How many ways are there to prove the Pythagorean theorem? - Betty Fei
3,707,339 views ・ 2017-09-11
請雙擊下方英文字幕播放視頻。
譯者: Helen Chang
審譯者: S Sung
00:09
What do Euclid,
0
9476
1670
歐幾里得
00:11
twelve-year-old Einstein,
1
11146
1600
十二歲的愛因斯坦
00:12
and American President James Garfield
have in common?
2
12746
3651
和美國詹姆斯 · 加菲爾德總統
有什麼共同點?
00:16
They all came up with elegant
proofs for the famous Pythagorean theorem,
3
16397
4559
他們都為著名的畢達哥拉斯定理
想出優雅的證明
00:20
the rule that says for a right triangle,
4
20956
2250
定理說的是直角三角形
00:23
the square of one side plus
the square of the other side
5
23206
3880
兩條直角邊的長度的平方加起來
00:27
is equal to the square of the hypotenuse.
6
27086
3000
等於斜邊長的平方
00:30
In other words, a²+b²=c².
7
30086
4631
換句話說,a² + b² = c²
00:34
This statement is one of the most
fundamental rules of geometry,
8
34717
3580
這是幾何最重要的基本規則
00:38
and the basis for practical applications,
9
38297
2239
也是實際應用的基礎
00:40
like constructing stable buildings
and triangulating GPS coordinates.
10
40536
5161
像是用於建造穩定的建築物
以及三角測量 GPS 坐標
00:45
The theorem is named for Pythagoras,
11
45697
2986
該定理被命名為畢達哥拉斯
00:48
a Greek philosopher and mathematician
in the 6th century B.C.,
12
48683
4075
公元前六世紀的希臘哲學家和數學家
00:52
but it was known more than a
thousand years earlier.
13
52758
3399
但它在那之前一千年已為人知
00:56
A Babylonian tablet from around 1800 B.C.
lists 15 sets of numbers
14
56157
6029
公元前 1800 年左右的
巴比倫書寫板列出 15 組數字
01:02
that satisfy the theorem.
15
62186
1851
滿足這個定理
01:04
Some historians speculate
that Ancient Egyptian surveyors
16
64037
3521
一些歷史學家推測古埃及的測量者
01:07
used one such set of numbers, 3, 4, 5,
to make square corners.
17
67558
6140
用了 3、4、5 這組數字做直角
01:13
The theory is that surveyors could stretch
a knotted rope with twelve equal segments
18
73698
4482
理論是測量員拉一條
打了十二個等分結的繩索
01:18
to form a triangle with sides of length
3, 4 and 5.
19
78180
5049
來形成邊長分別是 3、4、5 的三角形
01:23
According to the converse
of the Pythagorean theorem,
20
83229
2710
由畢達哥拉斯定理反推
01:25
that has to make a right triangle,
21
85939
2541
那必然是個直角三角形
01:28
and, therefore, a square corner.
22
88480
2159
因此有個直角
01:30
And the earliest known
Indian mathematical texts
23
90639
2781
而已知最早的印度的數學教科書
01:33
written between 800 and 600 B.C.
24
93420
3350
寫在公元前 800 到 600 年之間
01:36
state that a rope stretched across
the diagonal of a square
25
96770
4077
陳述橫跨正方形的對角線長度的繩索
01:40
produces a square twice as large
as the original one.
26
100847
3881
所產生的正方形面積是原來的兩倍大
01:44
That relationship can be derived
from the Pythagorean theorem.
27
104728
4622
這關係可以從畢達哥拉斯定理得出
01:49
But how do we know
that the theorem is true
28
109350
2891
但是我們如何確認這定理
對於每個平面上的
直角三角形都成立
01:52
for every right triangle
on a flat surface,
29
112241
2610
01:54
not just the ones these mathematicians
and surveyors knew about?
30
114851
3760
不限於那些數學家、測量員
知道的三角形而已呢?
01:58
Because we can prove it.
31
118611
1340
因為我們可以證明這一點
01:59
Proofs use existing mathematical rules
and logic
32
119951
2945
使用現有的數學規則和邏輯
02:02
to demonstrate that a theorem
must hold true all the time.
33
122896
4523
來證明定理始終成立
02:07
One classic proof often attributed
to Pythagoras himself
34
127419
3718
一個往往被歸功於
畢達哥拉斯本人的經典證明
02:11
uses a strategy called
proof by rearrangement.
35
131137
2874
用的策略是重新排列
02:14
Take four identical right triangles
with side lengths a and b
36
134011
5639
拿四個相同的直角三角形
邊長為 a、b 而斜邊長為 c
02:19
and hypotenuse length c.
37
139650
2482
02:22
Arrange them so that their hypotenuses
form a tilted square.
38
142132
4042
把它們排列成斜邊形成一個正方形
02:26
The area of that square is c².
39
146174
3595
正方形的面積是 c²
02:29
Now rearrange the triangles
into two rectangles,
40
149769
3423
把三角形重排形成兩個正方形
02:33
leaving smaller squares on either side.
41
153192
2800
兩邊各有一個較小的正方形
02:35
The areas of those squares
are a² and b².
42
155992
4520
兩個正方形的面積各是 a² 和 b²
02:40
Here's the key.
43
160512
1169
關鍵在於
02:41
The total area of
the figure didn't change,
44
161681
3212
圖形的總面積不變
02:44
and the areas of the triangles
didn't change.
45
164893
3368
而且三角形的總面積也不變
02:48
So the empty space in one, c²
46
168261
3118
所以一個空間的面積 c²
02:51
must be equal to
the empty space in the other,
47
171379
3058
必須等於另一個空間的面積
02:54
a² + b².
48
174437
3892
a² + b²
02:58
Another proof comes from a fellow Greek
mathematician Euclid
49
178329
3594
來自希臘同胞
數學家歐幾里德的另一證明
03:01
and was also stumbled upon
almost 2,000 years later
50
181923
3230
也在差不多兩千年後
03:05
by twelve-year-old Einstein.
51
185153
2191
被十二歲的愛因斯坦偶然發現了
03:07
This proof divides one right triangle
into two others
52
187344
3494
這個證明把直角三角形分為兩個
03:10
and uses the principle that if the
corresponding angles of two triangles
53
190838
4315
並運用這個原則
如果兩個三角形的對應角度相等
03:15
are the same,
54
195153
1181
03:16
the ratio of their sides
is the same, too.
55
196334
2729
它們的邊長比例也必定相等
所以這三個相似三角形
03:19
So for these three similar triangles,
56
199063
2094
03:21
you can write these expressions
for their sides.
57
201157
3917
可以用這樣的式子表示邊長的關係
03:33
Next, rearrange the terms.
58
213474
2159
接下來重新排列
03:39
And finally, add the two equations
together and simplify to get
59
219333
4481
最後,兩個式子相加並簡化成
03:43
ab²+ac²=bc²,
60
223814
7830
ab² + ac² = bc²
03:51
or a²+b²=c².
61
231644
6100
或 a² + b² = c²
03:57
Here's one that uses tessellation,
62
237744
2261
這個證明用到平面填充
04:00
a repeating geometric pattern
for a more visual proof.
63
240005
3851
重複幾何圖案以取得視覺證明
04:03
Can you see how it works?
64
243856
1749
你能看出它如何證明嗎?
04:05
Pause the video if you'd like some time
to think about it.
65
245605
2613
如果你要一段時間想想,請暫停
04:10
Here's the answer.
66
250158
1347
答案是
04:11
The dark gray square is a²
67
251505
2470
深灰色的方塊是 a²
04:13
and the light gray one is b².
68
253975
2601
淺灰色的是 b²
04:16
The one outlined in blue is c².
69
256576
2919
藍色圍起來的是 c²
04:19
Each blue outlined square
contains the pieces of exactly one dark
70
259495
4261
每個藍色輪廓的正方形
恰好包含一個深灰色方塊的碎片
04:23
and one light gray square,
71
263756
2140
和一個淺灰色正方形的碎片
04:25
proving the Pythagorean theorem again.
72
265896
2652
再次證明畢達哥拉斯定理
04:28
And if you'd really like
to convince yourself,
73
268548
2329
如果你真要說服自己
04:30
you could build a turntable
with three square boxes of equal depth
74
270877
3665
可以做個轉盤,上面掛著
三個深度相等的方框框容器
04:34
connected to each other
around a right triangle.
75
274542
2675
容器相互連接圍繞成直角三角形
04:37
If you fill the largest square with water
and spin the turntable,
76
277217
3620
如果你用水填滿最大的正方形
旋轉轉盤
04:40
the water from the large square
will perfectly fill the two smaller ones.
77
280837
4699
大正方形的水將完美注滿兩個小的
04:45
The Pythagorean theorem has more
than 350 proofs, and counting,
78
285536
5448
畢達哥拉斯定理的證明超過 350 種
還在增加當中
04:50
ranging from brilliant to obscure.
79
290984
2281
精彩、晦澀的都有
04:53
Can you add your own to the mix?
80
293265
1964
你有自己的證明可以加入嗎?
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。