื“ื ื”ื ืคืœื ื”ื–ื” ื–ื›ื” ื‘ืคืจืก ื ื•ื‘ืœ,
15:17
and after winning the Nobel Prize
296
917103
1640
ื•ืื—ืจื™ ืฉื–ื›ื” ื‘ืคืจืก ื ื•ื‘ืœ
15:18
he's been worrying about
297
918767
1255
ื”ื•ื ื”ื—ืœ ืœืชื”ื•ืช ื‘ืฉืืœื”
15:21
how did life get started on this planet
298
921531
2103
ืื™ืš ื”ืชื—ื™ืœื• ื”ื—ื™ื™ื ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ
15:23
and how likely is it that it's in other places?
299
923658
2281
ื•ื›ืžื” ืกื‘ื™ืจ ืฉืื™ืŸ ื—ื™ื™ื ื‘ืžืงื•ืžื•ืช ืื—ืจื™ื?
15:27
So what he's been doing is going around to this graduate students
300
927097
3202
ืื– ืžื” ืฉื”ื•ื ืขืฉื” ื–ื” ืœื”ืกืชื•ื‘ื‘ ืกื‘ื™ื‘ ื”ืกื˜ื•ื“ื ื˜ื™ื ื”ืืœื”
15:30
and saying to his graduate students,
301
930323
1718
ื•ืœื”ื’ื™ื“ ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืœื•,
15:32
"Build me life but don't use any modern chemicals or instruments.
302
932864
3322
"ืฆืจื• ืœื™ ื—ื™ื™ื ืื‘ืœ ืืœ ืชืฉืชืžืฉื• ื‘ืืฃ ื›ื™ืžื™ืงืœ ืื• ืžื›ืฉื™ืจ ืžื•ื“ืจื ื™.
15:36
Build me stuff that was here three billion years ago.
303
936210
2665
ืฆืจื• ืœื™ ื—ื•ืžืจ ืฉื”ื™ื” ืคื” ืœืคื ื™ ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“ ืฉื ื”.
15:38
You can't use lasers. You can't use this. You can't use that."
304
938899
3156
ืืชื ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืœื™ื™ื–ืจื™ื. ืืชื ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ืœื ื‘ื–ื” ื•ืœื ื‘ื–ื”."
15:44
He gave me a vial of what he's built about three weeks ago.
305
944330
3245
ื”ื•ื ื ืชืŸ ืœื™ ื‘ืงื‘ื•ืงื•ืŸ ืขื ืžื” ืฉื”ื•ื ื™ืฆืจ ืœืคื ื™ ืฉืœื•ืฉื” ืฉื‘ื•ืขื•ืช.
15:48
What has he built?
306
948639
1179
ืžื” ื”ื•ื ื™ืฆืจ?
15:49
He's built basically what looked like soap bubbles that are made out of lipids.
307
949842
4025
ื”ื•ื ื™ืฆืจ ืžื” ืฉื ืจืื” ื‘ื‘ืกื™ืกื• ื›ืžื• ื‘ื•ืขื•ืช ืกื‘ื•ืŸ ืขืฉื•ื™ื•ืช ืœื™ืคื™ื“ื™ื.
15:53
He's built a precursor of RNA.
308
953891
2566
ื”ื•ื ื™ืฆืจ ืงื“ื RNA.
15:57
He's had the precursor of the RNA be absorbed by the cell
309
957291
3752
ื”ื•ื ื’ืจื ืœืกืคื™ื’ืชื• ืฉืœ ืงื“ื ื”-RNA ืข"ื™ ื”ืชื
16:02
and then he's had the cells divide.
310
962194
1883
ื•ืื– ื ืชืŸ ืœืชืื™ื ืœื”ืชื—ืœืง.
16:06
We may not be that far --
311
966031
1957
ืื ื—ื ื• ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ื“ื™ ืงืจื•ื‘ื™ื --
16:09
call it a decade, maybe two decades --
312
969687
3117
ื”ื ื™ื—ื• ืขืฉื•ืจ, ืื•ืœื™ ืฉื ื™ ืขืฉื•ืจื™ื --
16:12
from generating life from scratch
313
972828
1970
ืœื™ืฆื™ืจืช ื—ื™ื™ื ืžืืคืก
16:16
out of proto-communities.
314
976285
1803
ืžืชื•ืš ืžื•ืฉื‘ื•ืช-ืื‘.
16:19
Second long-term trend:
315
979512
1646
ืžื’ืžื” ืืจื•ื›ืช-ื˜ื•ื•ื— ืฉื ื™ื”:
16:22
we've been living and are living through the digital age --
316
982273
3526
ื—ื™ื™ื ื• ื”ืชื ื”ืœื• ื•ืžืชื ื”ืœื™ื ื‘ืขื™ื“ืŸ ื”ื“ื™ื’ื™ื˜ืœื™ --
16:25
we're starting to live through the age of the genome
317
985823
2519
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื—ื™ื•ืช ืืช ืขื™ื“ืŸ ื”ื’ื ื•ื
16:28
and biology and CRISPR and synthetic biology --
318
988366
3615
ื•ื”ื‘ื™ื•ืœื•ื’ื™ื” ื•ื”-CRISPR ื•ื”ื‘ื™ื•ืœื•ื’ื™ื” ื”ืกื™ื ื˜ืชื™ืช --
16:32
and all of that is going to merge into the age of the brain.
319
992870
2907
ื•ื›ืœ ื–ื” ืขื•ืžื“ ืœื”ืชืžื–ื’ ืขื ืขื™ื“ืŸ ื”ืžื•ื—.
16:36
So we're getting to the point where we can rebuild most of our body parts,
320
996743
3981
ืื ื—ื ื• ืžืชืงืจื‘ื™ื ืœื ืงื•ื“ื” ื‘ื” ื ื•ื›ืœ ืœื‘ื ื•ืช ืžื—ื“ืฉ ืืช ืจื•ื‘ื ืฉืœ ืื™ื‘ืจื™ ื’ื•ืคื ื•,
16:40
in the same way as if you break a bone or burn your skin, it regrows.
321
1000748
3656
ื‘ืื•ืคืŸ ื“ื•ืžื” ืœื‘ื ื™ื” ืžื—ื“ืฉ ืฉืžืชืจื—ืฉืช ื›ืืฉืจ ืืชื ืฉื•ื‘ืจื™ื ืขืฆื ืื• ื ื›ื•ื•ื™ื ื‘ืขื•ืจื›ื.
16:44
We're beginning to learn how to regrow our tracheas
322
1004428
2668
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืœืžื•ื“ ืื™ืš ืœื‘ื ื•ืช ืžื—ื“ืฉ ืืช ืงื ื” ื”ื ืฉื™ืžื” ืฉืœื ื•
16:47
or how to regrow our bladders.
323
1007120
1864
ืื• ืื™ืš ืœื‘ื ื•ืช ืžื—ื“ืฉ ืืช ืฉืœืคื•ื—ื™ืช ื”ืฉืชืŸ ืฉืœื ื•.
16:49
Both of those have been implanted in humans.
324
1009008
2306
ืฉื ื™ื”ื ื”ื•ืฉืชืœื• ื‘ื‘ื ื™-ืื“ื.
16:51
Tony Atala is working on 32 different organs.
325
1011338
2728
ื˜ื•ื ื™ ืื˜ืืœื” ืขื•ื‘ื“ ืขืœ 32 ืื™ื‘ืจื™ื ืฉื•ื ื™ื.
16:55
But the core is going to be this,
326
1015487
1890
ืื‘ืœ ื”ืœื™ื‘ื” ืขื•ืžื“ืช ืœื”ื™ื•ืช ื”ื“ื‘ืจ ื”ื–ื”,
16:57
because this is you and the rest is just packaging.
327
1017401
3054
ื›ื™ ื–ื” ืžื™ ืฉืืชื ื•ื›ืœ ื”ืฉืืจ ืจืง ืขื˜ื™ืคื”.
17:02
Nobody's going to live beyond 120, 130, 140 years
328
1022011
3547
ืืฃ ืื—ื“ ืœื ืขื•ืžื“ ืœื—ื™ื•ืช ืžืขื‘ืจ ืœื’ื™ืœ 120, 130, 140 ืฉื ื”
17:05
unless if we fix this.
329
1025582
1735
ืืœื ืื ื›ืŸ ื ืชืงืŸ ืืช ื–ื”.
17:08
And that's the most interesting challenge.
330
1028084
2066
ื•ื–ื”ื• ื”ืืชื’ืจ ื”ืžืขื ื™ื™ืŸ ื‘ื™ื•ืชืจ.
17:10
That's the next frontier, along with:
331
1030174
2111
ื–ื•ื”ื™ ื”ื—ื–ื™ืช ื”ื‘ืื”, ื™ื—ื“ ืขื:
17:12
"How common is life in the universe?"
332
1032309
2347
"ื›ืžื” ื ืคื•ืฆื™ื ื”ื—ื™ื™ื ื‘ื™ืงื•ื?"
17:14
"Where did we come from?"
333
1034680
1806
"ืžื”ื™ื›ืŸ ื”ื’ืขื ื•?"
17:16
and questions like that.
334
1036510
1634
ื•ืฉืืœื•ืช ื“ื•ืžื•ืช.
17:20
Let me end this with an apocryphal quote from Einstein.
335
1040031
3190
ื”ืจืฉื• ืœื™ ืœืกื™ื™ื ืขื ืฆื™ื˜ื˜ื” ืฉืžื™ื•ื—ืกืช ืœืื™ื™ื ืฉื˜ื™ื™ืŸ.
17:23
[You can live as if everything is a miracle,
336
1043697
2219
"ืืชื ื™ื›ื•ืœื™ื ืœื—ื™ื•ืช ื›ืื™ืœื• ื›ืœ ื“ื‘ืจ ื”ื•ื ื ืก,
17:25
or you can live as if nothing is a miracle.]
337
1045940
2272
ื•ืืชื ื™ื›ื•ืœื™ื ืœื—ื™ื•ืช ื›ืื™ืœื• ื›ืœื•ื ืื™ื ื ื• ื ืก."
17:28
It's your choice.
338
1048236
1513
ื–ื•ื”ื™ ื‘ื—ื™ืจื” ืฉืœื›ื.
17:30
You can focus on the bad, you can focus on the scary,
339
1050555
2479
ืืชื ื™ื›ื•ืœื™ื ืœื”ืชืžืงื“ ื‘ืžื” ืฉืจืข, ืืชื ื™ื›ื•ืœื™ื ืœื”ืชืžืงื“ ื‘ืžื” ืฉืžืคื—ื™ื“,
17:33
and certainly there's a lot of scary out there.
340
1053058
2416
ื•ืœืœื ืกืคืง ื™ืฉ ื”ืจื‘ื” ื“ื‘ืจื™ื ืžืคื—ื™ื“ื™ื ืฉื ื‘ื—ื•ืฅ.
17:36
But use 10 percent of your brain to focus on that, or maybe 20 percent,
341
1056012
4732
ืื‘ืœ ื”ืฉืชืžืฉื• ื‘-10 ืื—ื•ื–ื™ื ืฉืœ ืžื•ื—ื›ื ื›ื“ื™ ืœื”ืชืžืงื“ ื‘ื–ื”, ืื• ืื•ืœื™ 20 ืื—ื•ื–,
17:40
or maybe 30 percent.
342
1060768
1826
ืื• ืื•ืœื™ 30 ืื—ื•ื–.
17:43
But just remember,
343
1063474
1782
ืื‘ืœ ื–ื›ืจื• ืจืง,
17:45
we really are living in an age of miracle and wonder.
344
1065280
2609
ืื ื—ื ื• ืื›ืŸ ื—ื™ื™ื ื‘ืขื™ื“ืŸ ืฉืœ ื ืกื™ื ื•ื ืคืœืื•ืช.
17:48
We're lucky to be alive today. We're lucky to see this stuff.
345
1068271
3551
ื™ืฉ ืœื ื• ืžื–ืœ ืฉืื ื• ื—ื™ื™ื ื‘ืชืงื•ืคื” ื”ื–ืืช. ื™ืฉ ืœื ื• ืžื–ืœ ืฉืื ื• ืจื•ืื™ื ืืช ื”ื“ื‘ืจื™ื ื”ืืœื”.
17:51
We're lucky to be able to interact with folks like the folks
346
1071846
2841
ื™ืฉ ืœื ื• ืžื–ืœ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืงืฉืจ ืขื ืื ืฉื™ื ื›ืžื• ืืœื”
17:54
who are building all the stuff in this room.
347
1074711
2110
ืฉื‘ื•ื ื™ื ืืช ื›ืœ ื”ื“ื‘ืจื™ื ืฉื‘ื—ื“ืจ ื”ื–ื”.
17:57
So thank you to all of you, for all you do.
348
1077487
2975
ืื– ืชื•ื“ื” ืจื‘ื” ืœื›ื•ืœื›ื, ืขืœ ื›ืœ ืืฉืจ ืืชื ืขื•ืฉื™ื.
18:01
(Applause)
349
1081066
3696
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7