How many ways are there to prove the Pythagorean theorem? - Betty Fei

3,718,630 views ใƒป 2017-09-11

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Roni Ravia
00:09
What do Euclid,
0
9476
1670
ืžื” ืžืฉืชื•ืฃ ืœืื•ืงืœื™ื“ืก,
00:11
twelve-year-old Einstein,
1
11146
1600
ืœืื™ื™ื ืฉื˜ื™ื™ืŸ ื‘ืŸ ื” 12,
00:12
and American President James Garfield have in common?
2
12746
3651
ื•ืœื ืฉื™ื ื”ืืžืจื™ืงืื™ ื’'ื™ื™ืžืก ื’ืืจืคื™ืœื“?
00:16
They all came up with elegant proofs for the famous Pythagorean theorem,
3
16397
4559
ื›ื•ืœื ื”ืขืœื• ื”ื•ื›ื—ื•ืช ืืœื’ื ื˜ื™ื•ืช ืœืžืฉืคื˜ ืคื™ืชื’ื•ืจืก ื”ืžืคื•ืจืกื,
00:20
the rule that says for a right triangle,
4
20956
2250
ื”ื—ื•ืง ืฉืื•ืžืจ ืฉื‘ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื™ืช,
00:23
the square of one side plus the square of the other side
5
23206
3880
ืกื›ื•ื ืจื™ื‘ื•ืขื™ ืฉืชื™ ื”ืฆืœืขื•ืช
00:27
is equal to the square of the hypotenuse.
6
27086
3000
ืฉื•ื•ื” ืœืจื™ื‘ื•ืข ืฉืœ ื”ื™ืชืจ.
00:30
In other words, aยฒ+bยฒ=cยฒ.
7
30086
4631
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, aยฒ+bยฒ=cยฒ.
00:34
This statement is one of the most fundamental rules of geometry,
8
34717
3580
ื”ืฆื”ืจื” ื–ื• ื”ื™ื ืื—ื“ ืžื”ืขืงืจื•ื ื•ืช ื”ื›ื™ ื‘ืกื™ืกื™ื™ื ื‘ื’ืื•ืžื˜ืจื™ื”,
00:38
and the basis for practical applications,
9
38297
2239
ื•ื”ื‘ืกื™ืก ืœืฉื™ืžื•ืฉื™ื ืคืจืงื˜ื™ื™ื,
00:40
like constructing stable buildings and triangulating GPS coordinates.
10
40536
5161
ื›ืžื• ื‘ื ื™ื™ืช ื‘ื ื™ื™ื ื™ื ื™ืฆื™ื‘ื™ื ื•ืื™ื›ื•ืŸ ืžื™ืงื•ื ื‘ GPS.
00:45
The theorem is named for Pythagoras,
11
45697
2986
ื”ืชืื•ืจื™ื” ื ืงืจืืช ืขืœ ืฉื ืคื™ืชื’ื•ืจืก,
00:48
a Greek philosopher and mathematician in the 6th century B.C.,
12
48683
4075
ืคื™ืœื•ืกื•ืฃ ื™ื•ื•ื ื™ ื•ืžืชืžื˜ื™ืงืื™ ื‘ืžืื” ื” 6 ืœืคื ื™ ื”ืกืคื™ืจื”,
00:52
but it was known more than a thousand years earlier.
13
52758
3399
ืื‘ืœ ื”ื™ื ื”ื™ืชื” ื™ื“ื•ืขื” ืขื•ื“ ืœืžืขืœื” ืžืืœืฃ ืฉื ื™ื ืœืคื ื™ ื›ืŸ.
00:56
A Babylonian tablet from around 1800 B.C. lists 15 sets of numbers
14
56157
6029
ื˜ื‘ืœื” ื‘ื‘ื™ืœื•ื ื™ืช ืžืกื‘ื™ื‘ื•ืช 1800 ืœืคื ื™ ื”ืกืคื™ืจื” ืžืคืจื˜ืช 15 ืกื“ืจื•ืช ืฉืœ ืžืกืคืจื™ื
01:02
that satisfy the theorem.
15
62186
1851
ืฉืžืชืื™ืžื•ืช ืœืชืื•ืจื™ื”.
01:04
Some historians speculate that Ancient Egyptian surveyors
16
64037
3521
ืžืกืคืจ ื”ืกื˜ื•ืจื™ื•ื ื™ื ืžืขืจื™ื›ื™ื ืฉื”ืžื•ื“ื“ื™ื ื”ืžืฆืจื™ื ื”ืขืชื™ืงื™ื
01:07
used one such set of numbers, 3, 4, 5, to make square corners.
17
67558
6140
ื”ืฉืชืžืฉื• ื‘ืกื“ืจืช ืžืกืคืจื™ื ืื—ืช ืžื‘ื™ืŸ ืืœื”, 3,4,5, ื›ื“ื™ ืœื™ืฆื•ืจ ืคื™ื ื•ืช ื™ืฉืจื•ืช.
01:13
The theory is that surveyors could stretch a knotted rope with twelve equal segments
18
73698
4482
ื”ืชืื•ืจื™ื” ื”ื™ื ืฉื”ืžื•ื“ื“ื™ื ื™ื›ืœื• ืœืžืชื•ื— ื—ื‘ืœ ื”ืžื—ื•ืœืง ืขืดื™ ืงืฉืจื™ื, ืœืฉื ื™ื™ื ืขืฉืจ ื—ืœืงื™ื ืฉื•ื•ื™ื,
01:18
to form a triangle with sides of length 3, 4 and 5.
19
78180
5049
ื›ื“ื™ ืœื™ืฆื•ืจ ืžืฉื•ืœืฉ ืขื ืฆืœืขื•ืช ื‘ืื•ืจืš 3,4,5.
01:23
According to the converse of the Pythagorean theorem,
20
83229
2710
ืœืคื™ ื”ื”ื ื—ื” ืฉืœ ืžืฉืคื˜ ืคื™ืชื’ื•ืจืก,
01:25
that has to make a right triangle,
21
85939
2541
ืฆืœืขื•ืช ืืœื• ื—ื™ื™ื‘ื•ืช ืœื™ืฆื•ืจ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื•ื™ืช,
01:28
and, therefore, a square corner.
22
88480
2159
ื•ืœื›ืŸ, ืคื™ื ื” ื™ืฉืจื”.
01:30
And the earliest known Indian mathematical texts
23
90639
2781
ื”ื˜ืงืกื˜ื™ื ื”ืžืชืžื˜ื™ื™ื ื”ื”ื•ื“ื™ื ื”ืžื•ืงื“ืžื™ื ื‘ื™ื•ืชืจ,
01:33
written between 800 and 600 B.C.
24
93420
3350
ืฉื ื›ืชื‘ื• ื‘ื™ืŸ 800 ืœ 600 ืœืคื ื™ ื”ืกืคื™ืจื”,
01:36
state that a rope stretched across the diagonal of a square
25
96770
4077
ื˜ื•ืขื ื™ื ืฉื—ื‘ืœ ืฉื ืžืชื— ืœืื•ืจืš ืืœื›ืกื•ืŸ ืฉืœ ืจื™ื‘ื•ืข
01:40
produces a square twice as large as the original one.
26
100847
3881
ืžื”ื•ื•ื” ืฆืœืข ื‘ืจื™ื‘ื•ืข ื”ื’ื“ื•ืœ ืคื™ ืฉื ื™ื™ื ืžื”ืžืงื•ืจื™.
01:44
That relationship can be derived from the Pythagorean theorem.
27
104728
4622
ื™ื—ืก ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื—ื•ืฉื‘ ืขืดื™ ืžืฉืคื˜ ืคื™ืชื’ื•ืจืก.
01:49
But how do we know that the theorem is true
28
109350
2891
ืื‘ืœ ืื™ืš ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื”ืžืฉืคื˜ ื ื›ื•ืŸ
01:52
for every right triangle on a flat surface,
29
112241
2610
ืœื›ืœ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื•ื™ืช ืขืœ ืžืฉื˜ื— ื—ืœืง,
01:54
not just the ones these mathematicians and surveyors knew about?
30
114851
3760
ืœื ืจืง ืœืืœื• ืฉื”ื™ื• ื™ื“ื•ืขื™ื ืœืžืชืžื˜ื™ืงืื™ื ื•ืœืžื•ื“ื“ื™ื ื”ื ืดืœ?
01:58
Because we can prove it.
31
118611
1340
ืžืฉื•ื ืฉื”ืžืฉืคื˜ ื”ื•ื ื‘ืจ ื”ื•ื›ื—ื”.
01:59
Proofs use existing mathematical rules and logic
32
119951
2945
ื”ื•ื›ื—ื•ืช ืžืฉืชืžืฉื•ืช ื‘ื”ื’ื™ื•ืŸ ื•ื‘ื—ื•ืงื™ื ืžืชืžื˜ื™ื™ื ืงื™ื™ืžื™ื
02:02
to demonstrate that a theorem must hold true all the time.
33
122896
4523
ื›ื“ื™ ืœื”ื“ื’ื™ื ืฉืชืื•ืจื™ื” ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ืชืงืคื” ื›ืœ ื”ื–ืžืŸ.
02:07
One classic proof often attributed to Pythagoras himself
34
127419
3718
ื”ื•ื›ื—ื” ืงืœืืกื™ืช ืื—ืช ืฉืจื‘ื™ื ืžืฉื™ื™ื›ื™ื ืœืคื™ืชื’ื•ืจืก ืขืฆืžื•
02:11
uses a strategy called proof by rearrangement.
35
131137
2874
ืžืฉืชืžืฉืช ื‘ืืกื˜ืจื˜ื’ื™ื” ืฉื ืงืจืืช ื”ื•ื›ื—ื” ืขืดื™ ืกื™ื“ื•ืจ ืžื—ื“ืฉ.
02:14
Take four identical right triangles with side lengths a and b
36
134011
5639
ืงื—ื• ืืจื‘ืขื” ืžืฉื•ืœืฉื™ื ื™ืฉืจื™ ื–ื•ื™ืช ื–ื”ื™ื ืขื ืฆืœืขื•ืช ื‘ืื•ืจืš a ื• b
02:19
and hypotenuse length c.
37
139650
2482
ื•ื™ืชืจ ื‘ืื•ืจืš c.
02:22
Arrange them so that their hypotenuses form a tilted square.
38
142132
4042
ืกื“ืจื• ืื•ืชื ื›ืš ืฉื”ื™ืชืจื™ื ืฉืœื”ื ื™ืฆืจื• ืจื™ื‘ื•ืข ื ื˜ื•ื™.
02:26
The area of that square is cยฒ.
39
146174
3595
ื”ืฉื˜ื— ืฉืœ ื”ืจื™ื‘ื•ืข ื”ื•ื cยฒ.
02:29
Now rearrange the triangles into two rectangles,
40
149769
3423
ืขื›ืฉื™ื• ืกื“ืจื• ืืช ื”ืžืฉื•ืœืฉื™ื ืœืฉื ื™ ืžืœื‘ื ื™ื,
02:33
leaving smaller squares on either side.
41
153192
2800
ืขื ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื ื‘ื›ืœ ืฆื“.
02:35
The areas of those squares are aยฒ and bยฒ.
42
155992
4520
ื”ืฉื˜ื— ืฉืœ ื”ืจื™ื‘ื•ืขื™ื ื”ืืœื• ื”ื•ื aยฒ ื• bยฒ.
02:40
Here's the key.
43
160512
1169
ื”ื ื” ื”ืžืคืชื—.
02:41
The total area of the figure didn't change,
44
161681
3212
ื”ืฉื˜ื— ื”ื›ื•ืœืœ ืฉืœ ื”ืฆื•ืจื” ืœื ื”ืฉืชื ื”,
02:44
and the areas of the triangles didn't change.
45
164893
3368
ื•ื”ืฉื˜ื— ืฉืœ ื”ืžืฉื•ืœืฉื™ื ืœื ื”ืฉืชื ื”.
02:48
So the empty space in one, cยฒ
46
168261
3118
ืื– ื”ืฉื˜ื— ื”ืœื‘ืŸ ื‘ืžืงืจื” ื”ืจืืฉื•ืŸ cยฒ
02:51
must be equal to the empty space in the other,
47
171379
3058
ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืฉื•ื•ื” ืœืฉื˜ื— ื”ืœื‘ืŸ ื‘ืžืฆื‘ ื”ืฉื ื™,
02:54
aยฒ + bยฒ.
48
174437
3892
aยฒ + bยฒ.
02:58
Another proof comes from a fellow Greek mathematician Euclid
49
178329
3594
ื”ื•ื›ื—ื” ื ื•ืกืคืช ืžื’ื™ืขื” ืžืžืชืžื˜ื™ืงืื™ ื™ื•ื•ื ื™ ื ื•ืกืฃ ื‘ืฉื ืื•ืงืœื™ื“ืก
03:01
and was also stumbled upon almost 2,000 years later
50
181923
3230
ื•ืื•ืชื” ื’ื ื‘ื—ืŸ ื›ืžืขื˜ 2,000 ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ
03:05
by twelve-year-old Einstein.
51
185153
2191
ืื™ื ืฉื˜ื™ื™ืŸ ื‘ืŸ ื”ืฉืชื™ื ืขืฉืจื”.
03:07
This proof divides one right triangle into two others
52
187344
3494
ื”ื”ื•ื›ื—ื” ืžื—ืœืงืช ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื•ื™ืช ืื—ื“ ืœืฉื ื™ ืžืฉื•ืœืฉื™ื ื™ืฉืจื™ ื–ื•ื™ืช ืื—ืจื™ื
03:10
and uses the principle that if the corresponding angles of two triangles
53
190838
4315
ื•ืžืฉืชืžืฉืช ื‘ืขืงืจื•ืŸ ืฉืื ื”ื–ื•ื•ื™ื•ืช ื”ืžืชืื™ืžื•ืช ืฉืœ ืฉื ื™ ื”ืžืฉื•ืœืฉื™ื
03:15
are the same,
54
195153
1181
ื–ื”ื•ืช,
03:16
the ratio of their sides is the same, too.
55
196334
2729
ื”ื™ื—ืก ืฉืœ ื”ืฆืœืขื•ืช ืฉืœื”ื ื–ื”ื” ื’ื ื›ืŸ.
03:19
So for these three similar triangles,
56
199063
2094
ืื– ืœืฉืœื•ืฉืช ื”ืžืฉื•ืœืฉื™ื ื”ื“ื•ืžื™ื ื”ืœืœื•,
03:21
you can write these expressions for their sides.
57
201157
3917
ื ื™ืชืŸ ืœื›ืชื•ื‘ ืืช ื”ื‘ื™ื˜ื•ื™ื™ื ื”ื‘ืื™ื ืขื‘ื•ืจ ื”ืฆืœืขื•ืช ืฉืœื”ื.
03:33
Next, rearrange the terms.
58
213474
2159
ื‘ื”ืžืฉืš, ืกื“ืจื• ืžื—ื“ืฉ ืืช ื”ื‘ื™ื˜ื•ื™ื™ื.
03:39
And finally, add the two equations together and simplify to get
59
219333
4481
ื•ืœื‘ืกื•ืฃ, ื—ื‘ืจื• ืืช ืฉืชื™ ื”ืžืฉื•ื•ื•ืื•ืช ื•ืคืฉื˜ื• ื›ื“ื™ ืœืงื‘ืœ
03:43
abยฒ+acยฒ=bcยฒ,
60
223814
7830
ABยฒ+ACยฒ=BCยฒ,
03:51
or aยฒ+bยฒ=cยฒ.
61
231644
6100
ืื• aยฒ+bยฒ=cยฒ.
03:57
Here's one that uses tessellation,
62
237744
2261
ื”ื ื” ื”ื•ื›ื—ื” ืฉืžืฉืชืžืฉ ื‘ืจื™ืฆื•ืฃ ืฉืœ ื”ืžื™ืฉื•ืจ,
04:00
a repeating geometric pattern for a more visual proof.
63
240005
3851
ืชื‘ื ื™ืช ื’ืื•ืžื˜ืจื™ืช ื—ื•ื–ืจืช ืฉืžืฆื™ื’ื” ื”ื•ื›ื—ื” ื™ื•ืชืจ ื•ื™ื–ื•ืืœื™ืช.
04:03
Can you see how it works?
64
243856
1749
ืืชื ืจื•ืื™ื ืื™ืš ื–ื” ืขื•ื‘ื“?
04:05
Pause the video if you'd like some time to think about it.
65
245605
2613
ืขืฆืจื• ืืช ื”ืกืจื˜ื•ืŸ ืื ืชืจืฆื• ืงืฆืช ื–ืžืŸ ืœืžื—ืฉื‘ื”.
04:10
Here's the answer.
66
250158
1347
ื”ื ื” ื”ืชืฉื•ื‘ื”.
04:11
The dark gray square is aยฒ
67
251505
2470
ื”ืจื™ื‘ื•ืข ื”ืืคื•ืจ ื”ื›ื”ื” ื”ื•ื aยฒ
04:13
and the light gray one is bยฒ.
68
253975
2601
ื•ื”ืจื™ื‘ื•ืข ื”ืืคื•ืจ ื”ื‘ื”ื™ืจ ื”ื•ื bยฒ.
04:16
The one outlined in blue is cยฒ.
69
256576
2919
ื–ื” ืฉืชื—ื•ื ื‘ืงื•ื™ื ื›ื—ื•ืœื™ื ื”ื•ื cยฒ.
04:19
Each blue outlined square contains the pieces of exactly one dark
70
259495
4261
ื›ืœ ืจื™ื‘ื•ืข ื”ืชื—ื•ื ื‘ืงื•ื•ื™ื ื›ื—ื•ืœื™ื ืžื›ื™ืœ ื‘ื“ื™ื•ืง
04:23
and one light gray square,
71
263756
2140
ืจื™ื‘ื•ืข ืื—ื“ ื›ื”ื” ื•ืจื™ื‘ื•ืข ืื—ื“ ื‘ื”ื™ืจ,
04:25
proving the Pythagorean theorem again.
72
265896
2652
ืžื” ืฉืžื•ื›ื™ื— ืฉื•ื‘ ืืช ืžืฉืคื˜ ืคื™ืชื’ื•ืจืก.
04:28
And if you'd really like to convince yourself,
73
268548
2329
ื•ืื ืืชื ื‘ืืžืช ืจื•ืฆื™ื ืœืฉื›ื ืข ืืช ืขืฆืžื›ื,
04:30
you could build a turntable with three square boxes of equal depth
74
270877
3665
ืืชื ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช ืฉื•ืœื—ืŸ ืžืกืชื•ื‘ื‘ ืขื ืฉืœื•ืฉ ืงื•ืคืกืื•ืช ืจื™ื‘ื•ืขื™ื•ืช ื‘ืขื•ืžืง ืฉื•ื•ื”
04:34
connected to each other around a right triangle.
75
274542
2675
ืžื—ื•ื‘ืจื•ืช ืื—ืช ืœืฉื ื™ื” ืกื‘ื™ื‘ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื•ื™ืช.
04:37
If you fill the largest square with water and spin the turntable,
76
277217
3620
ืื ืืชื ืžืžืœืื™ื ืืช ื”ืจื™ื‘ื•ืข ื”ื’ื“ื•ืœ ื‘ืžื™ื ื•ืžืกื•ื‘ื‘ื™ื ืืช ื”ืฉื•ืœื—ืŸ,
04:40
the water from the large square will perfectly fill the two smaller ones.
77
280837
4699
ื”ืžื™ื ืžื”ืจื™ื‘ื•ืข ื”ื’ื“ื•ืœ ื™ืžืœืื• ื‘ื“ื™ื•ืง ืืช ืฉื ื™ ื”ื”ืงื˜ื ื™ื.
04:45
The Pythagorean theorem has more than 350 proofs, and counting,
78
285536
5448
ืœืžืฉืคื˜ ืคื™ืชื’ื•ืจืก ื™ืฉ ื™ื•ืชืจ ืž 350 ื”ื•ื›ื—ื•ืช, ื•ื”ืกืคื™ืจื” ื ืžืฉื›ืช,
04:50
ranging from brilliant to obscure.
79
290984
2281
ืฉื ืขื•ืช ื‘ื™ืŸ ื’ืื•ื ื™ื•ืช ืœืžื•ื–ืจื•ืช.
04:53
Can you add your own to the mix?
80
293265
1964
ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื”ื•ืกื™ืฃ ื”ื•ื›ื—ื” ืžืฉืœื›ื?
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7