请双击下面的英文字幕来播放视频。
翻译人员: Simon Cai
校对人员: Amy Yang
00:12
America's favorite pie is?
0
12787
3845
美国人最爱的馅饼是什么?
00:16
Audience: Apple.
Kenneth Cukier: Apple. Of course it is.
1
16632
3506
观众:苹果派
Kenneth Cukier:苹果派 毋庸置疑
00:20
How do we know it?
2
20138
1231
我们是怎么知道的?
00:21
Because of data.
3
21369
2753
因为数据
00:24
You look at supermarket sales.
4
24122
2066
当你观察超市的销售数据
00:26
You look at supermarket
sales of 30-centimeter pies
5
26188
2866
会发现超市销售的30厘米冷冻馅饼中
00:29
that are frozen, and apple wins, no contest.
6
29054
4075
苹果派胜出, 毫无悬念
00:33
The majority of the sales are apple.
7
33129
5180
绝大多数的销售份额就是来自苹果派
00:38
But then supermarkets started selling
8
38309
2964
但是之后超市开始销售
00:41
smaller, 11-centimeter pies,
9
41273
2583
比较小的11厘米的馅饼
00:43
and suddenly, apple fell to fourth or fifth place.
10
43856
4174
突然间苹果派的销量下降到了第4或第5名
00:48
Why? What happened?
11
48030
2875
为什么?怎么了?
00:50
Okay, think about it.
12
50905
2818
好, 想象一下
00:53
When you buy a 30-centimeter pie,
13
53723
3848
当你准备买一个30厘米的馅饼时
00:57
the whole family has to agree,
14
57571
2261
全家都不得不同意(选择苹果派馅饼)
00:59
and apple is everyone's second favorite.
15
59832
3791
虽然苹果派只是每个人的次选项
01:03
(Laughter)
16
63623
1935
(笑声)
01:05
But when you buy an individual 11-centimeter pie,
17
65558
3615
但当你给自己选一个11厘米馅饼时
01:09
you can buy the one that you want.
18
69173
3745
你可以买你最爱吃的口味
01:12
You can get your first choice.
19
72918
4015
你会选你的首选项
01:16
You have more data.
20
76933
1641
你有了更多数据
01:18
You can see something
21
78574
1554
你可以知道些事情
01:20
that you couldn't see
22
80128
1132
这些事情在你只有少量数据时
01:21
when you only had smaller amounts of it.
23
81260
3953
你是无法知道的
01:25
Now, the point here is that more data
24
85213
2475
这里, 关键的是更多的数据
01:27
doesn't just let us see more,
25
87688
2283
不单单让我们知道更多
01:29
more of the same thing we were looking at.
26
89971
1854
知道更多我们正在关注的同样事物
01:31
More data allows us to see new.
27
91825
3613
更多的数据使我们能了解新的事情
01:35
It allows us to see better.
28
95438
3094
让我们更好地了解
01:38
It allows us to see different.
29
98532
3656
让我们有不同的视角
01:42
In this case, it allows us to see
30
102188
3173
在这个例子里 更多的数据让我们知道
01:45
what America's favorite pie is:
31
105361
2913
美国人最喜欢的馅饼
01:48
not apple.
32
108274
2542
不是苹果派
01:50
Now, you probably all have heard the term big data.
33
110816
3614
你或许听说过大数据这个词
01:54
In fact, you're probably sick of hearing the term
34
114430
2057
事实上, 你可能对这个词
01:56
big data.
35
116487
1630
已经心生厌恶
01:58
It is true that there is a lot of hype around the term,
36
118117
3330
确实, 大数据受到了空前的宣传炒作
02:01
and that is very unfortunate,
37
121447
2332
这很不应该
02:03
because big data is an extremely important tool
38
123779
3046
因为大数据是一个非常重要的工具
02:06
by which society is going to advance.
39
126825
3734
社会将由此而不断进步
02:10
In the past, we used to look at small data
40
130559
3561
过去我们习惯于处理小数据
02:14
and think about what it would mean
41
134120
1704
思考这些小数据的意义
02:15
to try to understand the world,
42
135824
1496
并以此来了解世界
02:17
and now we have a lot more of it,
43
137320
1991
现在我们有很多很多的数据
02:19
more than we ever could before.
44
139311
2722
数据量前所未有的巨大
02:22
What we find is that when we have
45
142033
1877
当我们掌握海量数据时
02:23
a large body of data, we can fundamentally do things
46
143910
2724
我们可以做一些事
02:26
that we couldn't do when we
only had smaller amounts.
47
146634
3276
一些在只有较少数据时不可能办到的事
02:29
Big data is important, and big data is new,
48
149910
2641
大数据很重要, 它也是一个新兴事物
02:32
and when you think about it,
49
152551
1777
想象一下
02:34
the only way this planet is going to deal
50
154328
2216
能够帮助我们应对
02:36
with its global challenges —
51
156544
1789
世界性难题
02:38
to feed people, supply them with medical care,
52
158333
3537
像食物短缺 医疗短缺
02:41
supply them with energy, electricity,
53
161870
2810
能源短缺 电力短缺
02:44
and to make sure they're not burnt to a crisp
54
164680
1789
还有确保人类家园
02:46
because of global warming —
55
166469
1238
不会因为全球变暖而生灵涂炭
02:47
is because of the effective use of data.
56
167707
4195
的唯一办法是有效利用大数据
02:51
So what is new about big
data? What is the big deal?
57
171902
3870
那么大数据新在何处, 重在何处呢?
02:55
Well, to answer that question, let's think about
58
175772
2517
为了回答这个问题, 让我们看一下
02:58
what information looked like,
59
178289
1896
信息看上去是什么样的
03:00
physically looked like in the past.
60
180185
3034
信息在以前是什么样的
03:03
In 1908, on the island of Crete,
61
183219
3611
1908年在克里特岛上
(注:位于地中海 为希腊第一大岛)
03:06
archaeologists discovered a clay disc.
62
186830
4735
考古学家发现了一个粘土做的盘子
03:11
They dated it from 2000 B.C., so it's 4,000 years old.
63
191565
4059
这是个公元前2000年的盘子
距今约有4000年的历史
03:15
Now, there's inscriptions on this disc,
64
195624
2004
盘子上有铭文
03:17
but we actually don't know what it means.
65
197628
1327
但是我们不知道它们是什么意思
03:18
It's a complete mystery, but the point is that
66
198955
2098
这完全是个谜团
03:21
this is what information used to look like
67
201053
1928
但这就是4000年前
03:22
4,000 years ago.
68
202981
2089
信息的样子
03:25
This is how society stored
69
205070
2548
这就是当时社会
03:27
and transmitted information.
70
207618
3524
存储和传递信息的方式
03:31
Now, society hasn't advanced all that much.
71
211142
4160
现代社会也没有什么很大的进步
03:35
We still store information on discs,
72
215302
3474
我们还是把数据存储在盘中
(注:指磁盘)
03:38
but now we can store a lot more information,
73
218776
3184
但我们可以存储更多的信息
03:41
more than ever before.
74
221960
1260
远远超过以前的信息容量
03:43
Searching it is easier. Copying it easier.
75
223220
3093
这些信息搜索和复制起来更简单
03:46
Sharing it is easier. Processing it is easier.
76
226313
3500
分享和处理起来也更便捷
03:49
And what we can do is we can reuse this information
77
229813
2766
我们也可以重新利用这些数据
03:52
for uses that we never even imagined
78
232579
1834
一些我们当初收集的时候
03:54
when we first collected the data.
79
234413
3195
从来没有料想过的用途
03:57
In this respect, the data has gone
80
237608
2252
从这个方面来说
数据已经从储存状态到了流动状态
03:59
from a stock to a flow,
81
239860
3532
04:03
from something that is stationary and static
82
243392
3938
从静态的统计性的数据
04:07
to something that is fluid and dynamic.
83
247330
3609
变成动态的数据流
04:10
There is, if you will, a liquidity to information.
84
250939
4023
这就是信息的流动性
04:14
The disc that was discovered off of Crete
85
254962
3474
克里特岛发现的粘土盘
04:18
that's 4,000 years old, is heavy,
86
258436
3764
有4000年的历史, 非常笨重
04:22
it doesn't store a lot of information,
87
262200
1962
但它不能记录太多的信息
04:24
and that information is unchangeable.
88
264162
3116
并且它所记录的信息是不能更改的
04:27
By contrast, all of the files
89
267278
4011
与此相反
爱德华·斯诺登从美国国家安全局
04:31
that Edward Snowden took
90
271289
1861
04:33
from the National Security
Agency in the United States
91
273150
2621
所获得的文件
04:35
fits on a memory stick
92
275771
2419
可以放在一个
04:38
the size of a fingernail,
93
278190
3010
仅有指甲大小的存储盘里
04:41
and it can be shared at the speed of light.
94
281200
4745
并且可以以光速进行数据共享
04:45
More data. More.
95
285945
5255
更多数据 更多
04:51
Now, one reason why we have
so much data in the world today
96
291200
1974
今天我们有这么多数据的一个原因是
04:53
is we are collecting things
97
293174
1432
我们一直在收集信息
04:54
that we've always collected information on,
98
294606
3280
就像我们一直在做的一样
04:57
but another reason why is we're taking things
99
297886
2656
另一个原因是我们记录了
05:00
that have always been informational
100
300542
2812
许多蕴含丰富信息的事物
05:03
but have never been rendered into a data format
101
303354
2486
但是从没把信息转换成数据形式
05:05
and we are putting it into data.
102
305840
2419
现在我们正在把信息转变成数据
05:08
Think, for example, the question of location.
103
308259
3308
举个例子, 定位问题
05:11
Take, for example, Martin Luther.
104
311567
2249
比如说马丁·路德
05:13
If we wanted to know in the 1500s
105
313816
1597
在16世纪 如果我们想知道
05:15
where Martin Luther was,
106
315413
2667
马丁·路德在哪里
05:18
we would have to follow him at all times,
107
318080
2092
我们必须一直跟着他
05:20
maybe with a feathery quill and an inkwell,
108
320172
2137
或许用羽毛笔和墨水
05:22
and record it,
109
322309
1676
把这些情况记录下来
05:23
but now think about what it looks like today.
110
323985
2183
那现今是什么样的情形呢?
05:26
You know that somewhere,
111
326168
2122
在某些地方
05:28
probably in a telecommunications carrier's database,
112
328290
2446
可能在电信运营商的数据库里
05:30
there is a spreadsheet or at least a database entry
113
330736
3036
有个电子数据表或者至少一个数据目录
05:33
that records your information
114
333772
2088
记录着所有关于你
05:35
of where you've been at all times.
115
335860
2063
任何时候在什么地点的信息
05:37
If you have a cell phone,
116
337923
1360
如果你有个手机
05:39
and that cell phone has GPS,
but even if it doesn't have GPS,
117
339283
2847
这个手机有GPS, 或者即使没有GPS
05:42
it can record your information.
118
342130
2385
它还是可以记录你的信息
05:44
In this respect, location has been datafied.
119
344515
4084
从这方面来说, 位置信息被数据化了
05:48
Now think, for example, of the issue of posture,
120
348599
4601
再举个例子, 关于姿势
05:53
the way that you are all sitting right now,
121
353200
1285
你们现在坐着的姿势
05:54
the way that you sit,
122
354485
2030
你坐着的姿势
05:56
the way that you sit, the way that you sit.
123
356515
2771
你坐着的姿势 你坐着的姿势
05:59
It's all different, and it's a function of your leg length
124
359286
2077
这些都不一样 这是一个关于腿长
06:01
and your back and the contours of your back,
125
361363
2093
你的背部和背部轮廓的函数
06:03
and if I were to put sensors,
maybe 100 sensors
126
363456
2531
如果我现在放一些传感器 或许100个
06:05
into all of your chairs right now,
127
365987
1766
在你的椅子里
06:07
I could create an index that's fairly unique to you,
128
367753
3600
我可以算出你的独一无二的参数
06:11
sort of like a fingerprint, but it's not your finger.
129
371353
4409
就像你的指纹 但不是针对你的手指
06:15
So what could we do with this?
130
375762
2969
那我们能用它来干什么呢?
06:18
Researchers in Tokyo are using it
131
378731
2397
东京的研究者把它
06:21
as a potential anti-theft device in cars.
132
381128
4388
运用在一个汽车防盗设施的雏形上
06:25
The idea is that the carjacker sits behind the wheel,
133
385516
2924
它的设想是盗贼坐在驾驶座上
06:28
tries to stream off, but the car recognizes
134
388440
2104
企图把车开走 但是汽车识别出
06:30
that a non-approved driver is behind the wheel,
135
390544
2362
驾驶座上的是个未授权驾驶人
06:32
and maybe the engine just stops, unless you
136
392906
2164
那汽车可能就会熄火
06:35
type in a password into the dashboard
137
395070
3177
除非你在仪表盘上输入密码
06:38
to say, "Hey, I have authorization to drive." Great.
138
398247
4658
来表明“我已获得授权”
06:42
What if every single car in Europe
139
402905
2553
如果欧洲的每辆汽车
06:45
had this technology in it?
140
405458
1457
都装备了这项技术会是怎样的情形?
06:46
What could we do then?
141
406915
3165
我们还能做些什么呢?
06:50
Maybe, if we aggregated the data,
142
410080
2240
或许如果我们整合数据
06:52
maybe we could identify telltale signs
143
412320
3814
我们可以识别示警信号
06:56
that best predict that a car accident
144
416134
2709
对于在下一个五秒钟内
06:58
is going to take place in the next five seconds.
145
418843
5893
可能发生的意外做出最佳预判
07:04
And then what we will have datafied
146
424736
2557
我们也可以进行数据化的是
07:07
is driver fatigue,
147
427293
1783
司机的疲劳度
07:09
and the service would be when the car senses
148
429076
2334
当汽车侦测到司机的坐姿
07:11
that the person slumps into that position,
149
431410
3437
倒成某一特定姿势时
07:14
automatically knows, hey, set an internal alarm
150
434847
3994
这个设备感知到并发出车内警告
07:18
that would vibrate the steering wheel, honk inside
151
438841
2025
可能是震动方向盘或语音提示
07:20
to say, "Hey, wake up,
152
440866
1721
“嗨,醒醒
07:22
pay more attention to the road."
153
442587
1904
集中精神在路况上”
07:24
These are the sorts of things we can do
154
444491
1853
这就是生活的更多方面数据化后
07:26
when we datafy more aspects of our lives.
155
446344
2821
我们能做的事情
07:29
So what is the value of big data?
156
449165
3675
那么大数据的价值在哪里?
07:32
Well, think about it.
157
452840
2190
好 思考一下
07:35
You have more information.
158
455030
2412
你有了更多地信息
07:37
You can do things that you couldn't do before.
159
457442
3341
你可以做你以前不能做的事
07:40
One of the most impressive areas
160
460783
1676
在运用这个概念的领域里
07:42
where this concept is taking place
161
462459
1729
让人印象最为最深刻的
07:44
is in the area of machine learning.
162
464188
3307
是机器学习
07:47
Machine learning is a branch of artificial intelligence,
163
467495
3077
机器学习是人工智能的一个分支
07:50
which itself is a branch of computer science.
164
470572
3378
人工智能又是计算机科学的一个分支
07:53
The general idea is that instead of
165
473950
1543
它的基本理念是
07:55
instructing a computer what do do,
166
475493
2117
把关于某个问题的一堆数据扔给电脑
07:57
we are going to simply throw data at the problem
167
477610
2620
让电脑自己找出解决方案
08:00
and tell the computer to figure it out for itself.
168
480230
3206
而不是教电脑应该做什么
08:03
And it will help you understand it
169
483436
1777
通过机器学习的原型
08:05
by seeing its origins.
170
485213
3552
可以帮助你来理解这个理念
08:08
In the 1950s, a computer scientist
171
488765
2388
20世纪50年代IBM的计算机科学家
08:11
at IBM named Arthur Samuel liked to play checkers,
172
491153
3592
亚瑟·塞缪尔想玩跳棋
08:14
so he wrote a computer program
173
494745
1402
所以他写了个程序
08:16
so he could play against the computer.
174
496147
2813
这样他就可以和电脑来玩
08:18
He played. He won.
175
498960
2711
开始他下一盘 赢一盘
08:21
He played. He won.
176
501671
2103
下一盘 赢一盘
08:23
He played. He won,
177
503774
3015
下一盘 赢一盘
08:26
because the computer only knew
178
506789
1778
因为电脑只知道
08:28
what a legal move was.
179
508567
2227
规则允许怎样走
08:30
Arthur Samuel knew something else.
180
510794
2087
亚瑟·塞缪尔还知道其他东西
08:32
Arthur Samuel knew strategy.
181
512881
4629
他知道下棋的策略
08:37
So he wrote a small sub-program alongside it
182
517510
2396
所以他又写了一个附加程序
08:39
operating in the background, and all it did
183
519906
1974
这个程序在后台运行
08:41
was score the probability
184
521880
1817
它的功能只是计算概率
08:43
that a given board configuration would likely lead
185
523697
2563
在一个给定的棋局里
08:46
to a winning board versus a losing board
186
526260
2910
每走一步后
08:49
after every move.
187
529170
2508
会获胜或者失败的概率
08:51
He plays the computer. He wins.
188
531678
3150
再和电脑下棋 还是下一盘 赢一盘
08:54
He plays the computer. He wins.
189
534828
2508
下一盘 赢一盘
08:57
He plays the computer. He wins.
190
537336
3731
下一盘 赢一盘
09:01
And then Arthur Samuel leaves the computer
191
541067
2277
后来亚瑟让电脑
09:03
to play itself.
192
543344
2227
自己和自己下棋
09:05
It plays itself. It collects more data.
193
545571
3509
电脑自己玩的时候收集了更多的数据
09:09
It collects more data. It increases
the accuracy of its prediction.
194
549080
4309
收集的数据越多, 预测的准确率就越高
09:13
And then Arthur Samuel goes back to the computer
195
553389
2104
然后亚瑟又继续和电脑下棋
09:15
and he plays it, and he loses,
196
555493
2318
这次他下一盘 输一盘
09:17
and he plays it, and he loses,
197
557811
2069
下一盘 输一盘
09:19
and he plays it, and he loses,
198
559880
2047
下一盘 输一盘
09:21
and Arthur Samuel has created a machine
199
561927
2599
亚瑟创造了一个机器
09:24
that surpasses his ability in a task that he taught it.
200
564526
6288
它的能力超越了亚瑟开始时所教给它的
09:30
And this idea of machine learning
201
570814
2498
机器学习的理念
09:33
is going everywhere.
202
573312
3927
现在已经随处可见
09:37
How do you think we have self-driving cars?
203
577239
3149
你们觉得无人驾驶汽车(关键的技术)是什么?
09:40
Are we any better off as a society
204
580388
2137
是不是把所有交通规则输入软件
09:42
enshrining all the rules of the road into software?
205
582525
3285
就万事大吉了?不是
09:45
No. Memory is cheaper. No.
206
585810
2598
内存很便宜?不是
09:48
Algorithms are faster. No. Processors are better. No.
207
588408
3994
算法更快了 不是 处理器更强大了 不是
09:52
All of those things matter, but that's not why.
208
592402
2772
这些都有影响, 但不是真正的原因
09:55
It's because we changed the nature of the problem.
209
595174
3141
真正的原因是我们改变了问题的本质
09:58
We changed the nature of the problem from one
210
598315
1530
我们把问题的本质从
09:59
in which we tried to overtly and explicitly
211
599845
2245
试图明确无误地
10:02
explain to the computer how to drive
212
602090
2581
教会电脑怎样驾驶
10:04
to one in which we say,
213
604671
1316
变成我们对电脑说
10:05
"Here's a lot of data around the vehicle.
214
605987
1876
“这里有许多关于汽车的数据
10:07
You figure it out.
215
607863
1533
你自己搞定它
10:09
You figure it out that that is a traffic light,
216
609396
1867
你知道那是交通信号灯
10:11
that that traffic light is red and not green,
217
611263
2081
那是红灯不是绿灯
10:13
that that means that you need to stop
218
613344
2014
遇到红灯你必须停下来
10:15
and not go forward."
219
615358
3083
不能往前走”
10:18
Machine learning is at the basis
220
618441
1518
机器学习是许多
10:19
of many of the things that we do online:
221
619959
1991
网上在线应用的基础
10:21
search engines,
222
621950
1857
搜索引擎
10:23
Amazon's personalization algorithm,
223
623807
3801
亚马逊的个性化算法
10:27
computer translation,
224
627608
2212
电脑智能翻译
10:29
voice recognition systems.
225
629820
4290
语音识别系统
10:34
Researchers recently have looked at
226
634110
2835
研究者最近在研究
10:36
the question of biopsies,
227
636945
3195
关于活组织检查的问题
10:40
cancerous biopsies,
228
640140
2767
关于肿瘤活组织检查
10:42
and they've asked the computer to identify
229
642907
2315
他们让电脑
10:45
by looking at the data and survival rates
230
645222
2471
通过 (历史) 数据和存活率
10:47
to determine whether cells are actually
231
647693
4667
来判断这些细胞
10:52
cancerous or not,
232
652360
2544
是否是癌症细胞
10:54
and sure enough, when you throw the data at it,
233
654904
1778
果不其然 当你把数据交给电脑
10:56
through a machine-learning algorithm,
234
656682
2047
电脑通过自主学习
10:58
the machine was able to identify
235
658729
1877
可以寻找出
11:00
the 12 telltale signs that best predict
236
660606
2262
12个最佳的鉴别特征用来预测
11:02
that this biopsy of the breast cancer cells
237
662868
3299
乳腺癌细胞的活检切片
11:06
are indeed cancerous.
238
666167
3218
确实是癌症细胞
11:09
The problem: The medical literature
239
669385
2498
问题是医学文献
11:11
only knew nine of them.
240
671883
2789
只知道其中的九个鉴别特征
11:14
Three of the traits were ones
241
674672
1800
其他三个
11:16
that people didn't need to look for,
242
676472
2975
人们不会去寻找
11:19
but that the machine spotted.
243
679447
5531
但是电脑把它们找了出来
11:24
Now, there are dark sides to big data as well.
244
684978
5925
大数据也有黑暗的一面
11:30
It will improve our lives, but there are problems
245
690903
2074
它可以改善我们的生活
11:32
that we need to be conscious of,
246
692977
2640
但也会带来一些我们需要注意的问题
11:35
and the first one is the idea
247
695617
2623
首先就是
11:38
that we may be punished for predictions,
248
698240
2686
我们可能因为预测的结果而受到惩罚
11:40
that the police may use big data for their purposes,
249
700926
3870
警察可能会用大数据来实现目标
11:44
a little bit like "Minority Report."
250
704796
2351
有点像“少数派报告”
11:47
Now, it's a term called predictive policing,
251
707147
2441
现在有个词叫做预见性监管
11:49
or algorithmic criminology,
252
709588
2363
或者叫算法犯罪学
11:51
and the idea is that if we take a lot of data,
253
711951
2036
这个想法是如果我们掌握了大量数据
11:53
for example where past crimes have been,
254
713987
2159
比如以往犯罪发生的地点
11:56
we know where to send the patrols.
255
716146
2543
我们可以就知道把警力派到哪里
11:58
That makes sense, but the problem, of course,
256
718689
2115
这很合理 但问题是
12:00
is that it's not simply going to stop on location data,
257
720804
4544
数据分析不会仅限于地点数据
12:05
it's going to go down to the level of the individual.
258
725348
2959
它会进一步深入到个人层面
12:08
Why don't we use data about the person's
259
728307
2250
为什么我们不去分析
12:10
high school transcript?
260
730557
2228
某人的中学成绩单
12:12
Maybe we should use the fact that
261
732785
1561
或者我们可以了解
12:14
they're unemployed or not, their credit score,
262
734346
2028
他们的就职情况、信用记录
12:16
their web-surfing behavior,
263
736374
1552
他们的上网行为
12:17
whether they're up late at night.
264
737926
1878
他们是否熬夜
12:19
Their Fitbit, when it's able
to identify biochemistries,
265
739804
3161
当可以通过健康腕带读取生化数据时
12:22
will show that they have aggressive thoughts.
266
742965
4236
就可以知道他们是否有激进的想法
12:27
We may have algorithms that are likely to predict
267
747201
2221
我们可以用算法来预测
12:29
what we are about to do,
268
749422
1633
我们将要做什么
12:31
and we may be held accountable
269
751055
1244
可能有些事情还没做
12:32
before we've actually acted.
270
752299
2590
我们就要承担责任
12:34
Privacy was the central challenge
271
754889
1732
个人隐私在小数据时代
12:36
in a small data era.
272
756621
2880
是主要挑战
12:39
In the big data age,
273
759501
2149
在大数据时代
12:41
the challenge will be safeguarding free will,
274
761650
4523
这个挑战将会成为保卫自由意愿
12:46
moral choice, human volition,
275
766173
3779
道德选择 、人类意志
12:49
human agency.
276
769952
3068
人类的能动性
12:54
There is another problem:
277
774540
2225
还有另一个问题
12:56
Big data is going to steal our jobs.
278
776765
3556
大数据会偷走我们的工作
13:00
Big data and algorithms are going to challenge
279
780321
3512
在21世纪
13:03
white collar, professional knowledge work
280
783833
3061
大数据和算法会威胁到
13:06
in the 21st century
281
786894
1653
白领和需要专业知识的工作
13:08
in the same way that factory automation
282
788547
2434
就像在20世纪工厂自动化
13:10
and the assembly line
283
790981
2189
和装配生产线的应用
13:13
challenged blue collar labor in the 20th century.
284
793170
3026
威胁到了蓝领们的工作岗位
13:16
Think about a lab technician
285
796196
2092
想象一下一个研究室技术员
13:18
who is looking through a microscope
286
798288
1409
他的工作就是通过一个显微镜
13:19
at a cancer biopsy
287
799697
1624
观察一个癌症活检组织
13:21
and determining whether it's cancerous or not.
288
801321
2637
来判定它是不是癌症的
13:23
The person went to university.
289
803958
1972
这个人上大学
13:25
The person buys property.
290
805930
1430
买房子
13:27
He or she votes.
291
807360
1741
他/她投票选举
13:29
He or she is a stakeholder in society.
292
809101
3666
他/她是这个社会的一份子
13:32
And that person's job,
293
812767
1394
然后这个人的工作
13:34
as well as an entire fleet
294
814161
1609
还有其他
13:35
of professionals like that person,
295
815770
1969
像他一样的专业人员
13:37
is going to find that their jobs are radically changed
296
817739
3150
将会发现他们的工作被彻底改变了
13:40
or actually completely eliminated.
297
820889
2357
或者彻底废除了
13:43
Now, we like to think
298
823246
1284
我们一直以为
13:44
that technology creates jobs over a period of time
299
824530
3187
在短时或者暂时的就业调整期后
13:47
after a short, temporary period of dislocation,
300
827717
3465
一段时间内科技会创造就业机会
13:51
and that is true for the frame of reference
301
831182
1941
这对于我们所处的参考系
13:53
with which we all live, the Industrial Revolution,
302
833123
2142
工业革命来说就是这样
13:55
because that's precisely what happened.
303
835265
2328
因为在工业革命时期事情就是这样的
13:57
But we forget something in that analysis:
304
837593
2333
但是我们忘记了一件事情
13:59
There are some categories of jobs
305
839926
1830
有些类型的职业
14:01
that simply get eliminated and never come back.
306
841756
3420
已经彻底消失了并且再也不会回来
14:05
The Industrial Revolution wasn't very good
307
845176
2004
如果你是一匹马
14:07
if you were a horse.
308
847180
4002
工业革命不是一件好事
14:11
So we're going to need to be careful
309
851182
2055
所以我们必须非常小心
14:13
and take big data and adjust it for our needs,
310
853237
3514
根据我们的需求和整个人类的需求
14:16
our very human needs.
311
856751
3185
来利用和适应大数据
14:19
We have to be the master of this technology,
312
859936
1954
我们必须是技术的主人
14:21
not its servant.
313
861890
1656
而不是技术的仆人
14:23
We are just at the outset of the big data era,
314
863546
2958
我们正在步入大数据时代
14:26
and honestly, we are not very good
315
866504
3150
老实说, 我们并不能很好地
14:29
at handling all the data that we can now collect.
316
869654
4207
处理所有我们现在能够收集到的数据
14:33
It's not just a problem for
the National Security Agency.
317
873861
3330
这不仅仅是国家安全局的问题
14:37
Businesses collect lots of
data, and they misuse it too,
318
877191
3038
许多企业也搜集并不恰当地使用数据
14:40
and we need to get better at
this, and this will take time.
319
880229
3667
我们需要时间来纠正这个问题
14:43
It's a little bit like the challenge that was faced
320
883896
1822
这有点像原始人类面对火时
14:45
by primitive man and fire.
321
885718
2407
所面临的挑战
14:48
This is a tool, but this is a tool that,
322
888125
1885
火是一种工具
14:50
unless we're careful, will burn us.
323
890010
3559
但是如果使用不当就会引火烧身
14:56
Big data is going to transform how we live,
324
896008
3120
大数据即将改变我们的生活方式
14:59
how we work and how we think.
325
899128
2801
我们的工作方式和思考方式
15:01
It is going to help us manage our careers
326
901929
1889
它可以帮助我们管理事业
15:03
and lead lives of satisfaction and hope
327
903818
3634
帮助我们过想要的满足、充满希望
15:07
and happiness and health,
328
907452
2992
幸福和健康的生活
15:10
but in the past, we've often
looked at information technology
329
910444
3306
但是在过去, 对于信息技术(IT)
15:13
and our eyes have only seen the T,
330
913750
2208
我们经常只看到了T
15:15
the technology, the hardware,
331
915958
1686
就是技术、硬件
15:17
because that's what was physical.
332
917644
2262
因为这是切实可见的东西
15:19
We now need to recast our gaze at the I,
333
919906
2924
现在我们需要把目光放在 I 上
15:22
the information,
334
922830
1380
信息
15:24
which is less apparent,
335
924210
1373
它不是那么切实可见
15:25
but in some ways a lot more important.
336
925583
4109
但某种程度上却更加重要
15:29
Humanity can finally learn from the information
337
929692
3465
在人类永无止境的探索过程中
15:33
that it can collect,
338
933157
2418
我们可以从我们能收集的信息中
15:35
as part of our timeless quest
339
935575
2115
来了解这个世界
15:37
to understand the world and our place in it,
340
937690
3159
以及人类在这个世界中所处的地位
15:40
and that's why big data is a big deal.
341
940849
5631
这就是为什么大数据非常重要
15:46
(Applause)
342
946480
3568
(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。