请双击下面的英文字幕来播放视频。
翻译人员: Yulin Li
校对人员: Di SUN
00:07
With every year, machines surpass humans
in more and more activities
0
7052
4590
每年,机器逐渐在一些我们以前认为
00:11
we once thought only we were capable of.
1
11642
3206
只有人类可以做的事情中超越人类
00:14
Today's computers can beat us
in complex board games,
2
14848
3575
如今,电脑可以在复杂的桌面游戏中打败我们
00:18
transcribe speech in dozens of languages,
3
18423
2871
能够转录各种语言
00:21
and instantly identify almost any object.
4
21294
3452
并能迅速识别几乎所有物体
00:24
But the robots of tomorrow may go futher
5
24746
2366
而未来的机器人
00:27
by learning to figure out
what we're feeling.
6
27112
3131
或许能在感知我们的情绪方面取得突破
00:30
And why does that matter?
7
30243
2138
为什么这很重要?
00:32
Because if machines
and the people who run them
8
32381
2292
因为如果机器和操作他们的人
00:34
can accurately read our emotional states,
9
34673
2550
可以准确地感知到我们的情绪
00:37
they may be able to assist us
or manipulate us
10
37223
2970
他们可以前所未有地帮助我们
甚至是操纵我们
00:40
at unprecedented scales.
11
40193
2909
00:43
But before we get there,
12
43102
1512
但是在这之前
00:44
how can something so complex as emotion
be converted into mere numbers,
13
44614
5039
我们先来探讨一下
为什么像情绪这么复杂的东西
可以被转化为数字,
这种计算机唯一能够理解的语言呢?
00:49
the only language machines understand?
14
49653
3600
00:53
Essentially the same way our own brains
interpret emotions,
15
53253
3590
本质上,机器理解感情的方式与我们大脑一样,
00:56
by learning how to spot them.
16
56843
2151
通过情绪识别。
00:58
American psychologist Paul Ekman
identified certain universal emotions
17
58994
5126
美国心理学家保罗·艾克曼
定义了几种全球通用的情绪
01:04
whose visual cues are understood
the same way across cultures.
18
64120
5054
这些情绪的视觉信号在不同文化中是相同的。
01:09
For example, an image of a smile
signals joy to modern urban dwellers
19
69174
5019
例如,微笑的画面对于现代城市人而言意味着愉悦
01:14
and aboriginal tribesmen alike.
20
74193
2772
对于土著原始人而言也是如此。
01:16
And according to Ekman,
21
76965
1129
根据艾克曼的理论,
01:18
anger,
22
78094
729
01:18
disgust,
23
78823
710
愤怒,
厌恶,
01:19
fear,
24
79533
742
恐惧,
01:20
joy,
25
80275
817
愉悦
01:21
sadness,
26
81092
756
01:21
and surprise are equally recognizable.
27
81848
3585
悲伤
和惊喜都一样容易被识别。
01:25
As it turns out, computers are rapidly
getting better at image recognition
28
85433
4403
事实证明,电脑的图像识别能力正在迅速提高
01:29
thanks to machine learning algorithms,
such as neural networks.
29
89836
4179
这归功于神经网络这样的机器学习算法。
01:34
These consist of artificial nodes that
mimic our biological neurons
30
94015
4190
这些人工节点通过建成关联和交换信息,
模仿人们的生物神经元。
01:38
by forming connections
and exchanging information.
31
98205
3579
01:41
To train the network, sample inputs
pre-classified into different categories,
32
101784
4501
为了训练这样的网络,
输入的样例被预分类到不同类别,
01:46
such as photos marked happy or sad,
33
106285
2890
譬如被标记成快乐或伤心的图片,
01:49
are fed into the system.
34
109175
2110
被输入到这个系统里。
01:51
The network then learns to classify
those samples
35
111285
2460
然后,这个系统网络通过改变不同特征的比重
01:53
by adjusting the relative weights
assigned to particular features.
36
113745
4660
来辨别不同的样例。
01:58
The more training data it's given,
37
118405
1620
这样的训练越多,
02:00
the better the algorithm becomes
at correctly identifying new images.
38
120025
4770
算法就能更准确地识别新的图像。
02:04
This is similar to our own brains,
39
124795
1732
这一原理正与我们的大脑相像,
02:06
which learn from previous experiences
to shape how new stimuli are processed.
40
126527
5198
我们的大脑依据过往的经历来处理新的刺激。
02:11
Recognition algorithms aren't just
limited to facial expressions.
41
131725
3741
识别算法并不只限于面部表情。
02:15
Our emotions manifest in many ways.
42
135466
2420
我们的情感通过许多不同的方式被表露。
02:17
There's body language and vocal tone,
43
137886
2230
比如肢体语言,语音语调
02:20
changes in heart rate, complexion,
and skin temperature,
44
140116
3121
心跳的改变,面色和皮肤温度,
02:23
or even word frequency and sentence
structure in our writing.
45
143237
4809
甚至写作的用词频率和句型结构。
02:28
You might think that training
neural networks to recognize these
46
148046
3159
你也许会认为通过训练神经网络来识别这些特征
02:31
would be a long and complicated task
47
151205
2432
会是一个漫长而复杂的过程
02:33
until you realize just how much
data is out there,
48
153637
3329
考虑到当下巨大的数据量,
02:36
and how quickly modern computers
can process it.
49
156966
3409
以及现代电脑的数据处理速度。
02:40
From social media posts,
50
160375
1542
从社交网络的更新,
02:41
uploaded photos and videos,
51
161917
1669
上传的图片和视频,
02:43
and phone recordings,
52
163586
1401
电话录音,
02:44
to heat-sensitive security cameras
53
164987
1780
到热敏感安全摄像机
02:46
and wearables that monitor
physiological signs,
54
166767
3670
和可穿戴的生理信号监视器,
02:50
the big question is not how to collect
enough data,
55
170437
2510
关键问题并不是如何获得足够的数据,
02:52
but what we're going to do with it.
56
172947
2308
而是我们应该如何运用这些数据。
02:55
There are plenty of beneficial uses
for computerized emotion recognition.
57
175255
4451
电子情感识别的用途是多方面的。
02:59
Robots using algorithms to identify
facial expressions
58
179706
2921
比如,用算法识别面部表情的机器人
03:02
can help children learn
59
182627
1619
可以用于帮助儿童学习
03:04
or provide lonely people
with a sense of companionship.
60
184246
3390
或者为孤独的人作伴。
03:07
Social media companies are considering
using algorithms
61
187636
3001
许多社交网络公司正在考虑使用算法
03:10
to help prevent suicides by flagging posts
that contain specific words or phrases.
62
190637
6410
来标记帖子里的特殊字词以防范自杀行为。
03:17
And emotion recognition software can help
treat mental disorders
63
197047
4240
情感识别软件可以帮助治疗精神疾病
03:21
or even provide people with low-cost
automated psychotherapy.
64
201287
4291
或者提供低价的自动化心理治疗。
03:25
Despite the potential benefits,
65
205578
1610
尽管情感识别有这些好处,
03:27
the prospect of a massive network
automatically scanning our photos,
66
207188
3681
通过一个巨大的网络自动扫描我们的照片,
03:30
communications,
67
210869
1089
通信,
03:31
and physiological signs
is also quite disturbing.
68
211958
4919
和生理信号也让人感到不安。
03:36
What are the implications for our privacy
when such impersonal systems
69
216877
3919
当我们的隐私信息被这个没有人情味的系统收集,
进而被公司利用到广告中来欺骗我们的感情
03:40
are used by corporations to exploit
our emotions through advertising?
70
220796
4412
这意味着什么?
03:45
And what becomes of our rights
71
225208
1510
我们的权利又是什么
03:46
if authorities think they can identify
the people likely to commit crimes
72
226718
4019
如果任何的权力机构认为
他们可以在人们决定做任何事情之前,
03:50
before they even make
a conscious decision to act?
73
230737
4190
就能辨别有可能作案的人?
03:54
Robots currently have a long way to go
74
234927
2223
当前的机器人在辨别情感的微妙变化上
03:57
in distinguishing emotional nuances,
like irony,
75
237150
3108
还需要提升,比如辨识讽刺
04:00
and scales of emotions,
just how happy or sad someone is.
76
240258
4500
以及识别情绪的程度,
分辨一个人有多么的开心或者难过。
04:04
Nonetheless, they may eventually be able
to accurately read our emotions
77
244758
4530
无论如何,
它们或许终究能够正确识别我们的情绪
04:09
and respond to them.
78
249288
1850
并且做出回应。
04:11
Whether they can empathize with our fear
of unwanted intrusion, however,
79
251138
4251
至于他们能否体会到我们不想被过度入侵的恐惧,
04:15
that's another story.
80
255389
1498
这就是另外一回事了。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。