AI-Generated Creatures That Stretch the Boundaries of Imagination | Sofia Crespo | TED

45,816 views ・ 2022-11-30

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Grace Man
00:04
I'd like to start by asking you to imagine a color
0
4543
4379
我想先请你们想象一种
00:08
that you've never seen before.
1
8922
2544
从未见过的颜色。
00:12
Just for a second give this a try.
2
12217
2252
姑且来试一下吧。
00:14
Can you actually visualize a color that you've never been able to perceive?
3
14928
4463
你能想象出一种无法感知的颜色吗?
00:20
I never seem to get tired of trying this
4
20892
2878
我对此乐此不疲,
00:23
although I know it's not an easy challenge.
5
23770
2795
即使我知道这并不容易。
00:26
And the thing is,
6
26606
1210
问题是,
00:27
we can't imagine something without drawing upon our experiences.
7
27857
4880
如果不基于我们自身的经历, 我们就无法想象出某些东西。
00:33
A color we haven't yet seen
8
33655
2002
我们从未见过的颜色,
00:35
outside the spectrum we can perceive
9
35699
2836
超出了我们可以感知的光谱,
00:38
is outside our ability to conjure up.
10
38535
2502
也就超出了我们的想象力。
00:42
It's almost like there's a boundary to our imagination
11
42372
3212
这就感觉像是 我们的想象力有一个边界,
00:45
where all the colors we can imagine
12
45625
2002
我们可以想象出的所有颜色
00:47
can only be various shades of other colors we have previously seen.
13
47627
4505
只能是我们之前见过的 颜色的不同变体。
00:52
Yet we know for a fact
14
52841
2210
但是我们知道有这么一个事实,
00:55
that those color frequencies outside our visible spectrum are there.
15
55051
4463
超出可见光频谱的 颜色频率确实存在。
01:00
And scientists believe that there are species
16
60223
5339
科学家们相信有些物种
01:05
that have many more photo receptors
17
65562
3503
拥有更多的光感受器,
01:09
than just the three color ones we humans have.
18
69107
4880
比我们人类拥有的 三色光感受器要多。
01:13
Which, by the way,
19
73987
1835
顺带一提,
01:15
not all humans see the world in the same way.
20
75864
3295
不是所有人眼中的世界 都是一样的。
01:19
Some of us are colorblind to various degrees,
21
79200
4505
有些人会有不同程度的色盲,
01:23
and very often we don't even agree on small things,
22
83705
4713
我们经常会 就一些小事争论不休,
01:28
like if a dress on the internet is blue and black or white and gold.
23
88460
5005
比如网上的一条裙子是 蓝黑还是白金。
01:34
But my favorite creature, one of my favorite creatures,
24
94215
4380
但是我最喜欢的生物, 最喜欢的生物之一,
01:38
is the peacock mantis shrimp,
25
98595
2335
是雀尾螳螂虾,
01:40
which is estimated to have 12 to 16 photo receptors.
26
100972
5297
估计有 12 至 16 个光感受器。
01:46
And that indicates the world to them might look so much more colorful.
27
106269
5798
意味着它们眼中的世界 会更加色彩斑斓。
01:54
So what about artificial intelligence?
28
114194
2836
人工智能(AI)呢?
01:57
Can AI help us see beyond our human capabilities?
29
117947
3838
AI 可以帮助我们 超越人类的视觉吗?
02:03
Well, I've been working with AI for the past five years,
30
123203
3670
我在过去的五年里 一直在用 AI 工作,
02:06
and in my experience, it can see within the data it gets fed.
31
126873
4630
根据我的经验,它能看到的内容 取决于输入的数据。
02:12
But then you might be wondering, OK,
32
132420
2586
但是你可能会想,好吧,
02:15
if AI can't help imagine anything new,
33
135006
3337
如果 AI 不能想象出新东西,
02:18
why would an artist see any point in using it?
34
138385
2794
艺术家为什么要用它呢?
02:21
And my answer to that is because I think that it can help augment our creativity
35
141930
4254
我的答案是,我认为 AI 可以增强我们的创造力,
02:26
as there's value in creating combinations of known elements to form new ones.
36
146226
6173
通过组合既有的元素,创造新元素, 它就产生了价值。
02:33
And this boundary of what we can imagine based on what we have experienced
37
153858
5422
基于我们的经历形成的 想象力的边界
02:39
is the place that I have been exploring.
38
159322
2419
是我探索的领域。
02:42
For me, it started with jellyfish on a screen at an aquarium
39
162200
5005
对我来说,一切始于 水族馆屏幕上的水母,
02:47
and wearing those old 3D glasses, which I hope you remember,
40
167247
3712
我戴着那种老式 3D 眼镜, 但愿你还有印象,
02:51
the ones with the blue and red lens.
41
171000
1919
镜片一片蓝一片红的那种。
02:53
And this experience made me want to recreate their textures.
42
173336
4213
这个体验让我想重现它们的质感。
02:57
But not just that,
43
177882
1168
但是不仅如此,
02:59
I also wanted to create new jellyfish
44
179092
1960
我还想创造我从未见过的
03:01
that I hadn't seen before, like these.
45
181052
2878
新型水母,就像这种。
03:04
And what started with jellyfish,
46
184556
1543
我从水母开始,
03:06
very quickly escalated to other sea creatures
47
186099
3587
迅速扩展到了其他海洋生物,
03:09
like sea anemone, coral and fish.
48
189686
4254
比如海葵、珊瑚和鱼类。
03:14
And then from there came amphibians, birds and insects.
49
194524
5756
然后是两栖动物、鸟类和昆虫。
03:20
And this became a series called “Neural Zoo”.
50
200739
2919
它们组成了一个系列,名为 《神经动物园》(Neural Zoo)。
03:25
But when you look closely, what do you see?
51
205618
3629
但是如果你仔细看看, 你会看见什么呢?
03:29
There's no single creature in these images.
52
209289
3962
这些图片里的都不是单一生物。
03:33
And AI augments my creative process
53
213710
3378
AI 增强了我发挥创意的过程,
03:37
by allowing me to distill and recombine textures.
54
217130
4671
让我可以提取、 重组它们的质感。
03:41
And that's something that would otherwise take me months to draw by hand.
55
221801
4588
如果我要手绘, 可能要花上好几个月。
03:47
Plus I'm actually terrible at drawing.
56
227015
1877
而且我画画水平太差了。
03:49
So you could say, in a way, what I'm doing
57
229476
3169
你可以这么说, 从某种角度来看,我在做的
03:52
is a contemporary version of something
58
232687
1960
是早在相机出现之前,
03:54
that humans have already been doing for a long time,
59
234689
2753
人类就一直在做的事,
03:57
even before cameras existed.
60
237484
2669
但是是它的现代版本。
04:01
In medieval times,
61
241738
1793
中世纪,
04:03
people went on expeditions,
62
243573
2211
人们踏上远征,
04:05
and when they came back they would share about what they saw
63
245825
3504
回来之后他们会向画师 描述他们的见闻。
04:09
to an illustrator.
64
249370
1377
04:10
And the illustrator, having never seen what was being described,
65
250789
4129
画师从未见过描绘之物,
04:14
would end up drawing
66
254959
1627
于是他们会按照
04:16
based on the creatures that they had previously seen
67
256628
2460
他们之前见过的生物绘制,
04:19
and in the process creating hybrid animals of some sort.
68
259088
3170
再自创一些合成动物。
04:22
So an explorer might describe a beaver, but having never seen one,
69
262675
4338
也许出行者描述了一只海狸, 但是画师从没见过海狸,
04:27
the illustrator might give it the head of a rodent,
70
267055
2419
于是画了啮齿动物的头部,
04:29
the body of a dog and a fish-like tail.
71
269474
2419
狗的身子和类似鱼类的尾巴。
04:32
In the series “Artificial Natural History”,
72
272560
2670
我在《人工自然历史》 (Artificial Natural History)系列中
04:35
I took thousands of illustrations from a natural history archives,
73
275271
4588
从自然历史档案中 提取了几千张插图,
04:39
and I fed them to a neural network to generate new versions of them.
74
279901
5297
输入神经网络, 产生新版本的插图。
04:45
But up until now, all my work was done in 2D.
75
285990
4171
但是时至今日,我的所有作品 都是以 2D 的形式完成的。
04:51
And with the help of my studio partner, Feileacan McCormick,
76
291246
3545
在我的工作室伙伴菲力肯·麦考密克 (Feileacan McCormick)的帮助下,
04:54
we decided to train a neural network on a data set of 3D scanned beetles.
77
294833
5422
我们打算基于经 3D 扫描的 甲虫的数据集训练一个神经网络。
05:00
But I must warn you that our first results were extremely blurry,
78
300839
4546
但是我要提醒你的是 我们的第一批结果非常模糊,
05:05
and they looked like the blobs you see here.
79
305426
2253
如图所示的一坨。
05:08
And this could be due to many reasons,
80
308346
1835
导致这种情况的原因可能有很多,
05:10
but one of them being that there aren't really a lot
81
310181
2461
但是其中一个原因是公开可用的 3D 昆虫数据集比较有限。
05:12
of openly available data sets of 3D insects.
82
312642
4504
05:17
And also we were repurposing
83
317188
2127
而且我们也改变了神经网络的功能,
05:19
a neural network that normally gets used to generate images to generate 3D.
84
319357
5214
由常见的生成图片 转向了生成 3D 结果。
05:24
So believe it or not, these are very exciting blobs to us.
85
324612
4380
无论如何,它们都是 令我们激动的一坨物体。
05:29
But with time and some very hacky solutions
86
329784
3879
随着时间的推移和 一些另辟蹊径的产品的出现,
05:33
like data augmentation,
87
333705
2294
如数据增强,
05:36
where we threw in ants and other beetle-like insects
88
336040
3754
如果我们输入蚂蚁 或者其他类似甲虫的昆虫
05:39
to enhance the data set,
89
339794
2503
增强了数据集,
05:42
we ended up getting this,
90
342338
2628
我们会得到这样的结果,
05:44
which we've been told they look like grilled chicken.
91
344966
2544
有人说它们长得像烤鸡。
05:47
(Laughter)
92
347552
1752
(笑声)
05:49
But hungry for more, we pushed our technique,
93
349345
4797
但是我们的野心不止于此, 我们改进了技术,
05:54
and eventually they ended up looking like this.
94
354183
3713
最终得到了这样的结果。
05:58
We use something called 3D style transfer to map textures onto them,
95
358479
5047
我们用了一项叫做 “3D 风格迁移”的技术
把纹理附着到输出结果上,
06:03
and we also trained a natural language model
96
363568
3670
我们还训练了一个自然语言模型,
06:07
to generate scientific-like names
97
367280
2544
生成科研风的名字和
06:09
and anatomical descriptions.
98
369866
1918
生物结构描述。
06:12
And eventually we even found a network architecture that could handle 3D meshes.
99
372869
4963
我们最后甚至找到了一个 网络体系结构处理 3D 网格。
06:17
So they ended up looking like this.
100
377874
2377
最后的结果是这样的。
06:21
And for us, this became a way of creating kind of a speculative study --
101
381836
4838
对我们来说,这已经类似于 一种推测性研究……
06:26
(Applause)
102
386716
2669
(掌声)
06:29
A speculative study of creatures that never existed,
103
389427
3629
关于不存在的生物的 推测性研究,
06:33
kind of like a speculative biology.
104
393097
2294
类似猜想生物。
06:37
But I didn't want to talk about AI and its potential
105
397685
4421
但是我并不想谈论 AI 和它的潜力,
06:42
unless it brought me closer to a real species.
106
402148
3629
除非 AI 产生的结果 接近真实存在的物种。
06:46
Which of these do you think is easier to find data about online?
107
406486
4880
图上的两种生物,你觉得哪个 更容易在网上找到数据?
06:51
(Laughter)
108
411366
1918
(笑声)
06:53
Yeah, well, as you guessed correctly, the red panda.
109
413326
4004
你猜的没错,小熊猫。
06:57
And this maybe could be due to many reasons,
110
417830
3420
可能会有很多原因,
07:01
but one of them being how cute they are,
111
421292
4046
但是其中一个原因就是 它们太可爱了,
07:05
which means we photograph and talk about them a lot,
112
425338
4588
所以我们总是会给它们拍照, 讨论它们,
07:09
unlike the boreal felt lichen.
113
429926
2002
北方毡状地衣就没这种待遇了。
07:12
But both of them are classified as endangered.
114
432679
2877
但是这两种生物 都被定为了频危物种,
07:16
So I wanted to bring visibility to other endangered species
115
436349
4880
我想请大家都去关注一下 其他的濒危物种,
07:21
that don't get the same amount of digital representation
116
441270
4755
它们不一定会像 毛茸茸的可爱小熊猫那样
07:26
as a cute, fluffy red panda.
117
446025
2002
拥有那么高的数字化曝光度。
07:28
And to do this,
118
448861
1710
为了达成这个目标,
07:30
we trained an AI on millions of images of the natural world,
119
450613
5005
我们用自然界的百万张图片 训练了 AI,
07:35
and then we prompted with text
120
455660
2085
然后我们用文字提示,
07:37
to generate some of these creatures.
121
457787
2294
生成一些生物。
07:40
So when prompted with a text,
122
460123
3712
如果我们输入这样的提示:
07:43
"an image of a critically endangered spider, the peacock tarantula"
123
463876
4713
“蓝宝石华丽雨林—— 一种极度濒危的蜘蛛的图片”
07:48
and its scientific name,
124
468589
1669
和它的学名,
07:50
our model generated this.
125
470299
2378
我们的模型会输出这样的结果。
07:55
And here's an image of the real peacock tarantula,
126
475972
3211
这是一张真实的 蓝宝石华丽雨林的照片,
07:59
which is a wonderful spider endemic to India.
127
479225
3128
它是一种分布于 印度本土的华丽蜘蛛。
08:02
But when prompted with a text
128
482812
2878
如果我们输入这样的提示:
08:05
"an image of a critically endangered bird, the mangrove finch,"
129
485732
4170
“红树林雀—— 一种极度濒危的鸟类的图片”,
08:09
our model generated this.
130
489944
2669
我们的模型会生成这样的结果。
08:14
And here's a photo of the real mangrove finch.
131
494532
2711
这是真实的红树林雀的照片。
08:17
Both these creatures exist in the wild,
132
497702
2878
这两种动物都在自然界中真实存在,
08:20
but the accuracy of each generated image is fully dependent on the data available.
133
500621
5965
但是生成图片的准确度 完全取决于可用的数据。
08:27
These chimeras of our everyday data
134
507462
2961
由我们日常数据产生的“怪物”
08:30
to me are a different way of how the future could be.
135
510423
3670
对我来说是对未来的另一种畅想。
08:34
Not in a literal sense, perhaps,
136
514802
2836
也许不是字面意思,
08:37
but in the sense that through practicing the expanding of our own imagination
137
517680
6423
但是通过扩展我们对
我们所处生态环境的想象,
08:44
about the ecosystems we are a part of,
138
524145
3045
08:47
we might just be better equipped to recognize new opportunities
139
527231
3170
我们也许更有可能 会发现新机会和新潜力。
08:50
and potential.
140
530443
1335
08:52
Knowing that there's a boundary to our imagination
141
532236
3128
清楚地知道 我们的想象力是有界限的,
08:55
doesn't have to feel limiting.
142
535406
2211
并不代表我们得束手束脚。
08:58
On the contrary,
143
538159
1293
相反,
08:59
it can help motivate us to expand that boundary further
144
539452
3420
这可以鼓励我们拓展边界,
09:02
and to seek out colors and things we haven't yet seen
145
542914
3962
寻找我们没有见过的颜色和事物,
09:06
and perhaps enrich our imagination as a result.
146
546918
3295
也许最终会丰富我们的想象。
09:10
So thank you.
147
550546
1168
谢谢。
09:11
(Applause)
148
551714
4046
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7