What happens if you guess - Leigh Nataro

639,577 views ・ 2012-08-31

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Jephian Lin 審譯者: Coco Shen
00:16
Probability is an area of mathematics that is everywhere.
0
16000
4000
機率是一個隨處可見的數學領域。
00:20
We hear about it in weather forecasts,
1
20000
2000
我們在天氣預報聽到它,
00:22
like there's an 80% chance of snow tomorrow.
2
22000
3000
像是明天有 80% 的機率會下雪。
00:25
It's used in making predictions in sports,
3
25000
3000
它也被用來作體育預測,
00:28
such as determining the odds for who will win the Super Bowl.
4
28000
3000
像是誰超級盃冠軍的贏率。 (譯註:美國橄欖球賽事。)
00:31
Probability is also used in helping to set auto insurance rates
5
31000
3000
機率還被用來計算汽車保險費,
00:34
and it's what keeps casinos and lotteries in business.
6
34000
5000
讓賭場和樂透繼續經營。
00:39
How can probability affect you?
7
39000
2000
機率對你有什麼影響?
00:41
Let's look at a simple probability problem.
8
41000
3000
看看一個簡單的機率問題。
00:44
Does it pay to randomly guess on all 10 questions
9
44000
3000
如果你隨便猜測十個是非題的答案
00:47
on a true/ false quiz?
10
47000
2000
這樣划算嗎?
00:49
In other words, if you were to toss a fair coin
11
49000
3000
換句話說,如果你正常的投十次硬幣
00:52
10 times, and use it to choose the answers,
12
52000
3000
用它來決定答案,
00:55
what is the probability you would get a perfect score?
13
55000
3000
拿到滿分的機率是多少?
00:58
It seems simple enough. There are only two possible outcomes for each question.
14
58000
5000
每個問題只有兩個可能的解答。
01:03
But with a 10-question true/ false quiz,
15
63000
3000
但是把十個是非題合在一起,
01:06
there are lots of possible ways to write down different combinations
16
66000
3000
就會有一大堆「圈」和「叉」的組合。
01:09
of Ts and Fs. To understand how many different combinations,
17
69000
4000
要了解這麼多種組合,
01:13
let's think about a much smaller true/ false quiz
18
73000
3000
我們從較小的例子想起
01:16
with only two questions. You could answer
19
76000
3000
──只有 2 題是非題。 你可以回答
01:19
"true true," or "false false," or one of each.
20
79000
5000
「圈圈」或是「叉叉」、 或是圈叉各一個。
01:24
First "false" then "true," or first "true" then "false."
21
84000
5000
「先叉後圈」、或是「先圈後叉」。
01:29
So that's four different ways to write the answers for a two-question quiz.
22
89000
5000
共有 4 種方式 來回答這 2 題是非題。
01:34
What about a 10-question quiz?
23
94000
3000
十題是非題呢?
01:37
Well, this time, there are too many to count and list by hand.
24
97000
4000
我們面對數列不完的可能性
01:41
In order to answer this question, we need to know the fundamental counting principle.
25
101000
6000
回答這個問題, 我們必須了解「計數基本原理。」
01:47
The fundamental counting principle states
26
107000
2000
計數基本定理是在說
01:49
that if there are A possible outcomes for one event,
27
109000
4000
如果一個事件有 A 種結果,
01:53
and B possible outcomes for another event,
28
113000
3000
而另一事件有 B 種結果,
01:56
then there are A times B ways to pair the outcomes.
29
116000
5000
那這組事件就會有 A 乘以 B 種結果。
02:01
Clearly this works for a two-question true/ false quiz.
30
121000
3000
很明顯地,兩題是非題上可以這樣做。
02:04
There are two different answers you could write for the first question,
31
124000
3000
第一題你有兩種不同的答案,
02:07
and two different answers you could write for the second question.
32
127000
4000
第二題也有兩種不同的答案。
02:11
That makes 2 times 2, or, 4 different ways to write the answers for a two-question quiz.
33
131000
7000
所以總共就會有 2 以 2, 四種不同的答案。
02:18
Now let's consider the 10-question quiz.
34
138000
3000
現在讓我們重新想想十題是非題。
02:21
To do this, we just need to extend the fundamental counting principle a bit.
35
141000
5000
讓我們延伸一下計數基本原理。
02:26
We need to realize that there are two possible answers for each of the 10 questions.
36
146000
5000
我們知道十題裡的每一題 都有兩種不同的答案。
02:31
So the number of possible outcomes is
37
151000
3000
所以所有可能的答案有
02:34
2, times 2, times 2, times 2, times 2, times 2,
38
154000
9000
2,乘以 2,乘以 2,乘以 2, 乘以 2,乘以 2,
02:43
times 2, times 2, times 2, times 2.
39
163000
3000
乘以 2,乘以 2,乘以 2,乘以 2
02:46
Or, a shorter way to say that is 2 to the 10th power,
40
166000
4000
簡單地說,2 的 10 次方種。
02:50
which is equal to 1,024.
41
170000
3000
也就是 1,024。
02:53
That means of all the ways you could write down your Ts and Fs,
42
173000
3000
這意思是所有你能寫下的圈叉組合
02:56
only one of the 1,024 ways would match the teacher's answer key perfectly.
43
176000
6000
只有其中 1 種 完合符合老師的標準答案。
03:02
So the probability of you getting a perfect score by guessing
44
182000
3000
所以你得到滿分的機率
03:05
is only 1 out of 1,024,
45
185000
3000
只有 1,024 分之 1,
03:08
or about a 10th of a percent.
46
188000
3000
大約是 0.1%。
03:11
Clearly, guessing isn't a good idea.
47
191000
2000
顯然用猜的不是個好主意。
03:13
In fact, what would be the most common score
48
193000
2000
事實上,如果
03:15
if you and all your friends were to always randomly guess
49
195000
4000
在 10 題的是非題裡 你的同學全都用猜的,
03:19
at every question on a 10-question true/ false quiz?
50
199000
3000
那最常出現的分數會是多少呢?
03:22
Well, not everyone would get exactly 5 out of 10.
51
202000
4000
嗯,並不是說每個人都會剛好 在 10 分裡拿到 5 分。
03:26
But the average score, in the long run,
52
206000
3000
但長期看來,平均分數
03:29
would be 5.
53
209000
2000
就會是 5。
03:31
In a situation like this, there are two possible outcomes:
54
211000
3000
在這情況下,有兩種可能
03:34
a question is right or wrong,
55
214000
2000
──某一題是對、或者錯,
03:36
and the probability of being right by guessing
56
216000
3000
而猜對的機率
03:39
is always the same: 1/2.
57
219000
2000
都是一樣 ── 1/2。
03:41
To find the average number you would get right by guessing,
58
221000
3000
如果想要知道平均猜對的題數,
03:44
you multiply the number of questions
59
224000
2000
你可以把題數
03:46
by the probability of getting the question right.
60
226000
3000
乘上一題猜對的機率。
03:49
Here, that is 10 times 1/2, or 5.
61
229000
5000
在這裡,就是 10 乘以 1/2,或是 5。
03:54
Hopefully you study for quizzes,
62
234000
2000
但願你多用點功,
03:56
since it clearly doesn't pay to guess.
63
236000
2000
因為用猜的實在不划算。
03:58
But at one point, you probably took a standardized test like the SAT,
64
238000
3000
不過同時,你可能會想看看 一些像 SAT 的標準考試,
04:01
and most people have to guess on a few questions.
65
241000
3000
大多數人都必須猜個幾題。
04:04
If there are 20 questions and five possible answers
66
244000
3000
如果要猜 20 題、
04:07
for each question, what is the probability you would get all 20 right
67
247000
4000
每題有 5個答案, 那 20 題全猜對的機率
04:11
by randomly guessing?
68
251000
2000
會是多少?
04:13
And what should you expect your score to be?
69
253000
3000
你應該期望你的分數多少?
04:16
Let's use the ideas from before.
70
256000
3000
讓我們用之前的想法想想。
04:19
First, since the probability of getting a question right by guessing is 1/5,
71
259000
3000
首先,因為每題猜對的機率 是 1/5,
04:22
we would expect to get 1/5 of the 20 questions right.
72
262000
4000
我們會期望 20 題裡 有 1/5 的題數會猜對。
04:26
Yikes - that's only four questions!
73
266000
3000
哎呀──只會對 4 題!
04:29
Are you thinking that the probability of getting all 20 questions correct is pretty small?
74
269000
5000
你覺得 20 題要全猜對的機率 非常小嗎?
04:34
Let's find out just how small.
75
274000
3000
我們來看看有多小。
04:37
Do you recall the fundamental counting principle that was stated before?
76
277000
3000
你還記得剛說的 計數基本定理嗎?
04:40
With five possible outcomes for each question,
77
280000
3000
每題有 5 種可能的答案,
04:43
we would multiply 5 times 5 times 5 times 5 times...
78
283000
6000
我們會有 5 乘以 5 成語 5 乘以 5 乘以 ……
04:49
Well, we would just use 5 as a factor
79
289000
3000
呃,我們用 5 當作基數
04:52
20 times, and 5 to the 20th power
80
292000
3000
乘 20 次, 而 5 的 20 次方
04:55
is 95 trillion, 365 billion, 431 million,
81
295000
7000
是 95 兆 3654 億 3164 萬 8625。
05:02
648 thousand, 625. Wow - that's huge!
82
302000
6000
哇,這個數字真大!
05:08
So the probability of getting all questions correct by randomly guessing
83
308000
4650
所以要全部猜對的機率
大約是 95 兆分之 1。
05:12
is about 1 in 95 trillion.
84
312650
3332
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7