AI-Generated Creatures That Stretch the Boundaries of Imagination | Sofia Crespo | TED

46,796 views ・ 2022-11-30

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Grace Man
00:04
I'd like to start by asking you to imagine a color
0
4543
4379
我想先请你们想象一种
00:08
that you've never seen before.
1
8922
2544
从未见过的颜色。
00:12
Just for a second give this a try.
2
12217
2252
姑且来试一下吧。
00:14
Can you actually visualize a color that you've never been able to perceive?
3
14928
4463
你能想象出一种无法感知的颜色吗?
00:20
I never seem to get tired of trying this
4
20892
2878
我对此乐此不疲,
00:23
although I know it's not an easy challenge.
5
23770
2795
即使我知道这并不容易。
00:26
And the thing is,
6
26606
1210
问题是,
00:27
we can't imagine something without drawing upon our experiences.
7
27857
4880
如果不基于我们自身的经历, 我们就无法想象出某些东西。
00:33
A color we haven't yet seen
8
33655
2002
我们从未见过的颜色,
00:35
outside the spectrum we can perceive
9
35699
2836
超出了我们可以感知的光谱,
00:38
is outside our ability to conjure up.
10
38535
2502
也就超出了我们的想象力。
00:42
It's almost like there's a boundary to our imagination
11
42372
3212
这就感觉像是 我们的想象力有一个边界,
00:45
where all the colors we can imagine
12
45625
2002
我们可以想象出的所有颜色
00:47
can only be various shades of other colors we have previously seen.
13
47627
4505
只能是我们之前见过的 颜色的不同变体。
00:52
Yet we know for a fact
14
52841
2210
但是我们知道有这么一个事实,
00:55
that those color frequencies outside our visible spectrum are there.
15
55051
4463
超出可见光频谱的 颜色频率确实存在。
01:00
And scientists believe that there are species
16
60223
5339
科学家们相信有些物种
01:05
that have many more photo receptors
17
65562
3503
拥有更多的光感受器,
01:09
than just the three color ones we humans have.
18
69107
4880
比我们人类拥有的 三色光感受器要多。
01:13
Which, by the way,
19
73987
1835
顺带一提,
01:15
not all humans see the world in the same way.
20
75864
3295
不是所有人眼中的世界 都是一样的。
01:19
Some of us are colorblind to various degrees,
21
79200
4505
有些人会有不同程度的色盲,
01:23
and very often we don't even agree on small things,
22
83705
4713
我们经常会 就一些小事争论不休,
01:28
like if a dress on the internet is blue and black or white and gold.
23
88460
5005
比如网上的一条裙子是 蓝黑还是白金。
01:34
But my favorite creature, one of my favorite creatures,
24
94215
4380
但是我最喜欢的生物, 最喜欢的生物之一,
01:38
is the peacock mantis shrimp,
25
98595
2335
是雀尾螳螂虾,
01:40
which is estimated to have 12 to 16 photo receptors.
26
100972
5297
估计有 12 至 16 个光感受器。
01:46
And that indicates the world to them might look so much more colorful.
27
106269
5798
意味着它们眼中的世界 会更加色彩斑斓。
01:54
So what about artificial intelligence?
28
114194
2836
人工智能(AI)呢?
01:57
Can AI help us see beyond our human capabilities?
29
117947
3838
AI 可以帮助我们 超越人类的视觉吗?
02:03
Well, I've been working with AI for the past five years,
30
123203
3670
我在过去的五年里 一直在用 AI 工作,
02:06
and in my experience, it can see within the data it gets fed.
31
126873
4630
根据我的经验,它能看到的内容 取决于输入的数据。
02:12
But then you might be wondering, OK,
32
132420
2586
但是你可能会想,好吧,
02:15
if AI can't help imagine anything new,
33
135006
3337
如果 AI 不能想象出新东西,
02:18
why would an artist see any point in using it?
34
138385
2794
艺术家为什么要用它呢?
02:21
And my answer to that is because I think that it can help augment our creativity
35
141930
4254
我的答案是,我认为 AI 可以增强我们的创造力,
02:26
as there's value in creating combinations of known elements to form new ones.
36
146226
6173
通过组合既有的元素,创造新元素, 它就产生了价值。
02:33
And this boundary of what we can imagine based on what we have experienced
37
153858
5422
基于我们的经历形成的 想象力的边界
02:39
is the place that I have been exploring.
38
159322
2419
是我探索的领域。
02:42
For me, it started with jellyfish on a screen at an aquarium
39
162200
5005
对我来说,一切始于 水族馆屏幕上的水母,
02:47
and wearing those old 3D glasses, which I hope you remember,
40
167247
3712
我戴着那种老式 3D 眼镜, 但愿你还有印象,
02:51
the ones with the blue and red lens.
41
171000
1919
镜片一片蓝一片红的那种。
02:53
And this experience made me want to recreate their textures.
42
173336
4213
这个体验让我想重现它们的质感。
02:57
But not just that,
43
177882
1168
但是不仅如此,
02:59
I also wanted to create new jellyfish
44
179092
1960
我还想创造我从未见过的
03:01
that I hadn't seen before, like these.
45
181052
2878
新型水母,就像这种。
03:04
And what started with jellyfish,
46
184556
1543
我从水母开始,
03:06
very quickly escalated to other sea creatures
47
186099
3587
迅速扩展到了其他海洋生物,
03:09
like sea anemone, coral and fish.
48
189686
4254
比如海葵、珊瑚和鱼类。
03:14
And then from there came amphibians, birds and insects.
49
194524
5756
然后是两栖动物、鸟类和昆虫。
03:20
And this became a series called “Neural Zoo”.
50
200739
2919
它们组成了一个系列,名为 《神经动物园》(Neural Zoo)。
03:25
But when you look closely, what do you see?
51
205618
3629
但是如果你仔细看看, 你会看见什么呢?
03:29
There's no single creature in these images.
52
209289
3962
这些图片里的都不是单一生物。
03:33
And AI augments my creative process
53
213710
3378
AI 增强了我发挥创意的过程,
03:37
by allowing me to distill and recombine textures.
54
217130
4671
让我可以提取、 重组它们的质感。
03:41
And that's something that would otherwise take me months to draw by hand.
55
221801
4588
如果我要手绘, 可能要花上好几个月。
03:47
Plus I'm actually terrible at drawing.
56
227015
1877
而且我画画水平太差了。
03:49
So you could say, in a way, what I'm doing
57
229476
3169
你可以这么说, 从某种角度来看,我在做的
03:52
is a contemporary version of something
58
232687
1960
是早在相机出现之前,
03:54
that humans have already been doing for a long time,
59
234689
2753
人类就一直在做的事,
03:57
even before cameras existed.
60
237484
2669
但是是它的现代版本。
04:01
In medieval times,
61
241738
1793
中世纪,
04:03
people went on expeditions,
62
243573
2211
人们踏上远征,
04:05
and when they came back they would share about what they saw
63
245825
3504
回来之后他们会向画师 描述他们的见闻。
04:09
to an illustrator.
64
249370
1377
04:10
And the illustrator, having never seen what was being described,
65
250789
4129
画师从未见过描绘之物,
04:14
would end up drawing
66
254959
1627
于是他们会按照
04:16
based on the creatures that they had previously seen
67
256628
2460
他们之前见过的生物绘制,
04:19
and in the process creating hybrid animals of some sort.
68
259088
3170
再自创一些合成动物。
04:22
So an explorer might describe a beaver, but having never seen one,
69
262675
4338
也许出行者描述了一只海狸, 但是画师从没见过海狸,
04:27
the illustrator might give it the head of a rodent,
70
267055
2419
于是画了啮齿动物的头部,
04:29
the body of a dog and a fish-like tail.
71
269474
2419
狗的身子和类似鱼类的尾巴。
04:32
In the series “Artificial Natural History”,
72
272560
2670
我在《人工自然历史》 (Artificial Natural History)系列中
04:35
I took thousands of illustrations from a natural history archives,
73
275271
4588
从自然历史档案中 提取了几千张插图,
04:39
and I fed them to a neural network to generate new versions of them.
74
279901
5297
输入神经网络, 产生新版本的插图。
04:45
But up until now, all my work was done in 2D.
75
285990
4171
但是时至今日,我的所有作品 都是以 2D 的形式完成的。
04:51
And with the help of my studio partner, Feileacan McCormick,
76
291246
3545
在我的工作室伙伴菲力肯·麦考密克 (Feileacan McCormick)的帮助下,
04:54
we decided to train a neural network on a data set of 3D scanned beetles.
77
294833
5422
我们打算基于经 3D 扫描的 甲虫的数据集训练一个神经网络。
05:00
But I must warn you that our first results were extremely blurry,
78
300839
4546
但是我要提醒你的是 我们的第一批结果非常模糊,
05:05
and they looked like the blobs you see here.
79
305426
2253
如图所示的一坨。
05:08
And this could be due to many reasons,
80
308346
1835
导致这种情况的原因可能有很多,
05:10
but one of them being that there aren't really a lot
81
310181
2461
但是其中一个原因是公开可用的 3D 昆虫数据集比较有限。
05:12
of openly available data sets of 3D insects.
82
312642
4504
05:17
And also we were repurposing
83
317188
2127
而且我们也改变了神经网络的功能,
05:19
a neural network that normally gets used to generate images to generate 3D.
84
319357
5214
由常见的生成图片 转向了生成 3D 结果。
05:24
So believe it or not, these are very exciting blobs to us.
85
324612
4380
无论如何,它们都是 令我们激动的一坨物体。
05:29
But with time and some very hacky solutions
86
329784
3879
随着时间的推移和 一些另辟蹊径的产品的出现,
05:33
like data augmentation,
87
333705
2294
如数据增强,
05:36
where we threw in ants and other beetle-like insects
88
336040
3754
如果我们输入蚂蚁 或者其他类似甲虫的昆虫
05:39
to enhance the data set,
89
339794
2503
增强了数据集,
05:42
we ended up getting this,
90
342338
2628
我们会得到这样的结果,
05:44
which we've been told they look like grilled chicken.
91
344966
2544
有人说它们长得像烤鸡。
05:47
(Laughter)
92
347552
1752
(笑声)
05:49
But hungry for more, we pushed our technique,
93
349345
4797
但是我们的野心不止于此, 我们改进了技术,
05:54
and eventually they ended up looking like this.
94
354183
3713
最终得到了这样的结果。
05:58
We use something called 3D style transfer to map textures onto them,
95
358479
5047
我们用了一项叫做 “3D 风格迁移”的技术
把纹理附着到输出结果上,
06:03
and we also trained a natural language model
96
363568
3670
我们还训练了一个自然语言模型,
06:07
to generate scientific-like names
97
367280
2544
生成科研风的名字和
06:09
and anatomical descriptions.
98
369866
1918
生物结构描述。
06:12
And eventually we even found a network architecture that could handle 3D meshes.
99
372869
4963
我们最后甚至找到了一个 网络体系结构处理 3D 网格。
06:17
So they ended up looking like this.
100
377874
2377
最后的结果是这样的。
06:21
And for us, this became a way of creating kind of a speculative study --
101
381836
4838
对我们来说,这已经类似于 一种推测性研究……
06:26
(Applause)
102
386716
2669
(掌声)
06:29
A speculative study of creatures that never existed,
103
389427
3629
关于不存在的生物的 推测性研究,
06:33
kind of like a speculative biology.
104
393097
2294
类似猜想生物。
06:37
But I didn't want to talk about AI and its potential
105
397685
4421
但是我并不想谈论 AI 和它的潜力,
06:42
unless it brought me closer to a real species.
106
402148
3629
除非 AI 产生的结果 接近真实存在的物种。
06:46
Which of these do you think is easier to find data about online?
107
406486
4880
图上的两种生物,你觉得哪个 更容易在网上找到数据?
06:51
(Laughter)
108
411366
1918
(笑声)
06:53
Yeah, well, as you guessed correctly, the red panda.
109
413326
4004
你猜的没错,小熊猫。
06:57
And this maybe could be due to many reasons,
110
417830
3420
可能会有很多原因,
07:01
but one of them being how cute they are,
111
421292
4046
但是其中一个原因就是 它们太可爱了,
07:05
which means we photograph and talk about them a lot,
112
425338
4588
所以我们总是会给它们拍照, 讨论它们,
07:09
unlike the boreal felt lichen.
113
429926
2002
北方毡状地衣就没这种待遇了。
07:12
But both of them are classified as endangered.
114
432679
2877
但是这两种生物 都被定为了频危物种,
07:16
So I wanted to bring visibility to other endangered species
115
436349
4880
我想请大家都去关注一下 其他的濒危物种,
07:21
that don't get the same amount of digital representation
116
441270
4755
它们不一定会像 毛茸茸的可爱小熊猫那样
07:26
as a cute, fluffy red panda.
117
446025
2002
拥有那么高的数字化曝光度。
07:28
And to do this,
118
448861
1710
为了达成这个目标,
07:30
we trained an AI on millions of images of the natural world,
119
450613
5005
我们用自然界的百万张图片 训练了 AI,
07:35
and then we prompted with text
120
455660
2085
然后我们用文字提示,
07:37
to generate some of these creatures.
121
457787
2294
生成一些生物。
07:40
So when prompted with a text,
122
460123
3712
如果我们输入这样的提示:
07:43
"an image of a critically endangered spider, the peacock tarantula"
123
463876
4713
“蓝宝石华丽雨林—— 一种极度濒危的蜘蛛的图片”
07:48
and its scientific name,
124
468589
1669
和它的学名,
07:50
our model generated this.
125
470299
2378
我们的模型会输出这样的结果。
07:55
And here's an image of the real peacock tarantula,
126
475972
3211
这是一张真实的 蓝宝石华丽雨林的照片,
07:59
which is a wonderful spider endemic to India.
127
479225
3128
它是一种分布于 印度本土的华丽蜘蛛。
08:02
But when prompted with a text
128
482812
2878
如果我们输入这样的提示:
08:05
"an image of a critically endangered bird, the mangrove finch,"
129
485732
4170
“红树林雀—— 一种极度濒危的鸟类的图片”,
08:09
our model generated this.
130
489944
2669
我们的模型会生成这样的结果。
08:14
And here's a photo of the real mangrove finch.
131
494532
2711
这是真实的红树林雀的照片。
08:17
Both these creatures exist in the wild,
132
497702
2878
这两种动物都在自然界中真实存在,
08:20
but the accuracy of each generated image is fully dependent on the data available.
133
500621
5965
但是生成图片的准确度 完全取决于可用的数据。
08:27
These chimeras of our everyday data
134
507462
2961
由我们日常数据产生的“怪物”
08:30
to me are a different way of how the future could be.
135
510423
3670
对我来说是对未来的另一种畅想。
08:34
Not in a literal sense, perhaps,
136
514802
2836
也许不是字面意思,
08:37
but in the sense that through practicing the expanding of our own imagination
137
517680
6423
但是通过扩展我们对
我们所处生态环境的想象,
08:44
about the ecosystems we are a part of,
138
524145
3045
08:47
we might just be better equipped to recognize new opportunities
139
527231
3170
我们也许更有可能 会发现新机会和新潜力。
08:50
and potential.
140
530443
1335
08:52
Knowing that there's a boundary to our imagination
141
532236
3128
清楚地知道 我们的想象力是有界限的,
08:55
doesn't have to feel limiting.
142
535406
2211
并不代表我们得束手束脚。
08:58
On the contrary,
143
538159
1293
相反,
08:59
it can help motivate us to expand that boundary further
144
539452
3420
这可以鼓励我们拓展边界,
09:02
and to seek out colors and things we haven't yet seen
145
542914
3962
寻找我们没有见过的颜色和事物,
09:06
and perhaps enrich our imagination as a result.
146
546918
3295
也许最终会丰富我们的想象。
09:10
So thank you.
147
550546
1168
谢谢。
09:11
(Applause)
148
551714
4046
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog