How many ways are there to prove the Pythagorean theorem? - Betty Fei

3,690,341 views ・ 2017-09-11

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Lipeng Chen 校对人员: Jiawei Ni
00:09
What do Euclid,
0
9476
1670
欧几里得,
00:11
twelve-year-old Einstein,
1
11146
1600
十二岁的爱因斯坦,
00:12
and American President James Garfield have in common?
2
12746
3651
以及美国总统詹姆斯·加菲尔德, 有什么共同点?
00:16
They all came up with elegant proofs for the famous Pythagorean theorem,
3
16397
4559
他们都对毕达哥拉斯定理 (勾股定理)做出了精彩的证明,
00:20
the rule that says for a right triangle,
4
20956
2250
这个定理是说,对于一个直角三角形,
00:23
the square of one side plus the square of the other side
5
23206
3880
一边的平方加上另一边的平方,
00:27
is equal to the square of the hypotenuse.
6
27086
3000
等于斜边的平方。
00:30
In other words, a²+b²=c².
7
30086
4631
换句话说,a²+b²=c²。
00:34
This statement is one of the most fundamental rules of geometry,
8
34717
3580
这是几何学中最基本的定理之一,
00:38
and the basis for practical applications,
9
38297
2239
也是实际应用的基础,
00:40
like constructing stable buildings and triangulating GPS coordinates.
10
40536
5161
比如建造稳定的建筑, 或对GPS点进行三角测量。
00:45
The theorem is named for Pythagoras,
11
45697
2986
这个定理以毕达哥拉斯命名,
00:48
a Greek philosopher and mathematician in the 6th century B.C.,
12
48683
4075
他是公元前6世纪的希腊哲学家和数学家,
00:52
but it was known more than a thousand years earlier.
13
52758
3399
但是该定理在此之前的 1000多年就出现了。
00:56
A Babylonian tablet from around 1800 B.C. lists 15 sets of numbers
14
56157
6029
公元前1800年的巴比伦石板上列出了
01:02
that satisfy the theorem.
15
62186
1851
满足该定理的15组数字。
01:04
Some historians speculate that Ancient Egyptian surveyors
16
64037
3521
一些历史学家认为, 古埃及勘测员
01:07
used one such set of numbers, 3, 4, 5, to make square corners.
17
67558
6140
利用譬如3,4,5的数组, 来形成直角。
01:13
The theory is that surveyors could stretch a knotted rope with twelve equal segments
18
73698
4482
该理论认为勘测员可以伸展 一个被绳结分成12份的绳子,
01:18
to form a triangle with sides of length 3, 4 and 5.
19
78180
5049
来形成边长为3,4,5的三角形。
01:23
According to the converse of the Pythagorean theorem,
20
83229
2710
根据毕达哥拉斯的逆定理,
01:25
that has to make a right triangle,
21
85939
2541
这就可以形成一个直角三角形,
01:28
and, therefore, a square corner.
22
88480
2159
因此,便可形成直角。
01:30
And the earliest known Indian mathematical texts
23
90639
2781
已知最早的印度数学记录
01:33
written between 800 and 600 B.C.
24
93420
3350
出现在公元前800至600年间,
01:36
state that a rope stretched across the diagonal of a square
25
96770
4077
其说明穿过正方形对角线的绳子,
01:40
produces a square twice as large as the original one.
26
100847
3881
可以产生比原来正方形 面积大一倍的正方形。
01:44
That relationship can be derived from the Pythagorean theorem.
27
104728
4622
这种关系源于毕达哥拉斯定理。
01:49
But how do we know that the theorem is true
28
109350
2891
但是我们怎么知道这个定理
01:52
for every right triangle on a flat surface,
29
112241
2610
对平面上的每个直角三角形都成立,
01:54
not just the ones these mathematicians and surveyors knew about?
30
114851
3760
而不是一些数学家和勘测员所推测的呢?
01:58
Because we can prove it.
31
118611
1340
因为我们可以证明它。
01:59
Proofs use existing mathematical rules and logic
32
119951
2945
利用现有的数学定理和逻辑,
02:02
to demonstrate that a theorem must hold true all the time.
33
122896
4523
我们可以证明该定理总是成立。
02:07
One classic proof often attributed to Pythagoras himself
34
127419
3718
经典证明是毕达哥拉斯自己做出的,
02:11
uses a strategy called proof by rearrangement.
35
131137
2874
他利用了一种名叫排列的证明方法。
02:14
Take four identical right triangles with side lengths a and b
36
134011
5639
取四个全等的直角三角形, 两边分别长a和b,
02:19
and hypotenuse length c.
37
139650
2482
斜边长c。
02:22
Arrange them so that their hypotenuses form a tilted square.
38
142132
4042
将它们排列, 使它们的斜边形成一个正方形。
02:26
The area of that square is c².
39
146174
3595
这个正方形的面积是c²。
02:29
Now rearrange the triangles into two rectangles,
40
149769
3423
现在,重新将三角形排列成两个长方形,
02:33
leaving smaller squares on either side.
41
153192
2800
让各边形成一个小的正方形。
02:35
The areas of those squares are a² and b².
42
155992
4520
这些正方形的面积分别为a²和b²。
02:40
Here's the key.
43
160512
1169
这就是关键。
02:41
The total area of the figure didn't change,
44
161681
3212
图形的总面积没有改变,
02:44
and the areas of the triangles didn't change.
45
164893
3368
三角形的面积没有改变。
02:48
So the empty space in one, c²
46
168261
3118
所以第一幅图中的空白部分,c²,
02:51
must be equal to the empty space in the other,
47
171379
3058
必须等于另一幅图中的空白部分,
02:54
a² + b².
48
174437
3892
a² + b²。
02:58
Another proof comes from a fellow Greek mathematician Euclid
49
178329
3594
另一种证明来自希腊数学家欧几里得,
03:01
and was also stumbled upon almost 2,000 years later
50
181923
3230
这种证明也被2000年后12岁的
03:05
by twelve-year-old Einstein.
51
185153
2191
爱因斯坦提出。
03:07
This proof divides one right triangle into two others
52
187344
3494
这种证明将一个直角三角形 分为两个部分,
03:10
and uses the principle that if the corresponding angles of two triangles
53
190838
4315
利用了如下定理, 如果两个三角形对应的角
03:15
are the same,
54
195153
1181
相同,
03:16
the ratio of their sides is the same, too.
55
196334
2729
那么它们的边的比例也是相同的。
03:19
So for these three similar triangles,
56
199063
2094
所以对这三个相似三角形,
03:21
you can write these expressions for their sides.
57
201157
3917
你可以写出它们的边的表达式。
03:33
Next, rearrange the terms.
58
213474
2159
下一步,整理各项。
03:39
And finally, add the two equations together and simplify to get
59
219333
4481
最后,将两式相加,化简得到
03:43
ab²+ac²=bc²,
60
223814
7830
ab²+ac²=bc²,
03:51
or a²+b²=c².
61
231644
6100
或a²+b²=c².
03:57
Here's one that uses tessellation,
62
237744
2261
还有一种用了曲面细分法,
04:00
a repeating geometric pattern for a more visual proof.
63
240005
3851
这是一种重复几何图案的 更加视觉化的证明。
04:03
Can you see how it works?
64
243856
1749
你能看出这是怎么办到的吗?
04:05
Pause the video if you'd like some time to think about it.
65
245605
2613
如果你想花些时间思考一下, 请暂停视频。
04:10
Here's the answer.
66
250158
1347
这是答案。
04:11
The dark gray square is a²
67
251505
2470
深灰色正方形是a²,
04:13
and the light gray one is b².
68
253975
2601
浅灰色正方形是b²。
04:16
The one outlined in blue is c².
69
256576
2919
蓝色画出的正方形是c²。
04:19
Each blue outlined square contains the pieces of exactly one dark
70
259495
4261
每个蓝色画出的正方形 正好包含了一个深灰色正方形和
04:23
and one light gray square,
71
263756
2140
一个浅灰色正方形,
04:25
proving the Pythagorean theorem again.
72
265896
2652
再次证明了毕达哥拉斯定理。
04:28
And if you'd really like to convince yourself,
73
268548
2329
如果你真的想说服自己,
04:30
you could build a turntable with three square boxes of equal depth
74
270877
3665
你可以建个转台, 上面有三个相同深度的正方形盒子,
04:34
connected to each other around a right triangle.
75
274542
2675
它们考一个直角三角形相连。
04:37
If you fill the largest square with water and spin the turntable,
76
277217
3620
如果你在最大的正方形内装满水, 并转动转台,
04:40
the water from the large square will perfectly fill the two smaller ones.
77
280837
4699
最大的正方形内的水会 正好装满另外两个小的正方形。
04:45
The Pythagorean theorem has more than 350 proofs, and counting,
78
285536
5448
毕达哥拉斯定理有超过350个证明, 还有更多,
04:50
ranging from brilliant to obscure.
79
290984
2281
从及其聪明的,到有些难懂的。
04:53
Can you add your own to the mix?
80
293265
1964
你能提出一个新的证明吗?
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7