AI-Generated Creatures That Stretch the Boundaries of Imagination | Sofia Crespo | TED
45,678 views ・ 2022-11-30
請雙擊下方英文字幕播放視頻。
譯者: Chun Ju Wang
審譯者: Shelley Tsang 曾雯海
00:04
I'd like to start by asking
you to imagine a color
0
4543
4379
首先我想請你們想像一個顏色
00:08
that you've never seen before.
1
8922
2544
一個你從未見過的顏色
00:12
Just for a second give this a try.
2
12217
2252
稍微花點時間試試看
00:14
Can you actually visualize a color
that you've never been able to perceive?
3
14928
4463
你真的能在腦海裡
看到從未見過的顏色嗎?
00:20
I never seem to get tired of trying this
4
20892
2878
我對此總是樂此不疲
00:23
although I know
it's not an easy challenge.
5
23770
2795
雖然我知道這並不是個簡單的挑戰
00:26
And the thing is,
6
26606
1210
而且事實是
00:27
we can't imagine something
without drawing upon our experiences.
7
27857
4880
我們的想像空間完全得靠經歷塑造
00:33
A color we haven't yet seen
8
33655
2002
某個我們沒有見過的顏色
00:35
outside the spectrum we can perceive
9
35699
2836
不但超越了我們能接收到的光譜
00:38
is outside our ability to conjure up.
10
38535
2502
也超越了我們憑空造物的能力
00:42
It's almost like there's a boundary
to our imagination
11
42372
3212
我們的想像力似乎有個界限
00:45
where all the colors we can imagine
12
45625
2002
在這之中,我們能想像出的所有顏色
00:47
can only be various shades of other colors
we have previously seen.
13
47627
4505
只會是已知顏色的各種深淺
00:52
Yet we know for a fact
14
52841
2210
但是我們明確知道
00:55
that those color frequencies
outside our visible spectrum are there.
15
55051
4463
那些在人類可見光譜之外的
顏色頻率的確存在
01:00
And scientists believe
that there are species
16
60223
5339
且科學家相信世上存在某些物種
01:05
that have many more photo receptors
17
65562
3503
牠們有更多的光感受器
01:09
than just the three color ones
we humans have.
18
69107
4880
超越人類僅能接收到的三原色
01:13
Which, by the way,
19
73987
1835
順帶一提
01:15
not all humans see the world
in the same way.
20
75864
3295
人類眼中並非只有一種世界
01:19
Some of us are colorblind
to various degrees,
21
79200
4505
我們有些人是色盲,程度各異
01:23
and very often we don't even
agree on small things,
22
83705
4713
且我們經常連小事都無法達成一致
01:28
like if a dress on the internet
is blue and black or white and gold.
23
88460
5005
好比某件網路上的洋裝到底是
黑藍相間還是白金相間
01:34
But my favorite creature,
one of my favorite creatures,
24
94215
4380
但我最喜歡的生物
應該說我最喜歡的生物之一
01:38
is the peacock mantis shrimp,
25
98595
2335
是雀尾螳螂蝦
01:40
which is estimated to have 12
to 16 photo receptors.
26
100972
5297
據估計有 12 到 16 個光感受器
01:46
And that indicates the world to them
might look so much more colorful.
27
106269
5798
這也代表牠們眼中的世界
可能比我們的更五彩斑斕
01:54
So what about artificial intelligence?
28
114194
2836
那人工智慧呢?
01:57
Can AI help us see
beyond our human capabilities?
29
117947
3838
它能幫我們獲取
超越人類極限的視野嗎?
02:03
Well, I've been working with AI
for the past five years,
30
123203
3670
這個嘛,我已經與人工智慧共事五年了
02:06
and in my experience, it can see
within the data it gets fed.
31
126873
4630
根據經驗,人工智慧的視野
侷限在我們提供給它的資料中
02:12
But then you might be wondering, OK,
32
132420
2586
那麼你可能會想
02:15
if AI can't help imagine anything new,
33
135006
3337
如果人工智慧想不出任何新東西
02:18
why would an artist see
any point in using it?
34
138385
2794
藝術家用它到底是為了什麼?
02:21
And my answer to that is because I think
that it can help augment our creativity
35
141930
4254
對我來說,答案是
這能幫助我們增強創造力
02:26
as there's value in creating combinations
of known elements to form new ones.
36
146226
6173
因為利用已知元素創造不同組合
來形成未知組合確有其價值
02:33
And this boundary of what we can imagine
based on what we have experienced
37
153858
5422
而我們根據自身經驗架構出的想像空間
02:39
is the place that I have been exploring.
38
159322
2419
其界限正是我在探索的邊界
02:42
For me, it started with jellyfish
on a screen at an aquarium
39
162200
5005
這一切要從我在水族館的
影廳銀幕上看到的水母開始
02:47
and wearing those old 3D glasses,
which I hope you remember,
40
167247
3712
我當時戴著舊式立體眼鏡——
希望你們對那些
02:51
the ones with the blue and red lens.
41
171000
1919
紅色和藍色的鏡片還有印象
02:53
And this experience made me want
to recreate their textures.
42
173336
4213
這個經驗讓我想要重現牠們的質地
02:57
But not just that,
43
177882
1168
不僅如此
02:59
I also wanted to create new jellyfish
44
179092
1960
我也想要創造新的水母
03:01
that I hadn't seen before, like these.
45
181052
2878
那些我從未見過的品種
好比畫面上這些
03:04
And what started with jellyfish,
46
184556
1543
而這些源於水母的想法
03:06
very quickly escalated
to other sea creatures
47
186099
3587
很快便延伸到其牠海洋生物上
03:09
like sea anemone, coral and fish.
48
189686
4254
好比海葵、珊瑚和魚類
03:14
And then from there came amphibians,
birds and insects.
49
194524
5756
接著蔓延到兩棲動物、鳥類和昆蟲
03:20
And this became a series
called “Neural Zoo”.
50
200739
2919
然後演變成一個系列
我們稱它為「類神經動物園」
03:25
But when you look closely,
what do you see?
51
205618
3629
但湊近仔細瞧瞧
你看到了什麼?
03:29
There's no single creature
in these images.
52
209289
3962
這些圖片都包含不只一種生物
03:33
And AI augments my creative process
53
213710
3378
人工智慧強化了我的創作過程
03:37
by allowing me to distill
and recombine textures.
54
217130
4671
讓我能將不同特色精煉再重組
03:41
And that's something that would otherwise
take me months to draw by hand.
55
221801
4588
這個過程若純靠手繪將耗時數月
03:47
Plus I'm actually terrible at drawing.
56
227015
1877
尤其是我的繪畫功力實在很差
03:49
So you could say, in a way, what I'm doing
57
229476
3169
所以在某種程度上可以說
03:52
is a contemporary version of something
58
232687
1960
我只是用現代版的方式
03:54
that humans have already
been doing for a long time,
59
234689
2753
來重現人們即使在相機出現以前
03:57
even before cameras existed.
60
237484
2669
便一直在做的事
04:01
In medieval times,
61
241738
1793
在中世紀
04:03
people went on expeditions,
62
243573
2211
許多人踏上征途
04:05
and when they came back
they would share about what they saw
63
245825
3504
並在回來之後將所見所聞
04:09
to an illustrator.
64
249370
1377
告訴某位插畫家
04:10
And the illustrator, having never seen
what was being described,
65
250789
4129
然後這位插畫家
在完全沒見過所述之物的情況下
04:14
would end up drawing
66
254959
1627
會根據他們
04:16
based on the creatures
that they had previously seen
67
256628
2460
之前見過的生物來繪圖
04:19
and in the process creating
hybrid animals of some sort.
68
259088
3170
並在這個過程中
或多或少地創造出混合物種
04:22
So an explorer might describe a beaver,
but having never seen one,
69
262675
4338
所以,探險家形容的可能是一隻河狸
而插畫家在沒見過這種生物的情況下
04:27
the illustrator might give it
the head of a rodent,
70
267055
2419
可能會畫出嚙齒動物的頭
04:29
the body of a dog and a fish-like tail.
71
269474
2419
狗的身體和類似魚的尾巴
04:32
In the series
“Artificial Natural History”,
72
272560
2670
在「人造自然歷史」這一系列中
04:35
I took thousands of illustrations
from a natural history archives,
73
275271
4588
我從一個自然歷史檔案庫中
擷取了上千張插圖
04:39
and I fed them to a neural network
to generate new versions of them.
74
279901
5297
將它們餵給類神經網路
以產生新的版本
04:45
But up until now,
all my work was done in 2D.
75
285990
4171
但截至目前為止
我所有的作品都是平面的
04:51
And with the help of my studio partner,
Feileacan McCormick,
76
291246
3545
憑藉我工作室的夥伴
費利根.麥柯米克的幫助
04:54
we decided to train a neural network
on a data set of 3D scanned beetles.
77
294833
5422
我們決定用一組經過三維掃描的
甲蟲資料集來訓練某個類神經網路
05:00
But I must warn you that our first
results were extremely blurry,
78
300839
4546
醜話先說在前面
我們得出的第一個結果非常模糊
05:05
and they looked
like the blobs you see here.
79
305426
2253
它們看起來就像這些團狀物
05:08
And this could be due to many reasons,
80
308346
1835
造成這個結果的可能有很多種
05:10
but one of them being
that there aren't really a lot
81
310181
2461
但其中一個原因
是現存的資料集中
05:12
of openly available
data sets of 3D insects.
82
312642
4504
存有三維昆蟲且開放使用的並不多
05:17
And also we were repurposing
83
317188
2127
我們同時也在重新定向
05:19
a neural network that normally gets used
to generate images to generate 3D.
84
319357
5214
試圖讓已經習慣產生平面圖的
類神經網路開始產生三維影像
05:24
So believe it or not,
these are very exciting blobs to us.
85
324612
4380
所以無論你相信與否
這些團狀物在我們眼中可是寶貝
05:29
But with time and some
very hacky solutions
86
329784
3879
歷經時間和一些鬆散的解決方案
05:33
like data augmentation,
87
333705
2294
好比資料增強
05:36
where we threw in ants
and other beetle-like insects
88
336040
3754
也就是加進螞蟻和其他類似甲蟲的昆蟲
05:39
to enhance the data set,
89
339794
2503
來增加資料集的內容
05:42
we ended up getting this,
90
342338
2628
我們最終得到了這個東西
05:44
which we've been told
they look like grilled chicken.
91
344966
2544
我知道,看起來很像烤雞吧
05:47
(Laughter)
92
347552
1752
(笑聲)
05:49
But hungry for more,
we pushed our technique,
93
349345
4797
我們不想止步於此
於是繼續精進
05:54
and eventually they ended up
looking like this.
94
354183
3713
而最終的結果看起來像這樣
05:58
We use something called 3D style transfer
to map textures onto them,
95
358479
5047
我們用「三維風格轉換」這個技術
來繪製它們的質地
06:03
and we also trained
a natural language model
96
363568
3670
我們也訓練自然語言模型
06:07
to generate scientific-like names
97
367280
2544
來產生類似學名的名字
06:09
and anatomical descriptions.
98
369866
1918
和內在結構描述
06:12
And eventually we even found a network
architecture that could handle 3D meshes.
99
372869
4963
最後我們甚至找到一個
能夠處理三維網格的網路架構
06:17
So they ended up looking like this.
100
377874
2377
所以最後的成品就像這樣
06:21
And for us, this became a way
of creating kind of a speculative study --
101
381836
4838
對我們來說這成為了
創造某種推想研究的方式
06:26
(Applause)
102
386716
2669
(掌聲)
06:29
A speculative study of creatures
that never existed,
103
389427
3629
一個與前所未見的生物有關的推想研究
06:33
kind of like a speculative biology.
104
393097
2294
有點像是推想生物學
06:37
But I didn't want to talk
about AI and its potential
105
397685
4421
但我並不想空聊
人工智慧和它的潛能
06:42
unless it brought me closer
to a real species.
106
402148
3629
它需要更貼近真實物種
06:46
Which of these do you think is easier
to find data about online?
107
406486
4880
你們覺得哪一個
更容易在網路上找到資料?
06:51
(Laughter)
108
411366
1918
(笑聲)
06:53
Yeah, well, as you guessed
correctly, the red panda.
109
413326
4004
沒錯,不出你們所料
答案是小熊貓
06:57
And this maybe could be
due to many reasons,
110
417830
3420
這可歸結於很多原因
07:01
but one of them being how cute they are,
111
421292
4046
而其中一個原因是牠們真的很可愛
07:05
which means we photograph
and talk about them a lot,
112
425338
4588
這代表我們喜歡拍牠們的照片
並常常討論這個物種
07:09
unlike the boreal felt lichen.
113
429926
2002
而北方氈狀地衣就沒有這種福氣
07:12
But both of them
are classified as endangered.
114
432679
2877
但實際上兩者都是瀕危物種
07:16
So I wanted to bring visibility
to other endangered species
115
436349
4880
所以我想提升其他瀕危物種的能見度
07:21
that don't get the same amount
of digital representation
116
441270
4755
讓在數位世界中,曝光度
無法和可愛又毛茸茸的小熊貓相比的
07:26
as a cute, fluffy red panda.
117
446025
2002
那些生物也能被看見
07:28
And to do this,
118
448861
1710
要做到這一點
07:30
we trained an AI on millions of images
of the natural world,
119
450613
5005
我們訓練人工智慧瀏覽
數百萬張自然世界的圖片
07:35
and then we prompted with text
120
455660
2085
然後我們給人工智慧提詞
07:37
to generate some of these creatures.
121
457787
2294
來產生其中幾種生物
07:40
So when prompted with a text,
122
460123
3712
所以當我們的文字敘述是
07:43
"an image of a critically endangered
spider, the peacock tarantula"
123
463876
4713
「一張極危蜘蛛『孔雀蜘蛛』的圖片」
07:48
and its scientific name,
124
468589
1669
及牠的學名
07:50
our model generated this.
125
470299
2378
我們的模型產生了這個結果
07:55
And here's an image
of the real peacock tarantula,
126
475972
3211
而這是孔雀蜘蛛的真實模樣
07:59
which is a wonderful spider
endemic to India.
127
479225
3128
這是一種印度獨有的絕妙蜘蛛
08:02
But when prompted with a text
128
482812
2878
當我們換個文字敘述
08:05
"an image of a critically
endangered bird, the mangrove finch,"
129
485732
4170
「一張極危鳥類『紅樹林雀』的圖片」
08:09
our model generated this.
130
489944
2669
這是模型產生的成品
08:14
And here's a photo
of the real mangrove finch.
131
494532
2711
而這是紅樹林雀的真實樣貌
08:17
Both these creatures exist in the wild,
132
497702
2878
這兩個物種都生活在野外
08:20
but the accuracy of each generated image
is fully dependent on the data available.
133
500621
5965
但最終成像的精確度
完全取決於能夠得到多少資料
08:27
These chimeras of our everyday data
134
507462
2961
這些從日常資料中產生的嵌合體
08:30
to me are a different way
of how the future could be.
135
510423
3670
對我來說是一種
預示未來可能的不同方式
08:34
Not in a literal sense, perhaps,
136
514802
2836
或許不是那麼直觀
08:37
but in the sense that through practicing
the expanding of our own imagination
137
517680
6423
但轉念想想,經由練習擴張我們
08:44
about the ecosystems we are a part of,
138
524145
3045
對所處生態系統的想像力
08:47
we might just be better equipped
to recognize new opportunities
139
527231
3170
我們或許就能提升自己
在察覺新的機運和潛能
08:50
and potential.
140
530443
1335
這方面的能力
08:52
Knowing that there's a boundary
to our imagination
141
532236
3128
我們的想像空間確有界限
08:55
doesn't have to feel limiting.
142
535406
2211
但不必因此感到受限
08:58
On the contrary,
143
538159
1293
相反地
08:59
it can help motivate us
to expand that boundary further
144
539452
3420
這能激勵我們擴張自我界限
09:02
and to seek out colors
and things we haven't yet seen
145
542914
3962
尋找那些我們從未見過的顏色和事物
09:06
and perhaps enrich
our imagination as a result.
146
546918
3295
或許還能讓我們的想像力變得更加豐富
09:10
So thank you.
147
550546
1168
謝謝大家
09:11
(Applause)
148
551714
4046
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。