请双击下面的英文字幕来播放视频。
翻译人员: elyse lin
校对人员: Tony Yet
00:26
I'm supposed to scare you, because it's about fear, right?
0
26000
3000
我要开始危言耸听了
00:30
And you should be really afraid,
1
30000
2000
然后你们应该会感到担心
00:32
but not for the reasons why you think you should be.
2
32000
2000
但不是因为你们认为的原因而担心
00:35
You should be really afraid that --
3
35000
2000
你们所担心的是——
00:37
if we stick up the first slide on this thing -- there we go -- that you're missing out.
4
37000
4000
如果你关注的是幻灯片上这东西,那没问题,但如果你关注的不是这个,那么你将会错过一些真正值得关注的事物
00:43
Because if you spend this week thinking about Iraq and
5
43000
4000
比如说你们这周都在关注伊拉克
00:47
thinking about Bush and thinking about the stock market,
6
47000
4000
布什或者股市
00:51
you're going to miss one of the greatest adventures that we've ever been on.
7
51000
2000
那么就会错过有史以来最棒的体验
00:54
And this is what this adventure's really about.
8
54000
2000
关于这东西的体验
00:56
This is crystallized DNA.
9
56000
4000
即DNA晶体
01:00
Every life form on this planet -- every insect, every bacteria, every plant,
10
60000
3000
这个星球上形成的每个生命,包括昆虫,细菌,植物
01:03
every animal, every human, every politician -- (Laughter)
11
63000
3000
动物,人类,政治家——(笑)
01:08
is coded in that stuff.
12
68000
2000
都是由DNA编码的
01:10
And if you want to take a single crystal of DNA, it looks like that.
13
70000
4000
这是单个DNA晶体
01:14
And we're just beginning to understand this stuff.
14
74000
2000
而我们目前对它的研究才刚起步
01:17
And this is the single most exciting adventure that we have ever been on.
15
77000
3000
这项研究将给我们带来前所未有的振奋
01:21
It's the single greatest mapping project we've ever been on.
16
81000
3000
将是目前为止我们所参与的最伟大的项目
01:24
If you think that the mapping of America's made a difference,
17
84000
2000
如果你认为绘制美国地图
01:26
or landing on the moon, or this other stuff,
18
86000
3000
登陆月球或类似项目影响深远
01:29
it's the map of ourselves and the map of every plant
19
89000
3000
那么你错了,实际上我们每一个人以及每种植物
01:32
and every insect and every bacteria that really makes a difference.
20
92000
3000
昆虫,细菌的基因图谱才是最具意义的
01:35
And it's beginning to tell us a lot about evolution.
21
95000
3000
它能告诉我们进化史
01:40
(Laughter)
22
100000
4000
(笑)
01:44
It turns out that what this stuff is --
23
104000
2000
这就是
01:46
and Richard Dawkins has written about this --
24
106000
2000
正如Richard Dawkins著作《伊甸园之河》
01:48
is, this is really a river out of Eden.
25
108000
2000
是条伊甸园之河
01:50
So, the 3.2 billion base pairs inside each of your cells
26
110000
4000
你的细胞中有320亿对碱基
01:54
is really a history of where you've been for the past billion years.
27
114000
3000
见证你在过去10几亿年的历史
01:57
And we could start dating things,
28
117000
1000
我们开始从事各方面研究
01:58
and we could start changing medicine and archeology.
29
118000
3000
我们开始改变药物,开始考古
02:02
It turns out that if you take the human species about 700 years ago,
30
122000
3000
你会发现在大约700年前
02:05
white Europeans diverged from black Africans in a very significant way.
31
125000
3000
欧洲白人与非洲黑人有显著差异
02:08
White Europeans were subject to the plague.
32
128000
5000
欧洲白人受鼠疫侵袭
02:14
And when they were subject to the plague, most people didn't survive,
33
134000
3000
大部分人因此死去
02:17
but those who survived had a mutation on the CCR5 receptor.
34
137000
4000
但仍有一小部分人存活下来,因为这些人CCR5受体上有一个基因发生突变
02:21
And that mutation was passed on to their kids
35
141000
2000
突变基因传给了他们的后代
02:23
because they're the ones that survived,
36
143000
2000
只有他们存活下来,繁衍出后代
02:25
so there was a great deal of population pressure.
37
145000
2000
所以说当时鼠疫造成了很大的人口选择压力,只有拥有突变基因的人才能存活
02:27
In Africa, because you didn't have these cities,
38
147000
2000
在非洲,因为没有这群人
02:29
you didn't have that CCR5 population pressure mutation.
39
149000
3000
就不存在造成人口选择压力的CCR5突变基因
02:32
We can date it to 700 years ago.
40
152000
3000
这大概是700年前的事
02:35
That is one of the reasons why AIDS is raging across Africa as fast as it is,
41
155000
4000
CCR5突变基因也是艾滋病非洲大陆迅速蔓延
02:39
and not as fast across Europe.
42
159000
4000
而在欧洲却没有那么快的原因之一
02:43
And we're beginning to find these little things for malaria,
43
163000
3000
我们现在刚刚开始研究这个突变基因对疟疾
02:46
for sickle cell, for cancers.
44
166000
3000
镰刀状细胞以及癌症的作用
02:50
And in the measure that we map ourselves,
45
170000
2000
因此我们开始测绘人类基因图谱
02:52
this is the single greatest adventure that we'll ever be on.
46
172000
2000
这绝对是一个前无古人的伟大项目
02:54
And this Friday, I want you to pull out a really good bottle of wine,
47
174000
4000
这周五,我要你们拿出上好的葡萄酒
02:58
and I want you to toast these two people.
48
178000
2000
向两个伟人敬酒
03:01
Because this Friday, 50 years ago, Watson and Crick found the structure of DNA,
49
181000
4000
50年前的这个周五,正是沃森和克里克发现了DNA结构
03:05
and that is almost as important a date
50
185000
3000
这跟
03:08
as the 12th of February when we first mapped ourselves,
51
188000
3000
我们2月12日那天开始的基因测绘一样重要
03:11
but anyway, we'll get to that.
52
191000
2000
不过不管怎么说,我们最终都能发展到这一步
03:13
I thought we'd talk about the new zoo.
53
193000
2000
现在还是来讨论目前最新的物种世界吧
03:15
So, all you guys have heard about DNA, all the stuff that DNA does,
54
195000
4000
你们都听说过DNA及其作用
03:19
but some of the stuff we're discovering is kind of nifty
55
199000
3000
我们发现一样有趣的东西
03:22
because this turns out to be the single most abundant species on the planet.
56
202000
5000
地球上这个物种最丰富
03:27
If you think you're successful or cockroaches are successful,
57
207000
3000
你也许认为你最强大或者蟑螂最强大
03:30
it turns out that there's ten trillion trillion Pleurococcus sitting out there.
58
210000
3000
实际上肋球藻属才是最强大的,地球上有十万亿兆多个
03:33
And we didn't know that Pleurococcus was out there,
59
213000
3000
而我们却不知道有这么多肋球藻属
03:36
which is part of the reason
60
216000
1000
这是为什么物种的基因测绘项目如此重要
03:37
why this whole species-mapping project is so important.
61
217000
5000
的一部分原因
03:42
Because we're just beginning to learn
62
222000
2000
我们才刚刚知道
03:44
where we came from and what we are.
63
224000
1000
我们来自哪,我们是什么
03:46
And we're finding amoebas like this. This is the amoeba dubia.
64
226000
3000
我们发现了变形虫,这是放射变形虫
03:50
And the amoeba dubia doesn't look like much,
65
230000
2000
放射变形虫之间并不相像
03:52
except that each of you has about 3.2 billion letters,
66
232000
3000
而你们每一个人都有32亿字母(A,T,C,Gs)
03:55
which is what makes you you,
67
235000
2000
这些字母组成了你
03:57
as far as gene code inside each of your cells,
68
237000
3000
这是就你细胞里的遗传密码而言
04:00
and this little amoeba which, you know,
69
240000
3000
微小的变形虫
04:03
sits in water in hundreds and millions and billions,
70
243000
2000
生活在水中,可能有数百只,数百万只或者数十亿只
04:06
turns out to have 620 billion base pairs of gene code inside.
71
246000
6000
变形虫细胞里有6200亿碱基对组成的遗传密码
04:12
So, this little thingamajig has a genome
72
252000
3000
也就说它的基因组数量
04:15
that's 200 times the size of yours.
73
255000
2000
是你的200倍
04:18
And if you're thinking of efficient information storage mechanisms,
74
258000
3000
如果你正关注有效的信息储存机制
04:22
it may not turn out to be chips.
75
262000
2000
芯片可能还达不到你的要求
04:25
It may turn out to be something that looks a little like that amoeba.
76
265000
4000
但变形虫可以
04:29
And, again, we're learning from life and how life works.
77
269000
4000
我们正对生命进行研究,研究其运作机制
04:33
This funky little thing: people didn't used to think
78
273000
4000
看看这个,人们以前并不认为
04:37
that it was worth taking samples out of nuclear reactors
79
277000
3000
从核反应堆中提取样品能有所发现
04:40
because it was dangerous and, of course, nothing lived there.
80
280000
3000
因为这是很危险的,而且其中肯定没有生命存在
04:43
And then finally somebody picked up a microscope
81
283000
3000
后来终于有人用显微镜
04:46
and looked at the water that was sitting next to the cores.
82
286000
3000
观察了核反应堆核心边上的水源
04:49
And sitting next to that water in the cores
83
289000
2000
发现
04:51
was this little Deinococcus radiodurans, doing a backstroke,
84
291000
3000
耐辐射球菌,不停地捍卫自己的生命
04:54
having its chromosomes blown apart every day,
85
294000
2000
它们的染色体每天都被强行分开
04:56
six, seven times, restitching them,
86
296000
3000
6至7次,然后再自行聚合
04:59
living in about 200 times the radiation that would kill you.
87
299000
2000
它们生活环境中的辐射是能够杀死你的辐射的200倍
05:02
And by now you should be getting a hint as to how diverse
88
302000
3000
现在你们应该能够意识到
05:05
and how important and how interesting this journey into life is,
89
305000
2000
研究基因是多么多样化,多么重要,多么有趣
05:07
and how many different life forms there are,
90
307000
3000
以及到底有多少种生命形式
05:10
and how there can be different life forms living in
91
310000
3000
而这么多的生命又怎么能够在
05:13
very different places, maybe even outside of this planet.
92
313000
3000
不同环境中甚至地球以外的星球上生存
05:17
Because if you can live in radiation that looks like this,
93
317000
2000
如果你能在类似的高辐射环境中生存下来
05:19
that brings up a whole series of interesting questions.
94
319000
3000
这就产生了一系列有意思的疑问
05:23
This little thingamajig: we didn't know this thingamajig existed.
95
323000
3000
这小东西:我们不知道它的存在
05:27
We should have known that this existed
96
327000
2000
但我们本应该要知道
05:29
because this is the only bacteria that you can see to the naked eye.
97
329000
3000
因为它是唯一露眼能见的细菌
05:32
So, this thing is 0.75 millimeters.
98
332000
3000
直径0.75毫米
05:35
It lives in a deep trench off the coast of Namibia.
99
335000
2000
生活在离纳米比亚海岸不远的深海沟里
05:38
And what you're looking at with this namibiensis
100
338000
2000
这种纳米比亚戈登氏菌是我们见过的
05:40
is the biggest bacteria we've ever seen.
101
340000
2000
最大的细菌
05:42
So, it's about the size of a little period on a sentence.
102
342000
3000
大概有一个句子里的句号那么大
05:46
Again, we didn't know this thing was there three years ago.
103
346000
4000
再一次强调,三年前我们还不知道它的存在
05:50
We're just beginning this journey of life in the new zoo.
104
350000
3000
现在才刚刚开始对物种世界的探索之旅
05:54
This is a really odd one. This is Ferroplasma.
105
354000
3000
这个菌比较奇特,是铁原体菌
05:58
The reason why Ferroplasma is interesting is because it eats iron,
106
358000
3000
因为它以铁为能源
06:02
lives inside the equivalent of battery acid,
107
362000
3000
生活在等同于于酸电池的环境中
06:06
and excretes sulfuric acid.
108
366000
2000
会分泌出硫酸
06:10
So, when you think of odd life forms,
109
370000
2000
你开始关注这个奇特的生命形式
06:12
when you think of what it takes to live,
110
372000
3000
它是靠什么维持生命的
06:16
it turns out this is a very efficient life form,
111
376000
2000
你会发现这种生命形式非常高效
06:18
and they call it an archaea. Archaea means "the ancient ones."
112
378000
4000
它是一种古细菌,古细菌顾名思义远古时期就有的 细菌
06:22
And the reason why they're ancient is because this thing came up
113
382000
4000
这么说是因为
06:26
when this planet was covered
114
386000
2000
古细菌在地球还处在类似于
06:28
by things like sulfuric acid in batteries,
115
388000
1000
酸电池的环境中时就出现了
06:29
and it was eating iron when the earth was part of a melted core.
116
389000
4000
当地球还是一个熔浆核心的部分时它就开始消耗铁了
06:34
So, it's not just dogs and cats and whales and dolphins
117
394000
4000
它不是猫狗也不是鲸鱼海豚
06:38
that you should be aware of and interested in on this little journey.
118
398000
4000
这是探索过程中你们应该很清楚并且感兴趣的
06:42
Your fear should be that you are not,
119
402000
3000
你们所担心的应该是
06:45
that you're paying attention to stuff which is temporal.
120
405000
3000
你们关注的是非永恒的东西
06:48
I mean, George Bush -- he's going to be gone, alright? Life isn't.
121
408000
5000
我的意思是,乔治布什总有一天会死去,但这种生命不会
06:54
Whether the humans survive or don't survive,
122
414000
3000
不论人类是否生存
06:57
these things are going to be living on this planet or other planets.
123
417000
3000
古细菌之类的都始终存在于地球或其他星球上
07:00
And it's just beginning to understand this code of DNA
124
420000
4000
DNA现在对于遗传密码的研究才刚起步
07:04
that's really the most exciting intellectual adventure
125
424000
3000
这将是迄今为止
07:07
that we've ever been on.
126
427000
3000
最为激动人心的脑力体验
07:10
And you can do strange things with this stuff. This is a baby gaur.
127
430000
4000
你可以使用各种奇招怪法对它们进行实验。这是雀鳝属鱼的幼鱼
07:14
Conservation group gets together,
128
434000
2000
保护组织成员集合在一起
07:16
tries to figure out how to breed an animal that's almost extinct.
129
436000
4000
试着找出繁殖濒临灭绝的动物的方法
07:21
They can't do it naturally, so what they do with this thing is
130
441000
3000
自然繁殖是行不通的,于是它们
07:24
they take a spoon, take some cells out of an adult gaur's mouth, code,
131
444000
5000
用勺子从成年雀鳝属鱼嘴里取出一些细胞,得出其密码
07:30
take the cells from that and insert it into a fertilized cow's egg,
132
450000
4000
将上述细胞注入一头受精牛的卵细胞中
07:35
reprogram cow's egg -- different gene code.
133
455000
3000
通过整合不同的遗传密码重新编程
07:39
When you do that, the cow gives birth to a gaur.
134
459000
4000
然后牛就会产下雀鳝属鱼
07:44
We are now experimenting with bongos, pandas, elands, Sumatran tigers,
135
464000
6000
我们现在对非洲产大羚羊,熊猫, 以及苏门答腊虎做这种实验
07:50
and the Australians -- bless their hearts --
136
470000
3000
澳大利亚人——保佑他们吧
07:53
are playing with these things.
137
473000
1000
对这个动物进行这方面研究
07:54
Now, the last of these things died in September 1936.
138
474000
4000
最后一个源自这种研究的动物死于1936年9月
07:58
These are Tasmanian tigers. The last known one died at the Hobart Zoo.
139
478000
4000
这些是苏门答腊虎,我们所知道的最后一只死于霍巴特动物园
08:02
But it turns out that as we learn more about gene code
140
482000
3000
但结果证明我们对遗传密码的研究越深入
08:05
and how to reprogram species,
141
485000
2000
对重新编程物种越了解
08:07
we may be able to close the gene gaps in deteriorate DNA.
142
487000
5000
那么我们就能够修复损坏DNA上的基因间隔
08:12
And when we learn how to close the gene gaps,
143
492000
3000
如果能消除基因间隔
08:15
then we can put a full string of DNA together.
144
495000
2000
就能将一连串的DNA连在一起
08:18
And if we do that, and insert this into a fertilized wolf's egg,
145
498000
4000
通过这么做,并将其导入狼的受精卵中
08:23
we may give birth to an animal
146
503000
2000
就能产出
08:25
that hasn't walked the earth since 1936.
147
505000
2000
自1936年来地球上从未出现过的动物
08:28
And then you can start going back further,
148
508000
2000
然后开始思考更早以前的东西
08:30
and you can start thinking about dodos,
149
510000
2000
开始关注渡渡鸟
08:33
and you can think about other species.
150
513000
1000
以及其他物种
08:35
And in other places, like Maryland, they're trying to figure out
151
515000
3000
在其他地方,如马里兰,科学家们想找出
08:38
what the primordial ancestor is.
152
518000
2000
到底咱们的原始祖先是什么
08:40
Because each of us contains our entire gene code
153
520000
3000
Because each of us contains our entire gene code
08:43
of where we've been for the past billion years,
154
523000
3000
过去的十几亿年我们又在哪
08:46
because we've evolved from that stuff,
155
526000
2000
因为我们是从某样东西进化而来的
08:48
you can take that tree of life and collapse it back,
156
528000
2000
这个可以通过先全貌后细节的方式来考虑
08:50
and in the measure that you learn to reprogram,
157
530000
3000
通过对生命重新编程
08:53
maybe we'll give birth to something
158
533000
2000
我们也许能造出
08:55
that is very close to the first primordial ooze.
159
535000
2000
与我们的原始祖先十分相近的东西
08:57
And it's all coming out of things that look like this.
160
537000
2000
就是靠这些设备帮助我们找到答案
08:59
These are companies that didn't exist five years ago.
161
539000
2000
这些公司5年前还未出现
09:01
Huge gene sequencing facilities the size of football fields.
162
541000
4000
庞大的基因测序设施足可媲美足球场
09:05
Some are public. Some are private.
163
545000
2000
一些为公有,一些为私有
09:07
It takes about 5 billion dollars to sequence a human being the first time.
164
547000
3000
第一次个人基因测序需要50亿美元
09:11
Takes about 3 million dollars the second time.
165
551000
2000
第二次要300万美元
09:13
We will have a 1,000-dollar genome within the next five to eight years.
166
553000
4000
在未来5年至8年内,我们将拥有价值1000美元的基因组
09:17
That means each of you will contain on a CD your entire gene code.
167
557000
4000
这意味着你们每一个人都能得到一个含有自身整套遗传密码的CD
09:22
And it will be really boring. It will read like this.
168
562000
2000
但是这东西很枯燥,就是这个样子
09:25
(Laughter)
169
565000
2000
(笑)
09:27
The really neat thing about this stuff is that's life.
170
567000
2000
这东西最大的价值在于组成了生命
09:29
And Laurie's going to talk about this one a little bit.
171
569000
3000
劳里待会儿会说点这方面的东西
09:32
Because if you happen to find this one inside your body,
172
572000
2000
如果你在自己的身体里发现这个
09:34
you're in big trouble, because that's the source code for Ebola.
173
574000
2000
那你的麻烦就大了,因为那是埃博拉病毒的源码
09:38
That's one of the deadliest diseases known to humans.
174
578000
2000
埃博拉病毒能造成人类所知最致命疾病的一种:埃博拉出血热
09:40
But plants work the same way and insects work the same way,
175
580000
2000
植物、昆虫
09:42
and this apple works the same way.
176
582000
2000
还有这个苹果都是由这些东西组成他们的生命
09:44
This apple is the same thing as this floppy disk.
177
584000
2000
苹果跟软盘是一样的
09:46
Because this thing codes ones and zeros,
178
586000
2000
软盘由1和0编码
09:48
and this thing codes A, T, C, Gs, and it sits up there,
179
588000
2000
而苹果由腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶编码,它长在树上
09:50
absorbing energy on a tree, and one fine day
180
590000
3000
吸收树提供的营养,某一天
09:53
it has enough energy to say, execute, and it goes [thump]. Right?
181
593000
4000
它成熟了,就掉下来了,对吧?
09:57
(Laughter)
182
597000
3000
(笑)
10:00
And when it does that, pushes a .EXE, what it does is,
183
600000
4000
当苹果掉下来时,启动了一个exe程序
10:04
it executes the first line of code, which reads just like that,
184
604000
3000
这程序执行了上面第一行代码
10:07
AATCAGGGACCC, and that means: make a root.
185
607000
3000
AATCAGGGACCC,编码根
10:10
Next line of code: make a stem.
186
610000
2000
下一行编码茎
10:12
Next line of code, TACGGGG: make a flower that's white,
187
612000
3000
下一行TACGGGG编码
10:15
that blooms in the spring, that smells like this.
188
615000
3000
开在春天,有这种味道的花
10:18
In the measure that you have the code
189
618000
2000
只要你有遗传密码
10:20
and the measure that you read it --
190
620000
3000
并将其破解
10:23
and, by the way, the first plant was read two years ago;
191
623000
2000
顺便提一下,两年前第一个植物
10:25
the first human was read two years ago;
192
625000
2000
第一个人类
10:27
the first insect was read two years ago.
193
627000
2000
以及第一个昆虫的遗传密码被破解出
10:29
The first thing that we ever read was in 1995:
194
629000
3000
我们第一次破解出遗传密码是在1995年
10:32
a little bacteria called Haemophilus influenzae.
195
632000
2000
那是一种叫做流感嗜血杆菌的细菌
10:35
In the measure that you have the source code, as all of you know,
196
635000
3000
只要你有源密码
10:38
you can change the source code, and you can reprogram life forms
197
638000
2000
你可以改变源密码,重新编程生命形式
10:40
so that this little thingy becomes a vaccine,
198
640000
2000
这东西就会变成疫苗
10:42
or this little thingy starts producing biomaterials,
199
642000
3000
或者说它开始产生生物材料
10:45
which is why DuPont is now growing a form of polyester
200
645000
3000
这也是为什么杜邦开始投产聚酯的原因
10:48
that feels like silk in corn.
201
648000
2000
是类似于玉米须的生物材料
10:51
This changes all rules. This is life, but we're reprogramming it.
202
651000
5000
这项技术能带来翻天覆地的变化,我们能够对生命进行重新编程
10:58
This is what you look like. This is one of your chromosomes.
203
658000
4000
这是你的基因图谱的样子,这是你的一条染色体
11:02
And what you can do now is,
204
662000
2000
你现在可以
11:04
you can outlay exactly what your chromosome is,
205
664000
3000
买下你的基因图谱
11:07
and what the gene code on that chromosome is right here,
206
667000
3000
这里是那条染色体上的基因
11:10
and what those genes code for, and what animals they code against,
207
670000
3000
这列是基因所编码的东西,这列是基因能编码的特定模型
11:13
and then you can tie it to the literature.
208
673000
2000
你可以将这些与文献联系起来
11:15
And in the measure that you can do that, you can go home today,
209
675000
3000
然后回家
11:18
and get on the Internet, and access
210
678000
2000
上网,找到
11:20
the world's biggest public library, which is a library of life.
211
680000
3000
世界上最大的公共图书馆,也是生命图书馆
11:24
And you can do some pretty strange things
212
684000
2000
在那你可以做点稀奇的事
11:26
because in the same way as you can reprogram this apple,
213
686000
2000
因为你可以用类似的方法对苹果基因重新编程
11:29
if you go to Cliff Tabin's lab at the Harvard Medical School,
214
689000
2000
如果你去哈佛医学院的Cliff Tabin实验室
11:32
he's reprogramming chicken embryos to grow more wings.
215
692000
4000
他正在重新编程鸡胚,期望能生出多腿的小鸡
11:38
Why would Cliff be doing that? He doesn't have a restaurant.
216
698000
3000
为什么Cliff要这么做呢,他又不是开餐馆的
11:41
(Laughter)
217
701000
1000
(笑)
11:43
The reason why he's reprogramming that animal to have more wings
218
703000
3000
他从事这项研究
11:46
is because when you used to play with lizards as a little child,
219
706000
3000
是因为当我们小时候玩蟋蟀
11:49
and you picked up the lizard, sometimes the tail fell off, but it regrew.
220
709000
4000
有时候抓住蟋蟀时它的尾巴会掉,但还能再长出来
11:53
Not so in human beings:
221
713000
3000
但是人类就不一样
11:56
you cut off an arm, you cut off a leg -- it doesn't regrow.
222
716000
3000
你切断的手臂或者腿却不会再长出来
11:59
But because each of your cells contains your entire gene code,
223
719000
4000
但因为你们每个人的细胞中都含有自身的一整套遗传密码
12:04
each cell can be reprogrammed, if we don't stop stem cell research
224
724000
4000
每个细胞都能够被重新编程,如果我们不放弃干细胞研究
12:08
and if we don't stop genomic research,
225
728000
2000
以及基因组研究
12:10
to express different body functions.
226
730000
3000
来实现不同的身体功能
12:14
And in the measure that we learn how chickens grow wings,
227
734000
3000
通过实验,我们得知小鸡是如何长出翅膀的
12:17
and what the program is for those cells to differentiate,
228
737000
2000
以及是什么机制使得细胞分化而具有不同功能
12:19
one of the things we're going to be able to do
229
739000
3000
我们要做的其中一件事
12:22
is to stop undifferentiated cells, which you know as cancer,
230
742000
3000
是阻止非分化细胞,即癌细胞
12:26
and one of the things we're going to learn how to do
231
746000
2000
我们要学会做的一件事
12:28
is how to reprogram cells like stem cells
232
748000
3000
是如何模拟干细胞重新编程细胞
12:31
in such a way that they express bone, stomach, skin, pancreas.
233
751000
6000
模拟干细胞可以分化出骨头,胃,皮肤,胰腺
12:38
And you are likely to be wandering around -- and your children --
234
758000
3000
你或者你的孩子可以想象
12:41
on regrown body parts in a reasonable period of time,
235
761000
3000
通过科学家在世界上某个地方的努力钻研
12:45
in some places in the world where they don't stop the research.
236
765000
3000
使得人体器官重新长出也指日可待了
12:50
How's this stuff work? If each of you differs
237
770000
5000
干细胞如何运作的?你和你旁边那个人
12:55
from the person next to you by one in a thousand, but only three percent codes,
238
775000
3000
有千分之一不同的可能,但这仅由3%的基因决定,
12:58
which means it's only one in a thousand times three percent,
239
778000
2000
也就是概率是3%的一千倍
13:00
very small differences in expression and punctuation
240
780000
3000
即使是表达和标点的微小区别
13:03
can make a significant difference. Take a simple declarative sentence.
241
783000
3000
也能造成整句话意思大相径庭,以这句为例
13:08
(Laughter)
242
788000
2000
(笑)
13:10
Right?
243
790000
1000
是吧?
13:11
That's perfectly clear. So, men read that sentence,
244
791000
4000
这非常清楚吧,如果让男人来念
13:15
and they look at that sentence, and they read this.
245
795000
2000
他们会这么念
13:23
Okay?
246
803000
1000
对吧?
13:24
Now, women look at that sentence and they say, uh-uh, wrong.
247
804000
4000
而女人看到这个句子,呃,不对
13:28
This is the way it should be seen.
248
808000
2000
她们会这么念
13:32
(Laughter)
249
812000
8000
(笑)
13:40
That's what your genes are doing.
250
820000
1000
这种区别都是由基因决定的
13:41
That's why you differ from this person over here by one in a thousand.
251
821000
5000
这也是为什么你跟那边那个人有千分之一不同的可能
13:46
Right? But, you know, he's reasonably good looking, but...
252
826000
3000
他长得不错,不过……
13:49
I won't go there.
253
829000
2000
我还是不说这个了
13:52
You can do this stuff even without changing the punctuation.
254
832000
3000
还有即使不通过改变标点也能实现前后意思的巨大差别
13:56
You can look at this, right?
255
836000
4000
看看这个,美国税务局
14:00
And they look at the world a little differently.
256
840000
2000
从另一个角度看
14:02
They look at the same world and they say...
257
842000
2000
就变成他们的
14:04
(Laughter)
258
844000
6000
(笑)
14:10
That's how the same gene code -- that's why you have 30,000 genes,
259
850000
4000
这解释了同样的遗传密码会有不同的表达——你有3万个基因
14:14
mice have 30,000 genes, husbands have 30,000 genes.
260
854000
3000
mice have 30,000 genes, husbands have 30,000 genes.
14:17
Mice and men are the same. Wives know that, but anyway.
261
857000
3000
两者都有3万个基因,但妻子知道
14:21
You can make very small changes in gene code
262
861000
2000
遗传密码上一点细微的改变
14:23
and get really different outcomes,
263
863000
2000
就能产生非常巨大的变化
14:27
even with the same string of letters.
264
867000
2000
即使是一连串相同字母组成的句子也会因为微小的变化而产生大相径庭的意思
14:31
That's what your genes are doing every day.
265
871000
2000
你的基因每天就是在干这个活
14:34
That's why sometimes a person's genes
266
874000
2000
这也是为什么有时候人的基因
14:36
don't have to change a lot to get cancer.
267
876000
2000
不需要很大改变就会得上癌症
14:42
These little chippies, these things are the size of a credit card.
268
882000
4000
这个芯片,大概是信用卡大小
14:47
They will test any one of you for 60,000 genetic conditions.
269
887000
2000
能够对你们任何一个人进行6万种基因疾病的测试
14:50
That brings up questions of privacy and insurability
270
890000
3000
虽然这又带来了隐私和保险
14:53
and all kinds of stuff, but it also allows us to start going after diseases,
271
893000
2000
等等问题,但却能让我们追踪疾病
14:56
because if you run a person who has leukemia through something like this,
272
896000
3000
如果让一个白血病人参加测试
15:00
it turns out that three diseases with
273
900000
2000
结果发现3种
15:02
completely similar clinical syndromes
274
902000
4000
临床症状非常相似的疾病
15:06
are completely different diseases.
275
906000
2000
会出现不同的测试结果
15:08
Because in ALL leukemia, that set of genes over there over-expresses.
276
908000
3000
因为在急性淋巴细胞性白血病中,上面那套基因会过表达
15:11
In MLL, it's the middle set of genes,
277
911000
2000
混合型白血病中,中间那部分基因会过表达
15:13
and in AML, it's the bottom set of genes.
278
913000
2000
而急性髓细胞白血病中,则是下面的那部分基因过表达
15:15
And if one of those particular things is expressing in your body,
279
915000
5000
如果上述一种情况发生在你身上
15:20
then you take Gleevec and you're cured.
280
920000
2000
那你可以服用格里维克,就能痊愈
15:23
If it is not expressing in your body,
281
923000
2000
如果这些基因没有过表达
15:25
if you don't have one of those types --
282
925000
2000
你没有患上其中任意一种疾病
15:27
a particular one of those types -- don't take Gleevec.
283
927000
3000
就不需要服用格里维克
15:30
It won't do anything for you.
284
930000
1000
它不会起到任何作用
15:32
Same thing with Receptin if you've got breast cancer.
285
932000
2000
如果你得了乳腺癌,那就服用Receptin
15:35
Don't have an HER-2 receptor? Don't take Receptin.
286
935000
3000
如果没有HER-2受体,就不需要服用该药
15:38
Changes the nature of medicine. Changes the predictions of medicine.
287
938000
4000
从本质上改变药物
15:42
Changes the way medicine works.
288
942000
2000
改变药物作用的方式和作用位点
15:44
The greatest repository of knowledge when most of us went to college
289
944000
3000
我们上大学学过最宝贵的知识
15:47
was this thing, and it turns out that
290
947000
2000
是这个,但现在
15:49
this is not so important any more.
291
949000
2000
已经不在重要了
15:51
The U.S. Library of Congress, in terms of its printed volume of data,
292
951000
4000
美国国会图书馆的纸质版数据量
15:55
contains less data than is coming out of a good genomics company
293
955000
4000
还没有一个好的基因公司
15:59
every month on a compound basis.
294
959000
3000
每个月提供的数据多,前提是复合数据
16:02
Let me say that again: A single genomics company
295
962000
3000
我想再强调一次,单就一个基因公司
16:05
generates more data in a month, on a compound basis,
296
965000
3000
以复合数据为前提,一个月产生的数据量
16:08
than is in the printed collections of the Library of Congress.
297
968000
3000
比国会图书馆收藏的纸质版数据量还大
16:12
This is what's been powering the U.S. economy. It's Moore's Law.
298
972000
4000
这是美国经济强大的支柱,是摩尔定律
16:16
So, all of you know that the price of computers halves every 18 months
299
976000
5000
即计算机的价格每18个月会减半
16:21
and the power doubles, right?
300
981000
2000
同时性能加倍
16:23
Except that when you lay that side by side with the speed
301
983000
4000
但有个例外,就是
16:27
with which gene data's being deposited in GenBank,
302
987000
3000
基因数据库中存放基因的增加速度
16:30
Moore's Law is right here: it's the blue line.
303
990000
4000
蓝线显示的是摩尔定律
16:35
This is on a log scale, and that's what superexponential growth means.
304
995000
4000
这个是对数标尺,表示指数增长
16:39
This is going to push computers to have to grow faster
305
999000
4000
这推动计算机行业的以前所未有的速度增长
16:43
than they've been growing, because so far,
306
1003000
2000
因为到目前为止
16:45
there haven't been applications that have been required
307
1005000
3000
还没有一项应用要求
16:48
that need to go faster than Moore's Law. This stuff does.
308
1008000
3000
超过摩尔定律所指的更新速度,但基因的增长例外
16:51
And here's an interesting map.
309
1011000
2000
这里有幅地图
16:53
This is a map which was finished at the Harvard Business School.
310
1013000
4000
是在哈佛商学院完成的
16:57
One of the really interesting questions is, if all this data's free,
311
1017000
3000
一个有意思的问题出现了,如果所有的数据都是免费的
17:00
who's using it? This is the greatest public library in the world.
312
1020000
4000
谁在使用?这是世界上最棒的公共图书馆
17:04
Well, it turns out that there's about 27 trillion bits
313
1024000
3000
大约27兆比特数据
17:07
moving inside from the United States to the United States;
314
1027000
3000
在美国内部流动
17:10
about 4.6 trillion is going over to those European countries;
315
1030000
4000
4.6兆比特流向欧洲国家
17:14
about 5.5's going to Japan; there's almost no communication
316
1034000
3000
大约5.5兆比特流向日本,但日本
17:17
between Japan, and nobody else is literate in this stuff.
317
1037000
4000
几乎与其他国家间没有这方面交流,而且剩下的人都不懂这个
17:21
It's free. No one's reading it. They're focusing on the war;
318
1041000
5000
资源是免费的,却没人关注,都把注意力集中到战争上
17:26
they're focusing on Bush; they're not interested in life.
319
1046000
2000
和布什上,对生命兴致缺缺
17:29
So, this is what a new map of the world looks like.
320
1049000
2000
这张是新的世界地图
17:32
That is the genomically literate world. And that is a problem.
321
1052000
6000
现在全世界都对遗传基因有所耳闻,但
17:38
In fact, it's not a genomically literate world.
322
1058000
2000
实际上不是所有人都知道遗传基因之类的
17:40
You can break this out by states.
323
1060000
2000
这是无州界的
17:42
And you can watch states rise and fall depending on
324
1062000
2000
州的兴亡取决于
17:44
their ability to speak a language of life,
325
1064000
2000
他们对于生命研究的重视程度
17:46
and you can watch New York fall off a cliff,
326
1066000
2000
你会看到纽约的坠落
17:48
and you can watch New Jersey fall off a cliff,
327
1068000
2000
新泽西的坠落
17:50
and you can watch the rise of the new empires of intelligence.
328
1070000
3000
以及一个崭新的智能帝国的崛起
17:54
And you can break it out by counties, because it's specific counties.
329
1074000
3000
你可以通过观察各个县得出结论
17:57
And if you want to get more specific,
330
1077000
2000
如果还需要更具体的资料来区分各个地方
17:59
it's actually specific zip codes.
331
1079000
2000
那就是邮政编码
18:01
(Laughter)
332
1081000
2000
(笑)
18:03
So, you want to know where life is happening?
333
1083000
3000
你想知道生命研究的起始点吗?
18:06
Well, in Southern California it's happening in 92121. And that's it.
334
1086000
5000
在南加州是在邮编为92121的地方开始的
18:12
And that's the triangle between Salk, Scripps, UCSD,
335
1092000
5000
位于sulk,斯克里普斯以及加州大学圣迭戈分校三角之间
18:17
and it's called Torrey Pines Road.
336
1097000
2000
叫做多利松路
18:19
That means you don't need to be a big nation to be successful;
337
1099000
3000
这说明并不一定要成为一个大国才能获得成功
18:22
it means you don't need a lot of people to be successful;
338
1102000
2000
不一定要一大群人合力才能获得成功
18:24
and it means you can move most of the wealth of a country
339
1104000
3000
你只要用3到4架精心挑选的波音747飞机
18:27
in about three or four carefully picked 747s.
340
1107000
3000
就能搬走一个国家的财富
18:31
Same thing in Massachusetts. Looks more spread out but --
341
1111000
4000
同理马萨诸塞也一样,看起来似乎很大
18:35
oh, by the way, the ones that are the same color are contiguous.
342
1115000
3000
顺道提下,同样颜色的地方是相邻的
18:39
What's the net effect of this?
343
1119000
2000
那么这个的净效应又是什么
18:41
In an agricultural society, the difference between
344
1121000
2000
在农业社会中,富人和穷人
18:43
the richest and the poorest,
345
1123000
1000
的区别在于
18:45
the most productive and the least productive, was five to one. Why?
346
1125000
4000
前者的产能是后者的5倍,为什么呢
18:49
Because in agriculture, if you had 10 kids
347
1129000
2000
因为农业社会中,如果你有10个孩子
18:51
and you grow up a little bit earlier and you work a little bit harder,
348
1131000
3000
你会比他人早起,比他人努力工作
18:54
you could produce about five times more wealth, on average,
349
1134000
2000
平均而言,你创造出的财富就是
18:56
than your neighbor.
350
1136000
1000
你邻里的五倍多
18:58
In a knowledge society, that number is now 427 to 1.
351
1138000
3000
在知识社会中,这个比例达到427:1
19:02
It really matters if you're literate, not just in reading and writing
352
1142000
4000
有文化有知识是很重要的,但不仅仅体现在能读会写
19:06
in English and French and German,
353
1146000
2000
通晓英语法语德语
19:08
but in Microsoft and Linux and Apple.
354
1148000
2000
更重要的是会操作微软、Linux以及苹果操作系统
19:11
And very soon it's going to matter if you're literate in life code.
355
1151000
4000
在不久的将来,知道有关生命密码的知识也会变得非常重要
19:15
So, if there is something you should fear,
356
1155000
2000
因此,你应该担心的是
19:17
it's that you're not keeping your eye on the ball.
357
1157000
3000
你关注的方向不对
19:20
Because it really matters who speaks life.
358
1160000
2000
把注意力转向研究生命是非常重要的
19:23
That's why nations rise and fall.
359
1163000
2000
这是国家兴盛或衰落的原因
19:26
And it turns out that if you went back to the 1870s,
360
1166000
3000
如果时光倒退到1870年间
19:29
the most productive nation on earth was Australia, per person.
361
1169000
3000
人均产能最高的国家是澳大利亚
19:32
And New Zealand was way up there. And then the U.S. came in about 1950,
362
1172000
3000
后来是新西兰,1950年左右是美国
19:35
and then Switzerland about 1973, and then the U.S. got back on top --
363
1175000
3000
1973年则是瑞士,然后美国再次崛起
19:39
beat up their chocolates and cuckoo clocks.
364
1179000
2000
击败瑞士
19:43
And today, of course, you all know that the most productive nation
365
1183000
3000
大家都知道当今产能最高的国家
19:46
on earth is Luxembourg, producing about one third more wealth
366
1186000
3000
是卢森堡,人均年产量比美国
19:49
per person per year than America.
367
1189000
2000
多1/3
19:52
Tiny landlocked state. No oil. No diamonds. No natural resources.
368
1192000
4000
而它是个小内陆国家,没有石油、钻石、天然资源
19:56
Just smart people moving bits. Different rules.
369
1196000
5000
仅仅靠聪明的国民一点点积累发展成现在的样子。这是个例
20:02
Here's differential productivity rates.
370
1202000
3000
这里显示的是不同国家的生产率差别
20:06
Here's how many people it takes to produce a single U.S. patent.
371
1206000
3000
这里显示的是获得一个美国专利需要多少人
20:09
So, about 3,000 Americans, 6,000 Koreans, 14,000 Brits,
372
1209000
4000
美国需要3000个人,韩国需要6000个人,英国需要14000个人,
20:13
790,000 Argentines. You want to know why Argentina's crashing?
373
1213000
3000
阿根廷需要790000个人,你们知道阿根廷为什么崩溃么?
20:16
It's got nothing to do with inflation.
374
1216000
2000
不是因为通货膨胀
20:18
It's got nothing to do with privatization.
375
1218000
2000
不是因为私有化
20:20
You can take a Harvard-educated Ivy League economist,
376
1220000
4000
你可以让一个受过哈佛教育的毕业自常春藤联合会的经济学家
20:24
stick him in charge of Argentina. He still crashes the country
377
1224000
3000
来掌管阿根廷,它照样会崩溃
20:27
because he doesn't understand how the rules have changed.
378
1227000
2000
因为经济学家不知道其中规则是如何改变的
20:30
Oh, yeah, and it takes about 5.6 million Indians.
379
1230000
3000
对了,发明一个美国专利,需要560万印度人
20:33
Well, watch what happens to India.
380
1233000
2000
让我们看看印度又是怎么回事
20:35
India and China used to be 40 percent of the global economy
381
1235000
3000
印度和中国队世界经济的贡献曾达到40%
20:38
just at the Industrial Revolution, and they are now about 4.8 percent.
382
1238000
5000
不过只是在工业革命期间,现在只占到4.8%
20:43
Two billion people. One third of the global population producing 5 percent of the wealth
383
1243000
4000
两国合起来有20亿人口,占世界人口的1/3,产生的财富仅占世界的5%
20:47
because they didn't get this change,
384
1247000
3000
因为他们没有顺势而变
20:50
because they kept treating their people like serfs
385
1250000
2000
因为统治者把他们的国民看做是农奴
20:52
instead of like shareholders of a common project.
386
1252000
3000
而不是具有共同利益的投资人
20:56
They didn't keep the people who were educated.
387
1256000
3000
统治者不懂得留住受过教育的人才
20:59
They didn't foment the businesses. They didn't do the IPOs.
388
1259000
2000
不刺激商业发展,不做上市
21:02
Silicon Valley did. And that's why they say
389
1262000
4000
但硅谷懂得这么做,这是为什么
21:06
that Silicon Valley has been powered by ICs.
390
1266000
2000
硅谷因为懂得网罗人才而取得不断的发展
21:09
Not integrated circuits: Indians and Chinese.
391
1269000
3000
而不是像印度或中国那样单单去发展集成电路
21:12
(Laughter)
392
1272000
4000
(笑)
21:16
Here's what's happening in the world.
393
1276000
2000
世界都发生了什么
21:18
It turns out that if you'd gone to the U.N. in 1950,
394
1278000
3000
如果你1950年去联合国
21:21
when it was founded, there were 50 countries in this world.
395
1281000
2000
即联合国成立的时间,世界上有50个国家
21:23
It turns out there's now about 192.
396
1283000
3000
而现在有192个国家
21:26
Country after country is splitting, seceding, succeeding, failing --
397
1286000
4000
这些国家一个接着一个分裂,分离,兴盛,衰落
21:31
and it's all getting very fragmented. And this has not stopped.
398
1291000
5000
变得支离破碎,但同样的故事仍然在上演
21:36
In the 1990s, these are sovereign states
399
1296000
3000
这些主权国家
21:39
that did not exist before 1990.
400
1299000
2000
在1990年之前并不存在
21:41
And this doesn't include fusions or name changes or changes in flags.
401
1301000
5000
这并不包括国家之间的融合,或者是国家改名,或者是国旗的更改
21:46
We're generating about 3.12 states per year.
402
1306000
3000
每年有3.12个国家产生
21:49
People are taking control of their own states,
403
1309000
3000
人民掌管着各自的国家
21:52
sometimes for the better and sometimes for the worse.
404
1312000
3000
有时候朝着更好的方向发展,有时候则陷入糟糕的境地
21:55
And the really interesting thing is,
405
1315000
2000
非常有意思的一点
21:57
you and your kids are empowered to build great empires,
406
1317000
2000
你和你的子孙有能力建立大帝国
21:59
and you don't need a lot to do it.
407
1319000
2000
不需要多费劲就能搞定
22:01
(Music)
408
1321000
2000
(音乐)
22:03
And, given that the music is over, I was going to talk
409
1323000
3000
音乐播完了,现在我要谈谈
22:06
about how you can use this to generate a lot of wealth,
410
1326000
3000
如何通过研究生命赚钱
22:09
and how code works.
411
1329000
2000
以及遗传密码是如何运作的
22:11
Moderator: Two minutes.
412
1331000
1000
(计时人:超时两分钟)
22:12
(Laughter)
413
1332000
2000
(笑)
22:14
Juan Enriquez: No, I'm going to stop there and we'll do it next year
414
1334000
4000
现在我不说了,明年再继续
22:18
because I don't want to take any of Laurie's time.
415
1338000
2000
因为我不想占用劳比的时间
22:21
But thank you very much.
416
1341000
1000
谢谢大家
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。