Juan Enriquez: The life-code that will reshape the future

87,621 views ใƒป 2007-05-16

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: susie kah ๊ฒ€ํ† : Jeong-Lan Kinser
00:26
I'm supposed to scare you, because it's about fear, right?
0
26000
3000
์ „ ์—ฌ๋Ÿฌ๋ถ„์„ ๊ฒ๋จน๊ฒŒ ํ•˜๋„๋ก ๋˜์–ด ์žˆ๋‹ต๋‹ˆ๋‹ค. ์™œ๋ƒ๋ฉด ์ด๊ฒƒ์€ ๊ณตํฌ์— ๊ด€ํ•œ๊ฒƒ์ด๋‹ˆ๊นŒ์š”? ๋งž์ฃ ?
00:30
And you should be really afraid,
1
30000
2000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์€ ์ •๋ง ๋‘๋ ค์›Œ ํ•ด์•ผํ•ด์š”.
00:32
but not for the reasons why you think you should be.
2
32000
2000
๊ทธ๋ ‡์ง€๋งŒ ์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ๊ฐํ•˜๋Š” ๊ทธ ์ด์œ ๋•Œ๋ฌธ์ด ์•„๋‹ˆ์—์š”.
00:35
You should be really afraid that --
3
35000
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์ •๋ง ๋‘๋ ค์›Œ ํ•ด์•ผ ํ•˜๋Š”๊ฒƒ์€--
00:37
if we stick up the first slide on this thing -- there we go -- that you're missing out.
4
37000
4000
์ฒซ๋ฒˆ์งธ ์Šฌ๋ผ์ด๋“œ๋ฅผ ์—ฌ๊ธฐ์— ์˜ฌ๋ฆฌ๋ฉด - ์—ฌ๊น„๊ตฐ์š” - ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๋†“์น˜๊ณ  ์žˆ๋Š”๊ฒƒ์ด์—์š”.
00:43
Because if you spend this week thinking about Iraq and
5
43000
4000
์™œ๋ƒ๋ฉด ๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ์ด๋ฒˆ์ฃผ์— ์ด๋ผํฌ๋‚˜
00:47
thinking about Bush and thinking about the stock market,
6
47000
4000
๋ถ€์‹œ (๋ฏธ ๋Œ€๋™๋ น) ์ด๋‚˜ ์ฃผ์‹์‹œ์žฅ์„ ์ƒ๊ฐํ•œ๋‹ค๋ฉด
00:51
you're going to miss one of the greatest adventures that we've ever been on.
7
51000
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์šฐ๋ฆฌ๊ฐ€ ๊ฒฝํ—˜ํ•˜๊ณ  ์žˆ๋Š” ์ตœ๊ณ ์˜ ๋ชจํ—˜์ค‘์˜ ํ•˜๋‚˜๋ฅผ ๋†“์น˜๊ฒŒ ๋˜๋Š”๊ฑฐ๋‹ˆ๊นŒ์š”.
00:54
And this is what this adventure's really about.
8
54000
2000
์ด๊ฒƒ์€ ์ด ๋ชจํ—˜์ด ์‹ค์ œ๋กœ ๋ฌด์—‡์ธ์ง€(์Šฌ๋ผ์ด๋“œ)์— ๊ด€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:56
This is crystallized DNA.
9
56000
4000
์ด๊ฑด DNA ๊ฒฐ์ •์ž…๋‹ˆ๋‹ค.
01:00
Every life form on this planet -- every insect, every bacteria, every plant,
10
60000
3000
์ด ํ–‰์„ฑ์˜ ๋ชจ๋“  ์ƒ๋ช…์ฒด - ๋ชจ๋“  ๊ณค์ถฉ, ๋ชจ๋“  ๋ฐ•ํ…Œ๋ฆฌ์•„, ๋ชจ๋“  ์‹๋ฌผ,
01:03
every animal, every human, every politician -- (Laughter)
11
63000
3000
๋ชจ๋“  ๋™๋ฌผ, ๋ชจ๋“  ์‚ฌ๋žŒ, ๋ชจ๋“  ์ •์น˜์ธ๊นŒ์ง€ -- (์›ƒ์Œ)
01:08
is coded in that stuff.
12
68000
2000
์ด๊ฒƒ ์•ˆ์— ์•”ํ˜ธํ™” ๋˜์–ด์žˆ์–ด์š”.
01:10
And if you want to take a single crystal of DNA, it looks like that.
13
70000
4000
๋งŒ์•ฝ ํ•˜๋‚˜์˜ DNA ๊ฒฐ์ •์ฒด๋ฅผ ๋ฝ‘๊ณ  ์‹ถ๋‹ค๋ฉด, ๊ทธ๊ฑด ๊ทธ๋ ‡๊ฒŒ ๋ณด์ด์ฃ .
01:14
And we're just beginning to understand this stuff.
14
74000
2000
์šฐ๋ฆฌ๋Š” ๋ง‰ ์ด๊ฒƒ์„ ์ดํ•ดํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์–ด์š”.
01:17
And this is the single most exciting adventure that we have ever been on.
15
77000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ๊ฒฝํ—˜ํ•ด์™”๋˜ ๊ฒƒ๋“ค์˜ ์ตœ๊ณ ๋กœ ํฅ๋ฏธ์ง„์ง„ํ•œ ๋ชจํ—˜ ์ž…๋‹ˆ๋‹ค.
01:21
It's the single greatest mapping project we've ever been on.
16
81000
3000
๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์ฐธ์—ฌํ–ˆ๋˜ ๊ฒƒ๋“ค์ค‘ ๋‹จ ํ•˜๋‚˜์˜ ์ตœ๊ณ ๋กœ ๋ฉ‹์ง„ ์ง€๋„์ œ์ž‘์ด์ง€์š”.
01:24
If you think that the mapping of America's made a difference,
17
84000
2000
๋งŒ์•ฝ ๋‹น์‹ ์ด ๋ฏธ๊ตญ์„ ์ง€๋„ํ™”ํ•˜๋Š”๊ฒƒ์ด๋‚˜,
01:26
or landing on the moon, or this other stuff,
18
86000
3000
์•„๋‹ˆ๋ฉด ๋‹ฌ์— ์ฐฉ๋ฅ™ํ•˜๊ฑฐ๋‚˜, ๋˜๋Š” ๋‹ค๋ฅธ์ผ๋“ค์ด ๋ฏธ๊ตญ์„ ๋ณ€ํ™”์‹œํ‚จ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค๋ฉด,
01:29
it's the map of ourselves and the map of every plant
19
89000
3000
๊ทธ๊ฒƒ์€ ์‚ฌ์‹ค ์šฐ๋ฆฌ ์ž์‹ ์˜ ์ง€๋„์™€ ๋ชจ๋“  ์‹๋ฌผ์˜
01:32
and every insect and every bacteria that really makes a difference.
20
92000
3000
๋˜ ๋ชจ๋“  ๊ณค์ถฉ์˜ ๋˜ ๋ชจ๋“  ๋ฐ•ํ…Œ๋ฆฌ์•„์˜ ์ง€๋„๊ฐ€ ์ง„์ •ํ•˜๊ฒŒ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:35
And it's beginning to tell us a lot about evolution.
21
95000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ์ง„ํ™”์— ๋Œ€ํ•ด์„œ ๋งŽ์€ ๊ฒƒ์„ ์šฐ๋ฆฌ์—๊ฒŒ ์•Œ๋ ค์ฃผ๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
01:40
(Laughter)
22
100000
4000
(์Šฌ๋ผ์ด๋“œ์— ๋Œ€ํ•œ ์›ƒ์Œ)
01:44
It turns out that what this stuff is --
23
104000
2000
์ด๊ฒƒ์ด ๋ฌด์—‡์ด๋ƒํ•˜๋Š”๊ฒƒ์€ --
01:46
and Richard Dawkins has written about this --
24
106000
2000
๊ทธ๋ฆฌ๊ณ  Richard Dawkins (๋ฆฌ์ฐจ๋“œ ๋„ํ‚จ์Šค) ๋„ ์ด๊ฒƒ์— ๋Œ€ํ•ด ์ฑ…์„ ์ผ์ง€์š” --
01:48
is, this is really a river out of Eden.
25
108000
2000
์ด๊ฒƒ์€ ์ •๋ง '์—๋ด ๋ฐ–์˜ ๊ฐ•' (๋ฆฌ์ฐจ๋“œ ๋„ํ‚จ์Šค๊ฐ€ ์“ด ์ฑ…) ์ด๋ผ๊ณ  ํŒ๋ช…๋˜์—ˆ์ฃ .
01:50
So, the 3.2 billion base pairs inside each of your cells
26
110000
4000
๊ทธ๋ž˜์„œ, ๊ฐ๊ฐ ์—ฌ๋Ÿฌ๋ถ„์˜ ์„ธํฌ์•ˆ์—์žˆ๋Š” 32์–ต๊ฐœ์˜ ์—ผ๊ธฐ์Œ๋“ค์€
01:54
is really a history of where you've been for the past billion years.
27
114000
3000
์ง€๋‚œ 10์–ต๋…„๋™์•ˆ์— ์—ฌ๋Ÿฌ๋ถ„์ด ์กด์žฌํ–ˆ๋˜ ์ง„์งœ ์—ญ์‚ฌ์ž…๋‹ˆ๋‹ค.
01:57
And we could start dating things,
28
117000
1000
์šฐ๋ฆฐ ์—ฐ๋Œ€์ถ”์ •์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ๊ณ 
01:58
and we could start changing medicine and archeology.
29
118000
3000
์šฐ๋ฆฐ ์˜ํ•™๊ณผ ๊ณ ๊ณ ํ•™์„ ๋ฐ”๊พธ๊ธฐ ์‹œ์ž‘ํ•  ์ˆ˜๋„ ์žˆ์–ด์š”.
02:02
It turns out that if you take the human species about 700 years ago,
30
122000
3000
๋งŒ์•ฝ 700๋…„ ์ „์˜ ์ธ๋ฅ˜๋ฅผ ๋ณธ๋‹ค๋ฉด,
02:05
white Europeans diverged from black Africans in a very significant way.
31
125000
3000
๋ฐฑ์ธ ์œ ๋Ÿฝ์ธ๋“ค์€ ํ‘์ธ ์•„ํ”„๋ฆฌ์นด์ธ๋“ค๋กœ๋ถ€ํ„ฐ ๋งค์šฐ ํ˜„๊ฒฉํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„ํŒŒ๋˜์—ˆ์ฃ .
02:08
White Europeans were subject to the plague.
32
128000
5000
๋ฐฑ์ธ ์œ ๋Ÿฝ์ธ๋“ค์€ ์—ญ๋ณ‘์— ์ฃผ์ œ๊ฐ€ ๋˜์—ˆ์—ˆ์ฃ .
02:14
And when they were subject to the plague, most people didn't survive,
33
134000
3000
๊ทธ๋ฆฌ๊ณ  ์—ญ๋ณ‘์— ๊ฑธ๋ ธ์„๋•Œ ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์€ ์ƒ์กดํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
02:17
but those who survived had a mutation on the CCR5 receptor.
34
137000
4000
๊ทธ๋Ÿฌ๋‚˜ ์ƒ์กดํ•œ ์‚ฌ๋žŒ๋“ค์€ CCR5 ์ˆ˜์šฉ์ฒด์— ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๊ฐ–๊ณ  ์žˆ์—ˆ์–ด์š”.
02:21
And that mutation was passed on to their kids
35
141000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๋Œ์—ฐ๋ณ€์ด๋Š” ์ž์‹๋“ค์—๊ฒŒ ์œ ์ „์ด ๋˜์—ˆ์ฃ .
02:23
because they're the ones that survived,
36
143000
2000
๊ทธ๋“ค์ด ์ƒ์กดํ•œ ์‚ฌ๋žŒ๋“ค์ด์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:25
so there was a great deal of population pressure.
37
145000
2000
๊ทธ๋ž˜์„œ ํฐ ์ธ๊ตฌ์••๋ ฅ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:27
In Africa, because you didn't have these cities,
38
147000
2000
์•„ํ”„๋ฆฌ์นด์—์„œ๋Š”, ์ด๋Ÿฐ ๋„์‹œ๋“ค์ด (์ธ๊ตฌ์••๋ ฅ์ด ์žˆ๋Š”) ์—†์—ˆ๊ธฐ ๋•Œ๋ฌธ์—
02:29
you didn't have that CCR5 population pressure mutation.
39
149000
3000
์ธ๊ตฌ์••๋ ฅ์œผ๋กœ ๋ถ€ํ„ฐ ์ƒ๊ธด CCR5 ๋Œ์—ฐ๋ณ€๋„ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
02:32
We can date it to 700 years ago.
40
152000
3000
์šฐ๋ฆฐ ์ด๊ฒƒ์„ 700๋…„ ์ „์œผ๋กœ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค.
02:35
That is one of the reasons why AIDS is raging across Africa as fast as it is,
41
155000
4000
์ด๊ฒƒ์ด ์•„ํ”„๋ฆฌ์นด์—์„œ AIDS๊ฐ€ ๊ธ‰์†ํžˆ ๋ฒˆ์ง€๋Š” ์ด์œ ์ค‘์— ํ•˜๋‚˜์ด์ฃ .
02:39
and not as fast across Europe.
42
159000
4000
์œ ๋Ÿฝ์—์„œ๋Š” ๊ทธ๋ ‡๊ฒŒ ๋นจ๋ฆฌ ๋ฒˆ์ง€์ง€ ์•Š๊ตฌ์š”.
02:43
And we're beginning to find these little things for malaria,
43
163000
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ์ž‘์„ ๊ฒƒ๋“ค์„ ์ฐพ์•„๋‚ด๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ , ๋ง๋ผ๋ฆฌ์•„,
02:46
for sickle cell, for cancers.
44
166000
3000
๊ฒธํ˜•์ ํ˜ˆ๊ตฌ, ์•” ๋“ฑ์— ํ•ด๋‹นํ•˜๋Š” ๊ฒƒ๋“ค์ž…๋‹ˆ๋‹ค.
02:50
And in the measure that we map ourselves,
45
170000
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์šฐ๋ฆฌ์ž์‹ ์„ ์ง€๋„ํ™” ํ•œ๋‹ค๋Š” ๊ฒƒ์— ์žˆ์–ด์„œ
02:52
this is the single greatest adventure that we'll ever be on.
46
172000
2000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•˜๋‚˜์˜ ๋ฉ‹์ง„ ๋ชจํ—˜์ž…๋‹ˆ๋‹ค.
02:54
And this Friday, I want you to pull out a really good bottle of wine,
47
174000
4000
๊ทธ๋ฆฌ๊ณ  ์ด๋ฒˆ ๊ธˆ์š”์ผ์—, ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ์ข‹์€ ์™€์ธ์„ ํ•œ ๋ณ‘ ๊บผ๋ƒˆ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
02:58
and I want you to toast these two people.
48
178000
2000
๊ทธ๋ฆฌ๊ณ  ์ด ๋‘ ์‚ฌ๋žŒ๋“ค์„ ์œ„ํ•ด ๊ฑด๋ฐฐํ–ˆ์œผ๋ฉด ํ•ด์š”.
03:01
Because this Friday, 50 years ago, Watson and Crick found the structure of DNA,
49
181000
4000
์™œ๋ƒํ•˜๋ฉด 50๋…„ ์ „์˜ ์ด๋ฒˆ ๊ธˆ์š”์ผ์€, ์™™์Šจ๊ณผ ํฌ๋ฆญ์ด DNA ๊ตฌ์กฐ๋ฅผ ๋ฐœ๊ฒฌํ•œ ๋‚ ์ด๊ธฐ ๋•Œ๋ฌธ์ด๊ณ ,
03:05
and that is almost as important a date
50
185000
3000
๊ทธ๋‚ ์€
03:08
as the 12th of February when we first mapped ourselves,
51
188000
3000
2์›” 12์ผ, ์šฐ๋ฆฌ๊ฐ€ ์ฒ˜์Œ์œผ๋กœ ์šฐ๋ฆฌ์ž์‹ ์„ ์ง€๋„ํ™”ํ•˜๊ธฐ ์‹œ์ž‘ํ•œ ๋‚ ๊ณผ ๋งž๋จน์„ ์ •๋„๋กœ ์ค‘์š”ํ•œ ๋‚ ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:11
but anyway, we'll get to that.
52
191000
2000
ํ•˜์ง€๋งŒ ์–ด์จŒ๋“ , ์ด๊ฑด ๋‚˜์ค‘์— ๊ฑฐ๋ก ํ•˜๊ธฐ๋กœ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
03:13
I thought we'd talk about the new zoo.
53
193000
2000
์ƒˆ๋กœ์šด ๋™๋ฌผ์›์— ๋Œ€ํ•ด ์–˜๊ธฐ๋ฅผ ํ•˜๊ฒ ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์–ด์š”.
03:15
So, all you guys have heard about DNA, all the stuff that DNA does,
54
195000
4000
์ž, ์—ฌ๋Ÿฌ๋ถ„๋“ค ๋ชจ๋‘ DNA, ๊ทธ๋ฆฌ๊ณ  DNA ๊ฐ€ ํ•˜๋Š” ๋ชจ๋“ ์ผ์— ๋Œ€ํ•ด์„œ ๋“ค์–ด๋ณด์…จ์ง€์š”.
03:19
but some of the stuff we're discovering is kind of nifty
55
199000
3000
๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ๊ฐ€ ๋ฐœ๊ฒฌํ•˜๊ณ  ์žˆ๋Š” ์–ด๋–ค๊ฒƒ๋“ค์€ ์‹ค์šฉ์ ์ธ ํŽธ์ด์—์š”.
03:22
because this turns out to be the single most abundant species on the planet.
56
202000
5000
์™œ๋ƒํ•˜๋ฉด ์ด๊ฒƒ์€ ์ง€๊ตฌ์—์„œ ๊ฐ€์žฅ ํ’๋ถ€ํ•œ ๋‹จ ํ•œ๊ฐ€์ง€ ์ข…์ด๊ธฐ ๋•Œ๋ฌธ์ด์—์š”.
03:27
If you think you're successful or cockroaches are successful,
57
207000
3000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์—ฌ๋Ÿฌ๋ถ„์ด ์„ฑ๊ณต์ ์ด๊ฑฐ๋‚˜ ํ˜น์€ ๋ฐ”ํ€ด๋ฒŒ๋ ˆ๊ฐ€ ์„ฑ๊ณต์ ์ด๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค๋ฉด,
03:30
it turns out that there's ten trillion trillion Pleurococcus sitting out there.
58
210000
3000
์‚ฌ์‹ค ์ €๊ธฐ ๋ฐ”๊นฅ์— (๊ทธ๋งŒํผ ์„ฑ๊ณต์ ์ธ) ์—„์ฒญ๋‚œ ์–‘์˜ ๋…น์กฐ๋ฅ˜๊ฐ€ ์žˆ๋Š”๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
03:33
And we didn't know that Pleurococcus was out there,
59
213000
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๊ทธ ๋…น์กฐ๋ฅ˜๊ฐ€ ๋ฐ–์— ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์ง€ ๋ชปํ–ˆ๋Š”๋ฐ,
03:36
which is part of the reason
60
216000
1000
๊ทธ ๋ถ€๋ถ„์ ์ธ ์ด์œ ๋Š”
03:37
why this whole species-mapping project is so important.
61
217000
5000
์™œ ์ด ์ „ ์ข…๋“ค์„ ์ง€๋„ํ™”ํ•˜๋Š” ํ”„๋กœ์ ํŠธ๊ฐ€ ๊ทธํ† ๋ก ์ค‘์š”ํ•œ์ง€์— ๋Œ€ํ•œ ์ด์œ ์ž…๋‹ˆ๋‹ค.
03:42
Because we're just beginning to learn
62
222000
2000
์™œ๋ƒํ•˜๋ฉด ์šฐ๋ฆฌ๋Š” ์ด์ œ ๋‹จ์ง€ ๋ฐฐ์šฐ๊ธฐ ์‹œ์ž‘ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค
03:44
where we came from and what we are.
63
224000
1000
์šฐ๋ฆฌ๊ฐ€ ์–ด๋””์„œ ์™”๋Š”์ง€, ์šฐ๋ฆฌ๊ฐ€ ๋ฌด์—ˆ์ธ์ง€์— ๋Œ€ํ•ด์„œ ๋ง์ด์ฃ .
03:46
And we're finding amoebas like this. This is the amoeba dubia.
64
226000
3000
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ๊ณผ ๋น„์Šทํ•œ ์•„๋ฉ”๋ฐ”๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์–ด์š”. ์ด๊ฒƒ์€ ์•„๋ฉ”๋ฐ” ๋‘๋น„์•„์ž…๋‹ˆ๋‹ค.
03:50
And the amoeba dubia doesn't look like much,
65
230000
2000
๊ทธ๋ฆฌ๊ณ  ์•„๋ฉ”๋ฐ” ๋‘๋น„์•„๋Š” ๋ณ„๋กœ ๋Œ€๋‹จํ•ด ๋ณด์ด์ง€๋Š” ์•Š์•„์š”,
03:52
except that each of you has about 3.2 billion letters,
66
232000
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ๊ฐ์ž๊ฐ€ ๋‹น์‹ ์„ ๋‹น์‹ ์ด๋„๋ก ํ•˜๋Š” 32์–ต์˜ ์—ผ๊ธฐ์Œ์„,
03:55
which is what makes you you,
67
235000
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค ๊ฐ์ž์˜ ์„ธํฌ์•ˆ์— ์žˆ๋Š” ์œ ์ „ ์ฝ”๋“œ์— ํ•œํ•ด์„œ,
03:57
as far as gene code inside each of your cells,
68
237000
3000
๊ฐ–๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์—ผ๋‘์— ๋‘๋Š”๊ฒƒ์„ ์ œ์™ธํ•˜๋ฉด ๋ง์ด์ฃ ,
04:00
and this little amoeba which, you know,
69
240000
3000
์ด ์ž‘์€ ์•„๋ฉ”๋ฐ”๋Š”, ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์•Œ๊ณ  ์žˆ๋“ฏ์ด,
04:03
sits in water in hundreds and millions and billions,
70
243000
2000
๋ฌผ์†์— ์•‰์•„์„œ ์ˆ˜์—†์ด ๋งŽ์ด ์‚ด๊ณ  ์žˆ์ง€๋งŒ,
04:06
turns out to have 620 billion base pairs of gene code inside.
71
246000
6000
๋‚ด๋ถ€์˜ ์œ ์ „ ์•”ํ˜ธ์˜ 6200 ์กฐ์˜ ์—ผ๊ธฐ์Œ์„ ๊ฐ–๊ณ  ์žˆ๋Š”๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
04:12
So, this little thingamajig has a genome
72
252000
3000
๊ฒฐ๊ตญ ์ด ์ž‘์€ ์•„๋ฌด๊ฐœ๋“ค์˜ ๊ฒŒ๋†ˆ(Genome)์ด,
04:15
that's 200 times the size of yours.
73
255000
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค ๊ฒƒ์˜ ํฌ๊ธฐ๋ณด๋‹ค 200๋ฐฐ๋‚˜ ๋” ํฝ๋‹ˆ๋‹ค.
04:18
And if you're thinking of efficient information storage mechanisms,
74
258000
3000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ํšจ์œจ์ ์ธ ์ •๋ณด ์ €์žฅ ๋ฉ”์นด๋‹ˆ์ฆ˜์„ ์ƒ๊ฐํ•œ๋‹ค๋ฉด,
04:22
it may not turn out to be chips.
75
262000
2000
์•„๋งˆ ์นฉ์€ ์•„๋‹๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:25
It may turn out to be something that looks a little like that amoeba.
76
265000
4000
์•„๋งˆ๋„ ์ด ์ž‘์€ ์•„๋ฉ”๋ฐ”๋ž‘ ๋น„์Šทํ•œ ์ƒ๊น€์ƒˆ์ผ ๊ฒƒ์ด์—์š”.
04:29
And, again, we're learning from life and how life works.
77
269000
4000
๋‹ค์‹œ ๋งํ•˜๋ฉด ์šฐ๋ฆฌ๋Š” ์ƒ๋ช…์œผ๋กœ๋ถ€ํ„ฐ ์ƒ๋ช…์ด ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ๋ฐฐ์šฐ๊ณ  ์žˆ์–ด์š”.
04:33
This funky little thing: people didn't used to think
78
273000
4000
์ด ์žฌ๋ฐŒ๋Š” ์ž‘์€ ๊ฒƒ: ์‚ฌ๋žŒ๋“ค์€ ์ด๊ฒƒ์ด
04:37
that it was worth taking samples out of nuclear reactors
79
277000
3000
์›์ž๋กœ์—์„œ ์ƒ˜ํ”Œ์„ ์–ป๋Š”๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜์ง€ ์•Š๊ณค ํ–ˆ๋Š”๋ฐ
04:40
because it was dangerous and, of course, nothing lived there.
80
280000
3000
์™œ๋ƒ๋ฉด ๊ทธ๊ฑด ์œ„ํ—˜ํ•˜๊ณ , ๋ฌผ๋ก , ์•„๋ฌด๊ฒƒ๋„ ์‚ด๊ณ  ์žˆ์ง€ ์•Š๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์œผ๋‹ˆ๊นŒ์š”.
04:43
And then finally somebody picked up a microscope
81
283000
3000
๊ทธ๋ฆฌ๊ณ ๋‚˜์„œ ๊ฒฐ๊ตญ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ํ˜„๋ฏธ๊ฒฝ์„ ๋“ค๊ณ ,
04:46
and looked at the water that was sitting next to the cores.
82
286000
3000
์›์ž๋กœ ์‹ฌ ์˜†์— ์žˆ๋˜ ๋ฌผ์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.
04:49
And sitting next to that water in the cores
83
289000
2000
์‹ฌ์†์— ์žˆ๋Š” ๊ทธ ๋ฌผ์˜ ๊ณ์— ์žˆ์—ˆ๋˜ ๊ฒƒ์€
04:51
was this little Deinococcus radiodurans, doing a backstroke,
84
291000
3000
์ž‘์€ ๋‹ค์ด๋…ธ์ฝ”์ปค์Šค (๋ฐฉ์‚ฌ์„ ์—๋„ ๊ฒฌ๋””๋Š” ์ž‘์€ ๋ฏธ์ƒ๋ฌผ)์ด ๋ฐฐ์˜์„ ํ•˜๊ณ  ์žˆ์—ˆ๋Š”๋ฐ,
04:54
having its chromosomes blown apart every day,
85
294000
2000
๋งค์ผ๋งค์ผ ์ž์‹ ์˜ ์—ผ์ƒ‰์ฒด๋“ค์„ ๋ถˆ์–ด ๋–ผ์–ด๋‚ด๊ณ ,
04:56
six, seven times, restitching them,
86
296000
3000
6๋ฒˆ, 7๋ฒˆ์ด๋‚˜ ๊ทธ๊ฒƒ๋“ค์„ ๋‹ค์‹œ ๋ถ™์ด๊ณ ,
04:59
living in about 200 times the radiation that would kill you.
87
299000
2000
์—ฌ๋Ÿฌ๋ถ„์„ ์ฃฝ์ผ์ˆ˜๋„ ์žˆ๋Š” ๋ฐฉ์‚ฌ์„ ์˜ 200๋ฐฐ๋‚˜ ๋˜๋Š” ๊ณณ ์•ˆ์—์„œ ์‚ด๋ฉด์„œ์š”.
05:02
And by now you should be getting a hint as to how diverse
88
302000
3000
์•„๋งˆ ์ง€๊ธˆ์ฏค ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ํžŒํŠธ๋ฅผ ์–ป๊ณ  ๊ณ„์‹ค๊ฒƒ์ž„์— ํ‹€๋ฆผ์—†์Šต๋‹ˆ๋‹ค, ์ด ์ธ์ƒ์œผ๋กœ์˜ ์—ฌํ–‰์ด ์–ผ๋งˆ๋‚˜ ๋‹ค์–‘ํ•˜๊ณ ,
05:05
and how important and how interesting this journey into life is,
89
305000
2000
์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•˜๊ณ  ๊ทธ๋ฆฌ๊ณ  ์–ผ๋งˆ๋‚˜ ํฅ๋ฏธ๋กœ์šด์ง€,
05:07
and how many different life forms there are,
90
307000
3000
๋˜ ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ๋‹ค๋ฅธ ์ƒ๋ช…์˜ ํ˜•ํƒœ๊ฐ€ ์žˆ๋Š”์ง€,
05:10
and how there can be different life forms living in
91
310000
3000
๋˜ ์–ด๋–ป๊ฒŒ ๊ทธ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์ƒ๋ช…์ฒด๊ฐ€
05:13
very different places, maybe even outside of this planet.
92
313000
3000
์„œ๋กœ ๋งค์šฐ ๋‹ค๋ฅธ ์žฅ์†Œ์—์„œ ์‚ด๊ณ  ์žˆ์„์ˆ˜ ์žˆ๋Š”์ง€, ์–ด์ฉŒ๋ฉด ์ด ํ–‰์„ฑ์˜ ๋ฐ”๊นฅ์—์„œ ์กฐ์ฐจ๋„์š”.
05:17
Because if you can live in radiation that looks like this,
93
317000
2000
์™œ๋ƒํ•˜๋ฉด ๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„์ด ์ด ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š” ๋ฐฉ์‚ฌ์„ ์•ˆ์—์„œ ์‚ด ์ˆ˜ ์žˆ๋‹ค๋ฉด,
05:19
that brings up a whole series of interesting questions.
94
319000
3000
๊ทธ๊ฑด ์žฌ๋ฏธ์žˆ๋Š” ์งˆ๋ฌธ๋“ค์˜ ์ „์ฒด ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์•ผ๊ธฐ์‹œํ‚ต๋‹ˆ๋‹ค.
05:23
This little thingamajig: we didn't know this thingamajig existed.
95
323000
3000
์ด ์ž‘์€ ์•„๋ฌด๊ฐœ:์šฐ๋ฆฌ๋Š” ์ด ์•„๋ฌด๊ฐœ๊ฐ€ ์กด์žฌํ–ˆ๋‹ค๋Š” ๊ฑธ ๋ชฐ๋ž์Šต๋‹ˆ๋‹ค.
05:27
We should have known that this existed
96
327000
2000
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์ด ์กด์žฌํ•˜๊ณ  ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•˜์–ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค
05:29
because this is the only bacteria that you can see to the naked eye.
97
329000
3000
์™œ๋ƒํ•˜๋ฉด ์ด๊ฒƒ์ด ์—ฌ๋Ÿฌ๋ถ„์ด ๋งจ๋ˆˆ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋Š” ์œ ์ผํ•œ ๋ฐ•ํ…Œ๋ฆฌ์•„์ด๊ธฐ ๋•Œ๋ฌธ์ด์—์š”.
05:32
So, this thing is 0.75 millimeters.
98
332000
3000
์ด๊ฑด 0.75 ๋ฐ€๋ฆฌ๋ฏธํ„ฐ ์ •๋„ ์ด๊ณ .
05:35
It lives in a deep trench off the coast of Namibia.
99
335000
2000
๊ทธ๊ฑด ๋‚˜๋ฏธ๋น„์•„ ํ•ด์•ˆ์˜ ๊นŠ์€ ํ•ด๊ตฌ์—์„œ ์‚ฝ๋‹ˆ๋‹ค.
05:38
And what you're looking at with this namibiensis
100
338000
2000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์ด ์ง€๊ธˆ ๋ณด๊ณ  ์žˆ๋Š” ๋‚˜๋ฏธ๋น„์•ˆ์‹œ์Šค (๋ฐ•ํ…Œ๋ฆฌ์•„ ์ด๋ฆ„)๋Š”
05:40
is the biggest bacteria we've ever seen.
101
340000
2000
์ง€๊ธˆ๊นŒ์ง€ ๋ดค๋˜ ๋ฐ•ํ…Œ๋ฆฌ์•„์ค‘์— ์ œ์ผ ํฝ๋‹ˆ๋‹ค.
05:42
So, it's about the size of a little period on a sentence.
102
342000
3000
์ž, ๊ทธ๊ฒƒ์€ ์•ฝ ๋ฌธ์žฅ์˜ ์ž‘์€ ๋งˆ์นจํ‘œ์˜ ํฌ๊ธฐ ์ •๋„์ž…๋‹ˆ๋‹ค.
05:46
Again, we didn't know this thing was there three years ago.
103
346000
4000
๋‹ค์‹œ๋งํ•˜์ง€๋งŒ, ์šฐ๋ฆฌ๋Š” 3๋…„์ „๋งŒํ•ด๋„ ์ด๊ฒƒ์— ๋Œ€ํ•ด ์•Œ์ง€ ๋ชปํ–ˆ์–ด์š”.
05:50
We're just beginning this journey of life in the new zoo.
104
350000
3000
์šฐ๋ฆฌ๋Š” ๋ง‰ ์‚ถ์— ๋Œ€ํ•œ ์—ฌ์ •์„ ์ด ์ƒˆ๋กœ์šด ๋™๋ฌผ์› ์•ˆ์—์„œ ์‹œ์ž‘ํ–ˆ์–ด์š”.
05:54
This is a really odd one. This is Ferroplasma.
105
354000
3000
์ด๊ฒƒ์€ ์ฐธ ์‹ ๊ธฐํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ํŽ˜๋กœํ”Œ๋ผ์Šค๋งˆ๋ผ๊ณ  ํ•˜๋Š”๋ฐ์š”.
05:58
The reason why Ferroplasma is interesting is because it eats iron,
106
358000
3000
ํŽ˜๋กœํ”Œ๋ผ์Šค๋งˆ๊ฐ€ ์™œ ํฅ๋ฏธ๋กญ๋ƒ๋ฉด, ์ด๊ฒƒ์€ ์ฒ ์„ ๋จน๊ณ ,
06:02
lives inside the equivalent of battery acid,
107
362000
3000
๋ฐฐํ„ฐ๋ฆฌ์™€ ๊ฐ™์€ ์‚ฐ์„ฑ์—์„œ ์‚ด๊ณ  ์žˆ๊ณ ,
06:06
and excretes sulfuric acid.
108
366000
2000
ํ™ฉ์‚ฐ์„ ๋ฐฐ์ถœํ•ด๋‚ด์š”.
06:10
So, when you think of odd life forms,
109
370000
2000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์‹ ๊ธฐํ•œ ์ƒ๋ช…์ฒด๋ฅผ ์ƒ๊ฐํ• ๋•Œ,
06:12
when you think of what it takes to live,
110
372000
3000
์‚ถ์—๋Š” ๋ฌด์—‡์ด ํ•„์š”ํ•œ์ง€๋ฅผ ์ƒ๊ฐํ• ๋•Œ,
06:16
it turns out this is a very efficient life form,
111
376000
2000
์ด๊ฒƒ์€ ๊ต‰์žฅํžˆ ํšจ์œจ์ ์ธ ์ƒ๋ช…์˜ ํ˜•ํƒœ์ž…๋‹ˆ๋‹ค.
06:18
and they call it an archaea. Archaea means "the ancient ones."
112
378000
4000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์€ ๊ณ ์„ธ๊ท ์ด๋ผ๊ณ  ๋ถˆ๋ ค์š”. ๊ณ ์„ธ๊ท  ์ด๋ผ๋Š”๊ฒƒ์€ ๊ณ ๋Œ€์˜ ๊ฒƒ ์ด๋ž€ ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
06:22
And the reason why they're ancient is because this thing came up
113
382000
4000
๊ทธ๊ฒƒ๋“ค์ด ์™œ ๊ณ ๋Œ€์˜ ๊ฒƒ์ด๋ƒํ•˜๋Š” ์ด์œ ๋Š” ์ด๊ฒƒ๋“ค์ด ์ƒ๊ฒจ๋‚œ ๊ฒƒ์ด
06:26
when this planet was covered
114
386000
2000
์ด ์ง€๊ตฌ๊ฐ€
06:28
by things like sulfuric acid in batteries,
115
388000
1000
๋ฐฐํ„ฐ๋ฆฌ ์•ˆ์— ์žˆ๋Š” ํ™ฉ์‚ฐ๊ฐ™์€ ๊ฒƒ์œผ๋กœ ๋’ค๋ฎํ˜€ ์žˆ์„๋•Œ์˜€๊ณ 
06:29
and it was eating iron when the earth was part of a melted core.
116
389000
4000
์ง€๊ตฌ๊ฐ€ ์•„์ง ๋…น์•„์žˆ๋Š” ํ•ต์‹ฌ์˜ ๋ถ€๋ถ„์ด์—ˆ์„ ๋•Œ ๊ทธ๊ฒƒ์€ ์ฒ ์„ ๋จน๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:34
So, it's not just dogs and cats and whales and dolphins
117
394000
4000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ๋Š”, ์ด ์ž‘์€ ์—ฌํ–‰์—์„œ ๋‹จ์ง€ ๊ฐœ๋‚˜ ๊ณ ์–‘์ด๋‚˜ ๊ณ ๋ž˜๋‚˜ ๋Œ๊ณ ๋ž˜๋งŒ์„
06:38
that you should be aware of and interested in on this little journey.
118
398000
4000
์˜์‹ํ•˜๊ฑฐ๋‚˜ ํฅ๋ฏธ๋ฅผ ๊ฐ€์ ธ์„œ๋Š” ์•ˆ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:42
Your fear should be that you are not,
119
402000
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋‘๋ ค์›Œ ํ•ด์•ผ ํ•  ๊ฒƒ์€ ๋‹น์‹ ๋“ค์ด ํฅ๋ฏธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ,
06:45
that you're paying attention to stuff which is temporal.
120
405000
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์ผ์‹œ์ ์ธ ๊ฒƒ์—๋งŒ ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ๋‹ค๋Š”
06:48
I mean, George Bush -- he's going to be gone, alright? Life isn't.
121
408000
5000
๋‚ด๋ง์€, ์กฐ์ง€ ๋ถ€์‹œ-- ๊ทธ๋Š” ๊ณง ์‚ฌ๋ผ์ง€๊ฒ ์ฃ , ๊ทธ๋ ‡์ฃ ? ์ƒ๋ช…์€ ๊ทธ๋ ‡์ง€ ์•Š์•„์š”.
06:54
Whether the humans survive or don't survive,
122
414000
3000
์‚ฌ๋žŒ์ด ์ƒ์กด์„ ํ•˜๊ฑฐ๋‚˜ ์ƒ์กดํ•˜์ง€ ์•Š๊ฑฐ๋‚˜,
06:57
these things are going to be living on this planet or other planets.
123
417000
3000
์ด๊ฒƒ๋“ค์€ ์ด ํ–‰์„ฑ์ด๋‚˜ ๋‹ค๋ฅธ ํ–‰์„ฑ์—์„œ ์‚ด๊ณ  ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:00
And it's just beginning to understand this code of DNA
124
420000
4000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์€ ๋‹จ์ง€ ์ด DNA ์ฝ”๋“œ๋ฅผ ์ดํ•ดํ•˜๋Š” ์‹œ์ž‘์ด๋ผ๋Š”
07:04
that's really the most exciting intellectual adventure
125
424000
3000
์šฐ๋ฆฌ๋“ค์ด ์ฐธ์—ฌํ–ˆ๋˜ ๊ฒƒ๋“ค์ค‘
07:07
that we've ever been on.
126
427000
3000
์šฐ๋ฆฌ๋“ค์˜ ๋ชจํ—˜์ž…๋‹ˆ๋‹ค.
07:10
And you can do strange things with this stuff. This is a baby gaur.
127
430000
4000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์ด๊ฒƒ์„ ๊ฐ€์ง€๊ณ  ์ด์ƒํ•œ ์ผ๋“ค๋„ ํ•  ์ˆ˜ ์žˆ์–ด์š”. ์ด๊ฒƒ์€ ์•„๊ธฐ ๊ฐˆ์ด์—์š”.
07:14
Conservation group gets together,
128
434000
2000
๋ณดํ˜ธ๊ทธ๋ฃน ์‚ฌ๋žŒ๋“ค์ด ๋ชจ์—ฌ์„œ,
07:16
tries to figure out how to breed an animal that's almost extinct.
129
436000
4000
๊ทธ ๊ฑฐ์˜ ๋ฉธ์ข…์— ์ฒ˜ํ•œ ๋™๋ฌผ์„ ์–ด๋–ป๊ฒŒ ๋ฒˆ์‹์‹œํ‚ฌ๊นŒ์— ๋Œ€ํ•ด ์ดํ•ดํ•˜๋ ค๊ณ  ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
07:21
They can't do it naturally, so what they do with this thing is
130
441000
3000
๊ทธ๋“ค์€ ๊ทธ๊ฒƒ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ•  ์ˆ˜ ๊ฐ€ ์—†์–ด์š”. ๊ทธ๋ž˜์„œ ๊ทธ๋“ค์ด ์ด๊ฒƒ์„ ๊ฐ€์ง€๊ณ  ํ•˜๋Š”๊ฒƒ์€
07:24
they take a spoon, take some cells out of an adult gaur's mouth, code,
131
444000
5000
๊ทธ๋“ค์ด ์Šคํ‘ผ์„ ๋“ค๊ณ , ์–ด๋ฅธ ๊ฐˆ์˜ ์ž…์•ˆ์— ์žˆ๋Š” ์„ธํฌ๋“ค๊ณผ, ์ฝ”๋“œ๋ฅผ ์ข€ ์–ป์–ด,
07:30
take the cells from that and insert it into a fertilized cow's egg,
132
450000
4000
์„ธํฌ๋“ค์„ ๊ฐ€์ ธ๋‹ค๊ฐ€ ์†Œ์˜ ์ˆ˜์ •๋ž€์ž์— ๋„ฃ์–ด,
07:35
reprogram cow's egg -- different gene code.
133
455000
3000
์†Œ์˜ ๋‚œ์ž๋ฅผ ๋‹ค์‹œ ํ”„๋กœ๊ทธ๋žจํ™”ํ•ฉ๋‹ˆ๋‹ค-- ๋‹ค๋ฅธ ์œ ์ „์ž ์ฝ”๋“œ๋กœ
07:39
When you do that, the cow gives birth to a gaur.
134
459000
4000
๊ทธ๋ ‡๊ฒŒ ํ•˜๋ฉด, ์†Œ๋Š” ๊ฐˆ์„ ์ถœ์‚ฐํ•˜๋Š” ๊ฒƒ์ด์ฃ .
07:44
We are now experimenting with bongos, pandas, elands, Sumatran tigers,
135
464000
6000
์šฐ๋ฆฌ๋Š” ์ด์ œ ๋ด‰๊ณ , ํŒ๋‹ค, ์ผ๋ฆผ, ์ˆ˜๋งˆํŠธ๋ž€ ํ˜ธ๋ž‘์ด๋“ค์„ ์ƒ๋Œ€๋กœ ์‹คํ—˜ํ•˜๊ณ  ์žˆ๊ณ ,
07:50
and the Australians -- bless their hearts --
136
470000
3000
๊ทธ๋ฆฌ๊ณ  ํ˜ธ์ฃผ์ธ๋“ค์€ -- ๊ฐ€ํ˜ธ๊ฐ€ ํ•จ๊ป˜ํ•˜๊ธธ--
07:53
are playing with these things.
137
473000
1000
์ด๋Ÿฌํ•œ ๊ฒƒ๋“ค๊ณผ ๋”๋ถˆ์–ด์„œ (์‚ฌ์ง„) ์‹คํ—˜ํ•˜๊ณ  ์žˆ์–ด์š”.
07:54
Now, the last of these things died in September 1936.
138
474000
4000
์ž, ์ด๊ฒƒ๋“ค์ด ๋งˆ์ง€๋ง‰์œผ๋กœ ์ฃฝ์€๊ฒƒ์€ 1936๋…„ 9์›”์ž…๋‹ˆ๋‹ค.
07:58
These are Tasmanian tigers. The last known one died at the Hobart Zoo.
139
478000
4000
์–˜๋„ค๋“ค์€ ํƒœ์ฆˆ๋งค๋‹ˆ์•ˆ ํ˜ธ๋ž‘์ด์ž…๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์€ ํ˜ธ๋ฐœํŠธ ๋™๋ฌผ์›์—์„œ ์ฃฝ์—ˆ์Šต๋‹ˆ๋‹ค.
08:02
But it turns out that as we learn more about gene code
140
482000
3000
๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ๊ฐ€ ์œ ์ „์ฝ”๋“œ์— ๋Œ€ํ•ด ๋” ๋งŽ์ด ๋ฐฐ์šฐ๊ณ 
08:05
and how to reprogram species,
141
485000
2000
๋˜ ์–ด๋–ป๊ฒŒ ์ƒ๋ช…์ฒด๋ฅผ ์žฌํ”„๋กœ๊ทธ๋žจ ํ•˜๋Š”์ง€ ๋” ๋ฐฐ์›€์— ๋”ฐ๋ผ,
08:07
we may be able to close the gene gaps in deteriorate DNA.
142
487000
5000
์šฐ๋ฆฌ๋Š” ๊ฐ์†Œํ•˜๋Š” DNA ์•ˆ์—์žˆ๋Š” ์œ ์ „์ž ๊ณต๋ฐฑ์„ ์–ด์ฉŒ๋ฉด ๋งค๊ฟ€์ˆ˜ ๋„ ์žˆ๋‹ค๊ณ  ๋ณด์—ฌ์ง‘๋‹ˆ๋‹ค.
08:12
And when we learn how to close the gene gaps,
143
492000
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ์œ ์ „์ž ๊ณต๋ฐฑ์„ ๋งค์šฐ๋Š”๊ฒƒ์„ ๋ฐฐ์šฐ๋ฉด
08:15
then we can put a full string of DNA together.
144
495000
2000
์™„์ „ํ•œ DNA ๊ฐ€๋‹ฅ์„ ํ•จ๊ป˜ ๋ถ™์ผ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:18
And if we do that, and insert this into a fertilized wolf's egg,
145
498000
4000
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋ ‡๊ฒŒ ํ•œ๋‹ค๋ฉด, ๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์„ ์ˆ˜์ •๋œ ๋Š‘๋Œ€์˜ ๋‚œ์ž์— ๋„ฃ์œผ๋ฉด,
08:23
we may give birth to an animal
146
503000
2000
์šฐ๋ฆฌ๋Š” ์–ด์ฉŒ๋ฉด 1936๋…„ ์ดํ›„๋กœ
08:25
that hasn't walked the earth since 1936.
147
505000
2000
์ง€๊ตฌ๋ฅผ ๊ฑท์ง€ ์•Š์•˜๋˜ ๋™๋ฌผ์„ ํƒ„์ƒ ์‹œํ‚ฌ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:28
And then you can start going back further,
148
508000
2000
๊ทธ๋Ÿผ ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์€ ๋”์šฑ ๋’ค๋กœ ๋ฉ€๋ฆฌ ๊ฐˆ ์ˆ˜ ์žˆ์–ด์š”,
08:30
and you can start thinking about dodos,
149
510000
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์ด์ œ ๋„๋„์ƒˆ๋ฅผ ์ƒ๊ฐํ•ด๋ณผ ์ˆ˜ ์žˆ๊ณ 
08:33
and you can think about other species.
150
513000
1000
๋‹ค๋ฅธ ์ข…์„ ์ƒ๊ฐํ•ด๋ณผ์ˆ˜๋„ ์žˆ์–ด์š”.
08:35
And in other places, like Maryland, they're trying to figure out
151
515000
3000
๊ทธ๋ฆฌ๊ณ  ๋งค๋ฆด๋žœ๋“œ๊ฐ™์€ ๋‹ค๋ฅธ ์žฅ์†Œ๋“ค์—์„œ๋Š” ๋ฌด์—‡์„ ์ดํ•ดํ•˜๋ ค ์‹œ๋„ํ•˜๋Š๋ƒ ํ•˜๋ฉด,
08:38
what the primordial ancestor is.
152
518000
2000
ํƒœ๊ณ ์˜ ์กฐ์ƒ์ด ๋ฌด์—‡์ธ์ง€๋ฅผ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
08:40
Because each of us contains our entire gene code
153
520000
3000
์™œ๋ƒํ•˜๋ฉด ์šฐ๋ฆฌ ๊ฐ์ž๊ฐ€ ์šฐ๋ฆฌ์˜ ์ „์ฒด ์œ ์ „(Gene) ์ฝ”๋“œ -
08:43
of where we've been for the past billion years,
154
523000
3000
์šฐ๋ฆฌ๊ฐ€ ์ง€๋‚œ 10์–ต๋…„๋™์•ˆ ์กด์žฌํ•ด์˜จ ์žฅ์†Œ์˜- ๋ฅผ ๊ฐ–๊ณ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๊ณ ,
08:46
because we've evolved from that stuff,
155
526000
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ์ง„ํ™”ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—,
08:48
you can take that tree of life and collapse it back,
156
528000
2000
์—ฌ๋Ÿฌ๋ถ„์€ ๊ทธ ์ƒ๋ช…์˜ ๋‚˜๋ฌด๋ฅผ ๊ฐ€์ ธ๋‹ค๊ฐ€ ๋‹ค์‹œ ๋ถ„์‚ฐ์‹œํ‚ฌ ์ˆ˜๋„ ์žˆ๊ณ ,
08:50
and in the measure that you learn to reprogram,
157
530000
3000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์ด ์žฌํ”„๋กœ๊ทธ๋žจ์„ ํ•˜๋Š”๊ฒƒ์„ ๋ฐฐ์šฐ๋Š” ์ •๋„์—์„œ
08:53
maybe we'll give birth to something
158
533000
2000
์–ด์ฉŒ๋ฉด ์šฐ๋ฆฌ๋Š” ์ƒˆ๋กœ์šด ์–ด๋–ค๊ฒƒ์„ ํƒœ์–ด๋‚˜๊ฒŒ ํ•  ์ˆ˜๋„ ์žˆ๊ณ 
08:55
that is very close to the first primordial ooze.
159
535000
2000
๊ทธ๊ฑด ์ฒซ๋ฒˆ์งธ ํƒœ๊ณ ์˜ ์กฐ์ƒ๊ณผ ๋งค์šฐ ๋น„์Šทํ•œ ๊ฒƒ์ด ๋˜๊ฒ ์ง€์š”.
08:57
And it's all coming out of things that look like this.
160
537000
2000
๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋“ ๊ฒƒ๋“ค์€ ์ด๋Ÿฐ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:59
These are companies that didn't exist five years ago.
161
539000
2000
์ด๊ฒƒ๋“ค์€ 5๋…„์ „์—๋Š” ์กด์žฌํ•˜์ง€ ์•Š์•˜๋˜ ๊ฒƒ๋“ค์ž…๋‹ˆ๋‹ค.
09:01
Huge gene sequencing facilities the size of football fields.
162
541000
4000
๊ฑฐ๋Œ€ํ•œ ์œ ์ „ ์—ฐ์†๋ฌผ์€ ์ถ•๊ตฌ๊ฒฝ๊ธฐ์žฅ์˜ ํฌ๊ธฐ๋ฅผ ์„ค๋น„ํ•ฉ๋‹ˆ๋‹ค.
09:05
Some are public. Some are private.
163
545000
2000
์–ด๋–ค๊ฒƒ์€ ๊ณต๊ณต๊ธฐ๊ด€์ด๊ณ  ์–ด๋–ค๊ฒƒ์€ ๋ฏผ๊ฐ„๊ธฐ๊ด€์ด์ฃ .
09:07
It takes about 5 billion dollars to sequence a human being the first time.
164
547000
3000
์ฒ˜์Œ์— ์‚ฌ๋žŒ์˜ ์—ผ๊ธฐ์„œ์—ด์„ ์•Œ์•„๋‚ผ ๋•Œ์—๋Š” 50์–ต ๋‹ฌ๋Ÿฌ๊ฐ€ ๋“ค์—ˆ์–ด์š”.
09:11
Takes about 3 million dollars the second time.
165
551000
2000
๋‘๋ฒˆ์งธ์—๋Š” 3๋ฐฑ๋งŒ ๋‹ฌ๋Ÿฌ๊ฐ€ ๋“ค์—ˆ๊ตฌ์š”.
09:13
We will have a 1,000-dollar genome within the next five to eight years.
166
553000
4000
์•„๋งˆ ๋‹ค์Œ 5๋…„์—์„œ 8๋…„์‚ฌ์ด์— ์šฐ๋ฆฌ๋Š” 1000๋‹ฌ๋Ÿฌ์— ๊ฒŒ๋†ˆ์„ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:17
That means each of you will contain on a CD your entire gene code.
167
557000
4000
์ด๋ง์€ ์—ฌ๋Ÿฌ๋ถ„๋“ค ๊ฐ์ž๊ฐ€ ์ž์‹ ์˜ ์œ ์ „ ์ฝ”๋“œ๋ฅผ CD์— ๊ฐ–๊ณ  ์žˆ์„๊ฒƒ์ด๋ผ๋Š” ๊ฑฐ์ง€์š”.
09:22
And it will be really boring. It will read like this.
168
562000
2000
๊ทธ๊ฑด ๊ต‰์žฅํžˆ ์žฌ๋ฏธ์—†๋Š” ๊ฒƒ์ด๊ฒ ์ฃ . ์•„๋งˆ ์ด๋Ÿฐ๊ฒƒ์ด ์ฝํžˆ๊ฒ ์ง€์š”.
09:25
(Laughter)
169
565000
2000
(์›ƒ์Œ)
09:27
The really neat thing about this stuff is that's life.
170
567000
2000
์ด๊ฒƒ์˜ ์ •๋ง ํ›Œ๋ฅญํ•œ ์ ์€ ์ด๊ฒƒ์ด ๋ฐ”๋กœ ์ƒ๋ช…์ด๋ผ๋Š” ๊ฒƒ์ด์—์š”.
09:29
And Laurie's going to talk about this one a little bit.
171
569000
3000
๋กœ๋ฆฌ๊ฐ€ ์ด๊ฒƒ์— ๋Œ€ํ•ด ์กฐ๊ธˆ ์–˜๊ธฐํ•  ๊ฒƒ์ด์—์š”.
09:32
Because if you happen to find this one inside your body,
172
572000
2000
์™œ๋ƒํ•˜๋ฉด ์ด๊ฒƒ์„ (ํ™”๋ฉด์— ๋‚˜ํƒ€๋‚œ ์ฝ”๋“œ)๋ฅผ ์—ฌ๋Ÿฌ๋ถ„ ๋ชธ์†์—์„œ ๋ฐœ๊ฒฌํ•œ๋‹ค๋ฉด,
09:34
you're in big trouble, because that's the source code for Ebola.
173
574000
2000
์—ฌ๋Ÿฌ๋ถ„์€ ํฐ์ผ๋‚ฉ๋‹ˆ๋‹ค, ์™œ๋ƒํ•˜๋ฉด ์ด๊ฑด ์—๋ณผ๋ผ ๋ฐ”์ด๋Ÿฌ์Šค ์ฝ”๋“œ์ด๊ธฐ ๋•Œ๋ฌธ์ด์ง€์š”.
09:38
That's one of the deadliest diseases known to humans.
174
578000
2000
์ธ๊ฐ„์—๊ฒŒ ๊ฐ€์žฅ ์น˜๋ช…์ ์ธ ๋ณ‘์ค‘์— ํ•˜๋‚˜์ง€์š”.
09:40
But plants work the same way and insects work the same way,
175
580000
2000
๊ทธ๋Ÿฐ๋ฐ ์‹๋ฌผ๋„ ๊ณค์ถฉ๋„ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.
09:42
and this apple works the same way.
176
582000
2000
์ด ์‚ฌ๊ณผ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค.
09:44
This apple is the same thing as this floppy disk.
177
584000
2000
์ด ์‚ฌ๊ณผ๋Š” ํ”Œ๋กœํ”ผ ๋””์Šคํฌ์™€ ๊ฐ™์•„์š”.
09:46
Because this thing codes ones and zeros,
178
586000
2000
์™œ๋ƒ๋ฉด ํ”Œ๋กœํ”ผ ๋””์Šคํฌ๋Š” 1๊ณผ 0์„ ์ฝ”๋“œํ™”ํ•˜๊ณ ,
09:48
and this thing codes A, T, C, Gs, and it sits up there,
179
588000
2000
์ด (์‚ฌ๊ณผ)๋Š” A, T, C, G ๋“ค๋กœ ํ•˜์ง€์š”. ๊ทธ๋ฆฌ๊ณ  ๋งค๋‹ฌ๋ ค์žˆ๋‹ค๊ฐ€,
09:50
absorbing energy on a tree, and one fine day
180
590000
3000
์—๋„ˆ์ง€๋ฅผ ํก์ˆ˜ํ•˜๊ณ , ์–ด๋–ค ํ™”์ฐฝํ•œ ๋‚ ์—,
09:53
it has enough energy to say, execute, and it goes [thump]. Right?
181
593000
4000
์‹คํ–‰ํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ•œ ์—๋„ˆ์ง€๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๋‚˜์„œ, ์ฟต ๋–จ์–ด์ง€์ฃ . ๋งž์ฃ ?
09:57
(Laughter)
182
597000
3000
(์›ƒ์Œ)
10:00
And when it does that, pushes a .EXE, what it does is,
183
600000
4000
๋–จ์–ด์ง€๋ฉด, .EXE ๋ช…๋ น์„ ์‹คํ–‰ํ•˜๋“ฏ, ์ด๊ฒƒ์ด ํ•˜๋Š”๊ฒƒ์€,
10:04
it executes the first line of code, which reads just like that,
184
604000
3000
์ฒซ ์ค„์˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€,
10:07
AATCAGGGACCC, and that means: make a root.
185
607000
3000
AATCAGGGACCC๋กœ ์ฝํžˆ๊ณ  ๊ทธ ๋œป์€: '๋ฟŒ๋ฆฌ๋ฅผ ๋งŒ๋“ค์–ด๋ผ' ์ž…๋‹ˆ๋‹ค.
10:10
Next line of code: make a stem.
186
610000
2000
๋‹ค์Œ์ค„์€: ์ค„๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด๋ผ.
10:12
Next line of code, TACGGGG: make a flower that's white,
187
612000
3000
๋‹ค์Œ์ค„์€, TACGGGG: ํฐ์ƒ‰ ๊ฝƒ์„ ํ”ผ์›Œ๋ผ,
10:15
that blooms in the spring, that smells like this.
188
615000
3000
๊ทธ ๊ฝƒ์€ ๋ด„์— ํ”ผ๊ณ , ์ด๋Ÿฐ ํ–ฅ๊ธฐ๊ฐ€ ๋‚œ๋‹ค.
10:18
In the measure that you have the code
189
618000
2000
๋‹น์‹ ์ด ์ฝ”๋“œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
10:20
and the measure that you read it --
190
620000
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์„ ์ฝ๋Š”๋‹ค๋Š” ์ธก์ •ํ•˜์— --
10:23
and, by the way, the first plant was read two years ago;
191
623000
2000
๊ทธ๋ฆฌ๊ณ , ์ฐธ, ์ฒซ๋ฒˆ์งธ ์‹๋ฌผ์€ 2๋…„์ „์— ์ฝํ˜”๊ณ ;
10:25
the first human was read two years ago;
192
625000
2000
์ฒซ๋ฒˆ์งธ ์ธ๊ฐ„๋„ 2๋…„์ „์— ์ฝํ˜”๊ณ ;
10:27
the first insect was read two years ago.
193
627000
2000
์ฒซ๋ฒˆ์งธ ๊ณค์ถฉ๋„ 2๋…„์ „์— ์ฝํ˜”์Šต๋‹ˆ๋‹ค.
10:29
The first thing that we ever read was in 1995:
194
629000
3000
์šฐ๋ฆฌ๊ฐ€ ์‚ฌ์ƒ ์ฒ˜์Œ์œผ๋กœ ์ฝ์—ˆ๋˜ ๊ฒƒ์€ 1995๋…„๋„ ์˜€์Šต๋‹ˆ๋‹ค:
10:32
a little bacteria called Haemophilus influenzae.
195
632000
2000
์ž‘์€ ํ—ค๋ชจํ•„๋Ÿฌ์Šค ์ธํ”Œ๋ฃจ์—”์ž๋ผ๋Š” ๋ฐ•ํ…Œ๋ฆฌ์•„์˜€์ง€์š”.
10:35
In the measure that you have the source code, as all of you know,
196
635000
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ๋ชจ๋‘๊ฐ€ ์•Œ๋“ฏ์ด ์›์‹œ์ฝ”๋“œ๋ฅผ ๊ฐ–๊ณ ์žˆ์œผ๋ฉด,
10:38
you can change the source code, and you can reprogram life forms
197
638000
2000
๊ทธ๊ฒƒ์„ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๊ณ , ์ƒ๋ช…์ฒด๋ฅผ ๋ฆฌํ”„๋กœ๊ทธ๋žจ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:40
so that this little thingy becomes a vaccine,
198
640000
2000
๊ทธ๋ž˜์„œ ๊ทธ ์ž‘์€๊ฒƒ์€ ๋ฐฑ์‹ ์ด ๋˜๊ธฐ๋„ ํ•˜๊ณ ,
10:42
or this little thingy starts producing biomaterials,
199
642000
3000
์ƒ๋ฌผ์ ์ธ ์žฌ๋ฃŒ๋ฅผ ๋งŒ๋“ค๊ธฐ ์‹œ์ž‘ํ•˜์ง€์š”.
10:45
which is why DuPont is now growing a form of polyester
200
645000
3000
์ด๊ฒƒ์ด ๋ฐ”๋กœ DuPont ์‚ฌ๊ฐ€ ์ง€๊ธˆ ์‹คํฌ ์ด‰๊ฐ์˜ ํด๋ฆฌ์—์Šคํ…Œ๋ฅด๋ฅผ
10:48
that feels like silk in corn.
201
648000
2000
์˜ฅ์ˆ˜์ˆ˜์—์„œ ์žฌ๋ฐฐํ•  ์ˆ˜ ์žˆ๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.
10:51
This changes all rules. This is life, but we're reprogramming it.
202
651000
5000
์ด๊ฒƒ์€ ๋ชจ๋“  ๊ทœ์น™์„ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์ƒ๋ช…์ด์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ๋ฆฌํ”„๋กœ๊ทธ๋žจ์„ ํ•˜๊ณ  ์žˆ์–ด์š”.
10:58
This is what you look like. This is one of your chromosomes.
203
658000
4000
์ด๊ฒƒ์€ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๋“ค์˜ ์—ผ์ƒ‰์ฒด๋“ค์ค‘ ํ•˜๋‚˜์ด์ง€์š”.
11:02
And what you can do now is,
204
662000
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์ง€๊ธˆ ํ•  ์ˆ˜ ์žˆ๋Š”๊ฒƒ์€,
11:04
you can outlay exactly what your chromosome is,
205
664000
3000
์ •ํ™•ํ•˜๊ฒŒ ์–ด๋–ค ์—ผ์ƒ‰์ฒด๊ฐ€ ๋‹น์‹  ๊ฒƒ์ธ์ง€,
11:07
and what the gene code on that chromosome is right here,
206
667000
3000
๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ์ง„ ์ฝ”๋“œ๊ฐ€ ๊ทธ ์—ผ์ƒ‰์ฒด์˜ ์ด๊ณณ์— ์žˆ๋Š”์ง€,
11:10
and what those genes code for, and what animals they code against,
207
670000
3000
๊ทธ๊ฒƒ์ด ๋ฌด์—‡์„ ์ฝ”๋“œํ™” ํ•˜๊ณ  ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ๋™๋ฌผ์— ๋Œ€ํ•ญํ•˜๋Š” ์ฝ”๋“œ์ธ์ง€,
11:13
and then you can tie it to the literature.
208
673000
2000
๋ชจ๋‘๋ฅผ ๋ฌถ์–ด์„œ ๋ฌธํ—Œ์— ์‹ค์„์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:15
And in the measure that you can do that, you can go home today,
209
675000
3000
๊ทธ๊ฑธ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ธก์ •ํ•˜์—, ์˜ค๋Š˜ ์ง‘์— ๊ฐ€์„œ,
11:18
and get on the Internet, and access
210
678000
2000
์ธํ„ฐ๋„ท์— ์ ‘์†์„ ํ•˜๊ณ ,
11:20
the world's biggest public library, which is a library of life.
211
680000
3000
์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ๊ณต๋ฆฝ ๋„์„œ๊ด€, ์ƒ๋ช…์˜ ๋„์„œ๊ด€์— ๋“ค์–ด๊ฐ€ ๋ณด์‹ญ์‹œ์˜ค.
11:24
And you can do some pretty strange things
212
684000
2000
๋‹น์‹ ์€ ๋ช‡๊ฐ€์ง€ ๊ฝค ์‹ ๊ธฐํ•œ ๊ฒƒ์„ ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:26
because in the same way as you can reprogram this apple,
213
686000
2000
์ด ์‚ฌ๊ณผ๋ฅผ ์žฌํ”„๋กœ๊ทธ๋žจ์„ ํ•  ์ˆ˜ ์žˆ๋Š”๊ฒƒ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์ด๊ธฐ ๋•Œ๋ฌธ์—,
11:29
if you go to Cliff Tabin's lab at the Harvard Medical School,
214
689000
2000
๋งŒ์•ฝ ํ•˜๋ฒ„๋“œ ์˜๋Œ€์— ์žˆ๋Š” Cliff Tabin์˜ ์‹คํ—˜์‹ค์— ๊ฐ€๋ฉด,
11:32
he's reprogramming chicken embryos to grow more wings.
215
692000
4000
๊ทธ๋Š” ๋‹ญ์˜ ๋ฐฐ์•„๋ฅผ ๋” ๋งŽ์€ ๋‚ ๊ฐœ๋ฅผ ์ž๋ž„์ˆ˜ ์žˆ๋„๋ก ์žฌํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์ฃ .
11:38
Why would Cliff be doing that? He doesn't have a restaurant.
216
698000
3000
์™œ ํด๋ฆฌํ”„๊ฐ€ ๊ทธ๊ฑธ ํ• ๊นŒ์š”? ๊ทธ๋Š” ์‹๋‹น์„ ๊ฐ–๊ณ ์žˆ์ง€๋„ ์•Š์€๋ฐ.
11:41
(Laughter)
217
701000
1000
(์›ƒ์Œ)
11:43
The reason why he's reprogramming that animal to have more wings
218
703000
3000
๊ทธ๊ฐ€ ๋” ๋งŽ์€ ๋‚ ๊ฐœ๋ฅผ ๊ฐ–๊ธฐ์œ„ํ•ด ์žฌํ”„๋กœ๊ทธ๋žจ์„ ํ•˜๋Š” ์ด์œ ๋Š”,
11:46
is because when you used to play with lizards as a little child,
219
706000
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์–ด๋ ธ์„๋•Œ ๋„๋งˆ๋ฑ€์„ ๊ฐ–๊ณ  ๋†€์•˜๋‹ค๋ฉด,
11:49
and you picked up the lizard, sometimes the tail fell off, but it regrew.
220
709000
4000
๋„๋งˆ๋ฑ€์„ ์ฃผ์› ์„๋•Œ, ์–ด๋–ค๋•Œ๋Š” ๊ผฌ๋ฆฌ๊ฐ€ ๋–จ์–ด์กŒ์ง€๋งŒ, ๊ทธ๊ฑด ๋‹ค์‹œ ์ž๋ผ์ง€์š”.
11:53
Not so in human beings:
221
713000
3000
์ธ๊ฐ„์€ ๊ทธ๋ ‡์ง€ ์•Š์ง€์š”:
11:56
you cut off an arm, you cut off a leg -- it doesn't regrow.
222
716000
3000
ํŒ”์„ ์ž๋ฅด๊ณ , ๋‹ค๋ฆฌ๋ฅผ ์ž๋ฅด๋ฉด, ๋‹ค์‹œ ์ž๋ผ์ง€ ์•Š์•„์š”.
11:59
But because each of your cells contains your entire gene code,
223
719000
4000
๊ทธ๋Ÿฌ๋‚˜ ์—ฌ๋Ÿฌ๋ถ„์˜ ์„ธํฌ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„ ์ „์ฒด์˜ ์œ ์ „ ์ฝ”๋“œ๋ฅผ ๊ฐ–๊ณ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—,
12:04
each cell can be reprogrammed, if we don't stop stem cell research
224
724000
4000
๊ฐ๊ฐ์˜ ์„ธํฌ๋ฅผ, ๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ์ค„๊ธฐ์„ธํฌ ์—ฐ๊ตฌ๋ฅผ ์ค‘๋‹จํ•˜์ง€ ์•Š๊ณ ,
12:08
and if we don't stop genomic research,
225
728000
2000
์šฐ๋ฆฌ๊ฐ€ ์œ ์ „ ์—ฐ๊ตฌ๋ฅผ ์ค‘๋‹จํ•˜์ง€ ์•Š์œผ๋ฉด,
12:10
to express different body functions.
226
730000
3000
์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ชธ์˜ ๊ธฐ๋Šฅ์„ ํ‘œํ˜„ํ•˜๋„๋ก ๋ฆฌํ”„๋กœ๊ทธ๋žจ ํ• ์ˆ˜์žˆ์ฃ .
12:14
And in the measure that we learn how chickens grow wings,
227
734000
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ญ์ด ๋‚ ๊ฐœ๋ฅผ ์ž๋ผ๊ฒŒ ํ•˜๋Š”์ง€ ์•Œ๊ณ ,
12:17
and what the program is for those cells to differentiate,
228
737000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์„ธํฌ๋“ค์ด ์–ด๋–ค ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๋ถ„ํ™”ํ•˜๋Š”์ง€ ์•Œ๋ฉด,
12:19
one of the things we're going to be able to do
229
739000
3000
์šฐ๋ฆฌ๊ฐ€ ์•ž์œผ๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋“ค ์ค‘ ํ•˜๋‚˜๋Š”,
12:22
is to stop undifferentiated cells, which you know as cancer,
230
742000
3000
๋ฏธ๋ถ„ํ™”์„ธํฌ๋ฅผ ๋ง‰๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค, ์ฆ‰ ์•”์„ธํฌ๋ฅผ์š”.
12:26
and one of the things we're going to learn how to do
231
746000
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ๋ฐฐ์šธ๊ฒƒ๋“ค ์ค‘์— ํ•˜๋‚˜๋Š”,
12:28
is how to reprogram cells like stem cells
232
748000
3000
์–ด๋–ป๊ฒŒ ์ค„๊ธฐ์„ธํฌ๋ฅผ ๋ฆฌํ”„๋กœ๊ทธ๋žจํ•˜๋Š” ๊ฒƒ์ด๋ƒ ํ•˜๋Š” ๊ฒƒ์ธ๋ฐ,
12:31
in such a way that they express bone, stomach, skin, pancreas.
233
751000
6000
๊ทธ ์„ธํฌ๋“ค์ด ๋ผˆ, ์œ„, ํ”ผ๋ถ€, ์ทŒ์žฅ๋“ค์„ ๋‚˜ํƒ€๋‚ด๊ฒŒ๋” ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ์š”.
12:38
And you are likely to be wandering around -- and your children --
234
758000
3000
์—ฌ๋Ÿฌ๋ถ„๊ณผ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ž์‹๋“ค์€ --
12:41
on regrown body parts in a reasonable period of time,
235
761000
3000
์–ผ๋งˆ ํ›„๋ฉด ์ƒˆ๋กœ ์ž๋ž€ ๋ชธ์˜ ์žฅ๊ธฐ๋‚˜ ์ผ๋ถ€๋ฅผ ์ฃผ์œ„์—์„œ ๋ณด๊ฒŒ ๋  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค,
12:45
in some places in the world where they don't stop the research.
236
765000
3000
์„ธ๊ณ„ ์–ด๋”˜๊ฐ€ ์—ฐ๊ตฌ๋ฅผ ์ค‘๋‹จํ•˜์ง€ ์•Š๋Š” ๊ณณ์—์„œ ๋ง์ด์—์š”.
12:50
How's this stuff work? If each of you differs
237
770000
5000
์ด๊ฒƒ์ด ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ• ๊นŒ์š”? ๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„ ๊ฐ์ž๊ฐ€
12:55
from the person next to you by one in a thousand, but only three percent codes,
238
775000
3000
์˜†์— ๊ณ„์‹  ๋ถ„ํ•˜๊ณ  1,000๋ถ„์˜ 1๋งŒํผ, ๊ทธ๋ฆฌ๊ณ  ์ฝ”๋“œ๋กœ๋Š” 3% ์ •๋„ ๋‹ค๋ฅด๋ฉด,
12:58
which means it's only one in a thousand times three percent,
239
778000
2000
1,000๋ถ„์˜ 1 ๊ณฑํ•˜๊ธฐ 3% ์ •๋„๊ฐ€ ๋‹ค๋ฅด๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
13:00
very small differences in expression and punctuation
240
780000
3000
ํ‘œํ˜„๊ณผ ๋๋งบ์Œ(๊ตฌ๋‘๋ฒ•)์— ์žˆ์–ด์„œ ๊ต‰์žฅํžˆ ์ž‘์€ ์ฐจ์ด๊ฐ€
13:03
can make a significant difference. Take a simple declarative sentence.
241
783000
3000
์˜๋ฏธ์žˆ๋Š” ์ฐจ์ด์ ์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค. ์ด ๊ฐ„๋‹จํ•œ ์„œ์ˆ ๋ฌธ์„ ์˜ˆ๋กœ ๋“ค๊ป˜์š”.
13:08
(Laughter)
242
788000
2000
(์›ƒ์Œ) --๋ฌธ์žฅ์— ์ฃผ๋ชฉํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฒˆ์—ญ๋ถˆ๊ฐ€
13:10
Right?
243
790000
1000
๋งž์ง€์š”?
13:11
That's perfectly clear. So, men read that sentence,
244
791000
4000
์ด ๋ฌธ์žฅ์€ ์™„๋ฒฝํ•˜๊ฒŒ ๋ถ„๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋‚จ์ž๋“ค์€ ๊ทธ ๋ฌธ์žฅ์„ ์ด๋ ‡๊ฒŒ ์ฝ์–ด์š”,
13:15
and they look at that sentence, and they read this.
245
795000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์€ ๋ฌธ์žฅ์„ ๋ณด๊ณ  ์ด๋ ‡๊ฒŒ ์ฝ์–ด์š”. (๋ฌธ์žฅ์˜ ๋Š์Œ์— ์ฃผ๋ชฉํ•˜์„ธ์š”~) "์—ฌ์ž๋Š”, ๊ทธ๋…€์˜ ๋‚จ์ž๊ฐ€ ์—†์„๋•Œ, ์•„๋ฌด๊ฒƒ๋„ ์•„๋‹ˆ๋‹ค."
13:23
Okay?
246
803000
1000
๊ทธ๋ ‡์ฃ ?
13:24
Now, women look at that sentence and they say, uh-uh, wrong.
247
804000
4000
๊ทธ๋Ÿฐ๋ฐ ์—ฌ์ž๋“ค์€ ๋ฌธ์žฅ์„ ๋ณด๊ณ  "์–ด-์–ด, ํ‹€๋ ค" ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
13:28
This is the way it should be seen.
248
808000
2000
์ด๋ ‡๊ฒŒ ๋ณด์—ฌ์•ผ ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ•˜์ง€์š”. (again, ๋ฌธ์žฅ์˜ ๋Š์Œ์— ์ฃผ๋ชฉ~) "์—ฌ์ž: ๊ทธ๋…€๊ฐ€ ์—†์œผ๋ฉด ๋‚จ์ž๋Š” ์•„๋ฌด๊ฒƒ๋„ ์•„๋‹ˆ๋‹ค."
13:32
(Laughter)
249
812000
8000
(์›ƒ์Œ)
13:40
That's what your genes are doing.
250
820000
1000
์ด๊ฒŒ ๋ฐ”๋กœ ์—ฌ๋Ÿฌ๋ถ„์˜ ์œ ์ „์ž๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์—์š”.
13:41
That's why you differ from this person over here by one in a thousand.
251
821000
5000
์ด๊ฒƒ์€ ์—ฌ๋Ÿฌ๋ถ„์ด ์—ฌ๊ธฐ ์•‰์•„์žˆ๋Š” ์‚ฌ๋žŒ๊ณผ ์ฒœ๋ถ„์˜ ์ผ๋งŒํผ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์ด์—์š”.
13:46
Right? But, you know, he's reasonably good looking, but...
252
826000
3000
๋งž์ง€์š”? ๊ทธ๋Ÿฐ๋ฐ, ์•Œ๋‹ค์‹œํ”ผ, ์ด ๋‚จ์ž๋Š” ๊ฝค ์ž˜ ์ƒ๊ฒผ์–ด์š”...
13:49
I won't go there.
253
829000
2000
์ด๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ๋Š” ๋ง์„ ์•ˆํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
13:52
You can do this stuff even without changing the punctuation.
254
832000
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๊ตฌ๋‘๋ฒ•์„ ์‚ฌ์šฉํ•˜๊ธฐ ์•Š๊ณ ๋„ ์ด๊ฑธ ํ•  ์ˆ˜ ์žˆ์–ด์š”
13:56
You can look at this, right?
255
836000
4000
์—ฌ๋Ÿฌ๋ถ„์€ ์ด๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”, ๊ทธ๋ ‡์ง€์š”?
14:00
And they look at the world a little differently.
256
840000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์€ ์„ธ์ƒ์„ ์ข€ ๋” ๋‹ค๋ฅด๊ฒŒ ๋ณด๊ณ  ์žˆ์–ด์š”.
14:02
They look at the same world and they say...
257
842000
2000
๊ทธ๋“ค์€ ๊ฐ™์€ ์„ธ์ƒ์„ ๋ณด๊ณ  ์ด๋ ‡๊ฒŒ ๋งํ•ฉ๋‹ˆ๋‹ค...
14:04
(Laughter)
258
844000
6000
(์›ƒ์Œ)
14:10
That's how the same gene code -- that's why you have 30,000 genes,
259
850000
4000
์ด๊ฒƒ์ด ์–ด๋–ป๊ฒŒ ๊ฐ™์€ ์œ ์ „์ž ์ฝ”๋“œ๊ฐ€ -- ์ด๊ฒƒ์ด ์—ฌ๋Ÿฌ๋ถ„์ด 3๋งŒ๊ฐœ์˜ ์œ ์ „์ž๋ฅผ ๊ฐ–๊ณ ์žˆ๋Š” ์ด์œ ์ด๊ตฌ์š”,
14:14
mice have 30,000 genes, husbands have 30,000 genes.
260
854000
3000
์ƒ์ฅ๋Š” 3๋งŒ๊ฐœ์˜ ์œ ์ „์ž, ๋‚จํŽธ๋“ค๋„ 3๋งŒ ๊ฐœ์˜ ์œ ์ „์ž๋ฅผ ๊ฐ–๊ณ  ์žˆ์–ด์š”.
14:17
Mice and men are the same. Wives know that, but anyway.
261
857000
3000
์ƒ์ฅ์™€ ๋‚จ์ž๋“ค์€๊ฐ™์•„์š”. ๋ถ€์ธ๋“ค๋„ ์•Œ๊ณ ์žˆ์ง€์š”, ํ•˜์ง€๋งŒ ์–ด์จŒ๋“ .
14:21
You can make very small changes in gene code
262
861000
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์œ ์ „์ž ์ฝ”๋“œ์— ๋งค์šฐ ์ž‘์€ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์ˆ˜ ์žˆ๊ณ ,
14:23
and get really different outcomes,
263
863000
2000
๋งค์šฐ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์–ด์š”,
14:27
even with the same string of letters.
264
867000
2000
์‹ฌ์ง€์–ด๋Š” ๊ฐ™์€ ์—ผ๊ธฐ๋ฐฐ์—ด๋“ค๋กœ ๋ถ€ํ„ฐ ๋ง์ด์ฃ .
14:31
That's what your genes are doing every day.
265
871000
2000
์ด๊ฒƒ์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ์œ ์ „์ž๋“ค์ด ๋งค์ผ ํ•˜๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
14:34
That's why sometimes a person's genes
266
874000
2000
๊ทธ๋ž˜์„œ ์–ด๋–ค๊ฒฝ์šฐ์— ์‚ฌ๋žŒ์˜ ์œ ์ „์ž๊ฐ€
14:36
don't have to change a lot to get cancer.
267
876000
2000
๋งŽ์ด ๋ฐ”๋€Œ์ง€ ์•Š๊ณ ์„œ๋„ ์•”์„ ๊ฐ–์„ ์ˆ˜ ์žˆ๋Š”๊ฒƒ์ด์—์š”.
14:42
These little chippies, these things are the size of a credit card.
268
882000
4000
์ด ์ž‘์€ ์น˜ํ”ผ๋“ค์€ ํฌ๋ ˆ๋”ญ์นด๋“œ ํฌ๊ธฐ๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
14:47
They will test any one of you for 60,000 genetic conditions.
269
887000
2000
๊ทธ๋“ค์€ ์—ฌ๋Ÿฌ๋ถ„์˜ 6๋งŒ๊ฐœ์˜ ์œ ์ „์  ์กฐ๊ฑด์„ ํ…Œ์ŠคํŠธ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:50
That brings up questions of privacy and insurability
270
890000
3000
๊ทธ๊ฒƒ์€ ์‚ฌ์ƒํ™œ๊ณผ ๋ณดํ—˜์ ์ธ ์งˆ๋ฌธ์„ ์•ผ๊ธฐํ•˜๊ณ ,
14:53
and all kinds of stuff, but it also allows us to start going after diseases,
271
893000
2000
๋˜ ๋งŽ์€ ์ข…๋ฅ˜์˜ ๋‹ค๋ฅธ ์งˆ๋ฌธ๋„ ์•ผ๊ธฐํ•  ๊ฒƒ์ด์—์š”, ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์€ ๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ์งˆ๋ณ‘์„ ๋”ฐ๋ผ๊ฐˆ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค.
14:56
because if you run a person who has leukemia through something like this,
272
896000
3000
์™œ๋ƒํ•˜๋ฉด ๋งŒ์•ฝ ๋ฐฑํ˜ˆ๋ณ‘์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ์„ ์ด๊ฒƒ์œผ๋กœ ํ…Œ์ŠคํŠธํ•˜๋ฉด,
15:00
it turns out that three diseases with
273
900000
2000
3๊ฐ€์ง€ ์งˆ๋ณ‘๋“ค๋กœ ํŒ๋ช…์ด ๋˜์ง€์š”
15:02
completely similar clinical syndromes
274
902000
4000
์„œ๋กœ ๋งค์šฐ ๋น„์Šทํ•œ ์ž„์ƒ์  ์ฆ์ƒ์„ ๊ฐ–๊ณ ์„œ
15:06
are completely different diseases.
275
906000
2000
์™„์ „ํžˆ ๋‹ค๋ฅธ ์งˆ๋ณ‘๋“ค์ด์š”.
15:08
Because in ALL leukemia, that set of genes over there over-expresses.
276
908000
3000
์™œ๋ƒํ•˜๋ฉด, ALL ๋ฐฑํ˜ˆ๋ณ‘์€ ์ €๊ธฐ ๋ณด์ด๋Š” ์œ ์ „์ž ์„ธํŠธ๋“ค์ด ๋„˜์น˜๊ฒŒ ๋ฐœํ˜„๋ฉ๋‹ˆ๋‹ค.
15:11
In MLL, it's the middle set of genes,
277
911000
2000
MLL ๋ฐฑํ˜ˆ๋ณ‘์€ ์ค‘๊ฐ„ ์„ธํŠธ์˜ ์œ ์ „์ž๋“ค์ด๊ตฌ์š”,
15:13
and in AML, it's the bottom set of genes.
278
913000
2000
AML ์˜ ๊ฒฝ์šฐ๋Š”, ์•„๋žซ๋ถ€๋ถ„ ์œ ์ „์ž ์„ธํŠธ๊ฐ€ ๋ฐœํ˜„๋ฉ๋‹ˆ๋‹ค.
15:15
And if one of those particular things is expressing in your body,
279
915000
5000
๋งŒ์•ฝ ์ € ์„ธํŠธ์ค‘ํ•˜๋‚˜๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์˜ ๋ชธ์†์— ๋ฐœํ˜„๋˜๋ฉด,
15:20
then you take Gleevec and you're cured.
280
920000
2000
์—ฌ๋Ÿฌ๋ถ„์€ Gleevec์„ ๋จน๊ณ  ๋‚ซ์Šต๋‹ˆ๋‹ค.
15:23
If it is not expressing in your body,
281
923000
2000
๋งŒ์•ฝ ๋ฐœํ˜„์ด ๋˜์ง€์•Š์œผ๋ฉด,
15:25
if you don't have one of those types --
282
925000
2000
๋งŒ์•ฝ ๊ทธ๋Ÿฌํ•œ ์ข…๋ฅ˜๋“ค ์ค‘ ํ•˜๋‚˜๊ฐ€ ์•„๋‹ˆ๋ฉด--
15:27
a particular one of those types -- don't take Gleevec.
283
927000
3000
์ €๋“ค ์ข…๋ฅ˜๋“ค์ค‘ ํŠน์ •ํ•œ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค-- Gleevec ์„ ๋จน์ง€๋งˆ์„ธ์š”
15:30
It won't do anything for you.
284
930000
1000
๊ทธ๊ฒƒ์€ ๋‹น์‹ ์„ ์œ„ํ•ด์„œ ์•„๋ฌด๋Ÿฐ ๋„์›€๋„ ๋˜์ง€ ์•Š์„๊ฒ๋‹ˆ๋‹ค.
15:32
Same thing with Receptin if you've got breast cancer.
285
932000
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์œ ๋ฐฉ์•”์„ ๊ฐ€์กŒ๋‹ค๋ฉด Receptin ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€ ์ž…๋‹ˆ๋‹ค.
15:35
Don't have an HER-2 receptor? Don't take Receptin.
286
935000
3000
HER-2 ์ˆ˜์šฉ์ฒด๊ฐ€ ์—†์œผ๋ฉด, Receptin ์„ ๋“œ์‹œ์ง€ ๋งˆ์„ธ์š”.
15:38
Changes the nature of medicine. Changes the predictions of medicine.
287
938000
4000
์•ฝ์˜ ๋ณธ์„ฑ์„ ๋ณ€ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์•ฝ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€๊ฐ€ ๋ณ€ํ™” ํ•ฉ๋‹ˆ๋‹ค.
15:42
Changes the way medicine works.
288
942000
2000
์•ฝ์ด ์ž‘์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๋ณ€ํ™”ํ•ฉ๋‹ˆ๋‹ค.
15:44
The greatest repository of knowledge when most of us went to college
289
944000
3000
์šฐ๋ฆฌ ๋Œ€๋ถ€๋ถ„์ด ๋Œ€ํ•™์— ์žˆ์„๋•Œ ์ง€์‹์˜ ์ œ์ผ ํฐ ์ €์žฅ๊ณ ๋Š”,
15:47
was this thing, and it turns out that
290
947000
2000
์ด๊ฒƒ์–ด์—ˆ์Šต๋‹ˆ๋‹ค, ๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ํŒ๋ช…๋œ๊ฑด์€
15:49
this is not so important any more.
291
949000
2000
์ด๊ฒƒ์ด ๋”์ด์ƒ ๋ณ„๋กœ ์ค‘์š”ํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด์ง€์š”.
15:51
The U.S. Library of Congress, in terms of its printed volume of data,
292
951000
4000
๋ฏธ๊ตญ ์˜ํšŒ ๋„์„œ๊ด€, ์ธ์‡„๋œ ์ •๋ณด์˜ ์–‘์œผ๋กœ ๋”ฐ์ง„๋‹ค๋ฉด
15:55
contains less data than is coming out of a good genomics company
293
955000
4000
์ข‹์€ ์œ ์ „๊ณตํ•™ ํšŒ์‚ฌ์—์„œ ํ˜ผ์„ฑ๋ฌผ์„ ํ† ๋Œ€๋กœ ๋งค๋‹ฌ์— ๋‚˜์˜ค๋Š” ๋ฐ์ดํƒ€์˜ ์–‘๋ณด๋‹ค
15:59
every month on a compound basis.
294
959000
3000
์ ์€ ์–‘์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค
16:02
Let me say that again: A single genomics company
295
962000
3000
์ œ๊ฐ€ ๋‹ค์‹œ ๋งํ•˜๋„๋ก ํ•˜์ฃ : ํ•˜๋‚˜์˜ ์œ ์ „๊ณตํ•™ ํšŒ์‚ฌ์˜
16:05
generates more data in a month, on a compound basis,
296
965000
3000
ํ•œ๋‹ฌ์— ๋‹ค ํ•ฉ์นœ ์ •๋ณด์˜ ์–‘์€
16:08
than is in the printed collections of the Library of Congress.
297
968000
3000
์˜ํšŒ๋„์„œ๊ด€์˜ ์ธ์‡„ ์ปฌ๋ ‰์…˜์˜ ์–‘๋ณด๋‹ค ๋งŽ์•„์š”.
16:12
This is what's been powering the U.S. economy. It's Moore's Law.
298
972000
4000
์ด๊ฒƒ์ด ๋ฏธ๊ตญ๊ฒฝ์ œ๋ฅผ ์ด๋„๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Moore์˜ ๋ฒ•์น™ ์ด์ง€์š”.
16:16
So, all of you know that the price of computers halves every 18 months
299
976000
5000
์ž, ์—ฌ๋Ÿฌ๋ถ„๋“ค ๋ชจ๋‘๋Š” ์ปดํ“จํ„ฐ๊ฐ’์ด 18๊ฐœ์›”๋งˆ๋‹ค ๋ฐ˜๊ฐ’์ด ๋˜๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
16:21
and the power doubles, right?
300
981000
2000
๊ทธ๋ฆฌ๊ณ  ์ „๊ธฐ์„ธ๋Š” ๋‘๋ฐฐ๊ฐ€ ๋˜์–ด์š”, ๋งž์ง€์š”?
16:23
Except that when you lay that side by side with the speed
301
983000
4000
์ด ๋‘ ๊ทธ๋ž˜ํ”„๋ฅผ ์˜†์—๋†“๊ณ  ๋น„๊ตํ•˜๋ฉด,
16:27
with which gene data's being deposited in GenBank,
302
987000
3000
์œ ์ „์ •๋ณด๊ฐ€ GenBank์— ์Œ“์ด๋Š” ์†๋„๋กœ ๋†“๊ณ  ๋ดค์„๋•Œ,
16:30
Moore's Law is right here: it's the blue line.
303
990000
4000
Moore ์˜ ๋ฒ•์น™์ด ์—ฌ๊น„์–ด์š”: ํŒŒ๋ž€์„ ์ด์—์š”.
16:35
This is on a log scale, and that's what superexponential growth means.
304
995000
4000
์ด๋Ÿฐ ๋กœ๊ทธ ์Šค์ผ€์ผ์ด๊ณ , ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์ธ ์„ฑ์žฅ์ด๋ผ๋Š”๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
16:39
This is going to push computers to have to grow faster
305
999000
4000
์ด๊ฒƒ์€ ์ปดํ“จํ„ฐ๊ฐ€ ๋” ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅํ•˜๋„๋ก ์ž๊ทนํ•˜๋ ค๋Š” ๊ฒƒ์ธ๋ฐ,
16:43
than they've been growing, because so far,
306
1003000
2000
์™œ๋ƒํ•˜๋ฉด ์ง€๊ธˆ๊นŒ์ง€ ์„ฑ์žฅํ•ด์˜จ ๊ฒƒ์€,
16:45
there haven't been applications that have been required
307
1005000
3000
Moore ์˜ ๋ฒ•์น™๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๊ฐ€์•ผํ•  ํ•„์š”๊ฐ€ ์žˆ๋Š”
16:48
that need to go faster than Moore's Law. This stuff does.
308
1008000
3000
์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์—†์—ˆ์–ด์š”. ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ๊ทธ๋Ÿฐ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ํ•„์š”๋กœ ํ•ฉ๋‹ˆ๋‹ค.
16:51
And here's an interesting map.
309
1011000
2000
์—ฌ๊ธฐ ํฅ๋ฏธ๋กœ์šด ์ง€๋„๊ฐ€ ์žˆ์–ด์š”.
16:53
This is a map which was finished at the Harvard Business School.
310
1013000
4000
์ด๊ฒƒ์€ Harvard ๊ฒฝ์ œํ•™๊ต์—์„œ ๋งŒ๋“ค์–ด์ง„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:57
One of the really interesting questions is, if all this data's free,
311
1017000
3000
์ •๋ง ์žฌ๋ฏธ์žˆ๋Š” ์งˆ๋ฌธ ์ค‘์— ํ•˜๋‚˜๋Š”, ๋งŒ์•ฝ ์ด ๋ชจ๋“  ์ •๋ณด๊ฐ€ ๋ฌด๋ฃŒ๋ผ๋ฉด,
17:00
who's using it? This is the greatest public library in the world.
312
1020000
4000
๋ˆ„๊ฐ€ ์‚ฌ์šฉํ• ๊นŒ์š”? ์ด๊ฒƒ์€ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ๋„์„œ๊ด€์ด์—์š”.
17:04
Well, it turns out that there's about 27 trillion bits
313
1024000
3000
๊ทผ๋ฐ, ๋Œ€๋žต 27์กฐ์˜ ๋น„ํŠธ๊ฐ€
17:07
moving inside from the United States to the United States;
314
1027000
3000
๋ฏธ๊ตญ๋‚ด์—์„œ ์›€์ง์ด๊ณ  ์žˆ๋‹ค๊ณ  ํŒ๋ช…์ด ๋‚ฉ๋‹ˆ๋‹ค;
17:10
about 4.6 trillion is going over to those European countries;
315
1030000
4000
๋Œ€๋žต 4.6์กฐ๊ฐ€ ์œ ๋Ÿฝ๋‚˜๋ผ๋“ค๋กœ ๊ฐ€๊ตฌ์š”;
17:14
about 5.5's going to Japan; there's almost no communication
316
1034000
3000
๋Œ€๋žต 5.5 ์กฐ๋Š” ์ผ๋ณธ์œผ๋กœ ๊ฐ€๋Š”๋ฐ; ๊ฑฐ์˜ ์˜์‚ฌ์†Œํ†ต์€ ์—†์–ด์š”,
17:17
between Japan, and nobody else is literate in this stuff.
317
1037000
4000
์ผ๋ณธ๊ณผ์˜ ์‚ฌ์ด์—, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ๊ทธ ๋ˆ„๊ตฌ๋„ ์ด๊ฒƒ์„ ์ž˜ ์•Œ๊ณ  ์žˆ์ง€ ์•Š์•„์š”.
17:21
It's free. No one's reading it. They're focusing on the war;
318
1041000
5000
์ด๊ฑด ๋ฌด๋ฃŒ์—์š”. ์•„๋ฌด๋„ ์ฝ์ง€ ์•Š๊ณ  ์žˆ์ฃ . ์‚ฌ๋žŒ๋“ค์€ ์ „์Ÿ์— ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค;
17:26
they're focusing on Bush; they're not interested in life.
319
1046000
2000
Bush ์— ์ฃผ๋ชฉํ•˜๊ณ ; ์ƒ๋ช…์— ๊ด€์‹ฌ์ด์—†์–ด์š”.
17:29
So, this is what a new map of the world looks like.
320
1049000
2000
์ด ์ƒˆ๋กœ์šด ์ง€๋„๋Š” ์„ธ๊ณ„๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณด์ด๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:32
That is the genomically literate world. And that is a problem.
321
1052000
6000
์ด๊ฒƒ์ด ์œ ์ „์ ์œผ๋กœ ๊ธ€์„ ์ฝ๊ณ ์“ฐ๋Š” ์„ธ๊ณ„์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ทธ๊ฒƒ์ด ๋ฌธ์ œ๊ฐ€ ๋˜์ง€์š”.
17:38
In fact, it's not a genomically literate world.
322
1058000
2000
์‚ฌ์‹ค, ์ด๊ฑด ์œ ์ „์ ์œผ๋กœ ๊ธ€์„ ์•„๋Š” ์„ธ๊ณ„๋Š” ์•„๋‹ˆ์—์š”.
17:40
You can break this out by states.
323
1060000
2000
์ด๊ฒƒ์„ ์ฃผ๋ณ„๋กœ ๋‚˜๋ˆŒ์ˆ˜ ์žˆ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
17:42
And you can watch states rise and fall depending on
324
1062000
2000
์ด๊ฒƒ์˜ ์ฃผ๋ณ„ ์ฆ๊ฐ€์™€ ๊ฐ์†Œ๋„ ๋ณผ์ˆ˜ ์žˆ๊ณ 
17:44
their ability to speak a language of life,
325
1064000
2000
์ƒ๋ช…์˜ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ• ์ˆ˜์žˆ๋Š” ๋Šฅ๋ ฅ๋„ ๋ณผ ์ˆ˜์žˆ๊ณ ,
17:46
and you can watch New York fall off a cliff,
326
1066000
2000
๋‰ด์š•์ด ๋’ค์ณ์ง€๋Š” ๊ฑธ ๋ณผ ์ˆ˜ ์žˆ๊ณ ,
17:48
and you can watch New Jersey fall off a cliff,
327
1068000
2000
๋‰ด์ ธ์ง€๊ฐ€ ๋’ค์ณ์ง€๋Š”๊ฑธ ๋ณผ ์ˆ˜ ์žˆ๊ณ ,
17:50
and you can watch the rise of the new empires of intelligence.
328
1070000
3000
๊ทธ๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ์ง€์‹์™•๊ตญ์ด ์ƒˆ์›Œ์ง€๋Š”๊ฒƒ๋„ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”.
17:54
And you can break it out by counties, because it's specific counties.
329
1074000
3000
๋˜ํ•œ ์—ฌ๋Ÿฌ๋ถ„์€ ๊ทธ๊ฒƒ์„ ๊ตญ๊ฐ€๋ณ„๋กœ ๋ถ„์‚ฐ์‹œํ‚ฌ ์ˆ˜๋„ ์žˆ์–ด์š” ์™œ๋ƒํ•˜๋ฉด ๊ทธ๊ฒƒ์€ ํŠน์ •ํ•œ ๊ตญ๊ฐ€๋“ค์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
17:57
And if you want to get more specific,
330
1077000
2000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ๋”์šฑ ํŠน์ •ํ•œ ๊ฒƒ์„ ์–ป๊ณ  ์‹ถ์œผ์‹œ๋ฉด,
17:59
it's actually specific zip codes.
331
1079000
2000
๊ทธ๊ฒƒ์€ ์‹ค์ œ๋กœ ์šฐํŽธ๋ฒˆํ˜ธ๋กœ๋„ ๋ณผ ์ˆ˜ ์žˆ์ง€์š”.
18:01
(Laughter)
332
1081000
2000
(์›ƒ์Œ)
18:03
So, you want to know where life is happening?
333
1083000
3000
์–ด๋””์„œ ์ƒ๋ช…์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋Š”์ง€ ์•Œ๊ณ  ์‹ถ๋‚˜์š”?
18:06
Well, in Southern California it's happening in 92121. And that's it.
334
1086000
5000
์Œ, ๋‚จ ๊ฐ€์ฃผ์—์„œ๋Š” 92121 ์—์„œ ์ด๊ตฐ์š”. ๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒŒ ์ „๋ถ€์ž…๋‹ˆ๋‹ค.
18:12
And that's the triangle between Salk, Scripps, UCSD,
335
1092000
5000
์ด๊ฒƒ์€ Salk, Scripps, UCSD ๋ฅผ ์ž‡๋Š” ์‚ผ๊ฐํ˜•์ธ๋ฐ์š”,
18:17
and it's called Torrey Pines Road.
336
1097000
2000
Torrey Pines ๋„๋กœ๋ผ๊ณ  ๋ถˆ๋ ค์ง‘๋‹ˆ๋‹ค.
18:19
That means you don't need to be a big nation to be successful;
337
1099000
3000
๋ฌด์Šจ๋ง์ด๋ƒ๋ฉด, ์—ฌ๋Ÿฌ๋ถ„์ด ์„ฑ๊ณตํ•˜๊ธฐ์œ„ํ•ด ์ปค๋‹ค๋ž€ ๊ตญ๊ฐ€์ผ ํ•„์š”๊ฐ€ ์—†๋‹ค๋Š”๊ฒƒ์ด์—์š”;
18:22
it means you don't need a lot of people to be successful;
338
1102000
2000
๊ทธ๊ฒƒ์ด ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์„ฑ๊ณต์„ ์œ„ํ•ด์„œ๋Š” ๋งŽ์€ ์‚ฌ๋žŒ๋„ ํ•„์š” ์—†์œผ๋ฉฐ;
18:24
and it means you can move most of the wealth of a country
339
1104000
3000
๊ทธ๊ฒƒ์ด ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ๊ตญ๊ฐ€์˜ ๋ถ€์˜ ๋Œ€๋ถ€๋ถ„์„ ์—ฌ๋Ÿฌ๋ถ„์ด ์˜ฎ๊ธธ ์ˆ˜ ์žˆ๋„๋ก ์žˆ๋‹ค๋Š”๊ฒƒ์ด์ฃ ,
18:27
in about three or four carefully picked 747s.
340
1107000
3000
์‹ ์ค‘ํžˆ ๊ณ ๋ฅธ ์„œ ๋„ˆ๊ฐœ์˜ 747 (ํ•ญ๊ณตํŽธ) ์œผ๋กœ ์ธํ•ด์„œ์š”.
18:31
Same thing in Massachusetts. Looks more spread out but --
341
1111000
4000
๋ฉ”์‚ฌ์ถ”์„ธ์ธ ์—์„œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค. ์•ฝ๊ฐ„ ๋” ๋„“๊ฒŒ ๋ถ„ํฌ๋œ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ ๊ทธ๋ž˜๋„--
18:35
oh, by the way, the ones that are the same color are contiguous.
342
1115000
3000
์•„ ์ฐธ, ๊ฐ™์€ ์ƒ‰๊น”๋“ค์˜ ๊ฒƒ๋“ค์€ ์ธ์ ‘ํ•ด์žˆ๋Š” ๊ณณ์ด์—์š”.
18:39
What's the net effect of this?
343
1119000
2000
์ด๊ฒƒ์˜ ์ตœ์ข…์ ์ธ ์˜ํ–ฅ์ด ๋ฌด์—‡์ด๋ƒ๊ตฌ์š”?
18:41
In an agricultural society, the difference between
344
1121000
2000
๋†์—…์‚ฌํšŒ์•ˆ์—์„œ,
18:43
the richest and the poorest,
345
1123000
1000
๋ถ€์ž๋“ค๊ณผ ๊ฐ€๋‚œํ•œ์ž๋“ค์˜ ์ฐจ์ด๋Š”,
18:45
the most productive and the least productive, was five to one. Why?
346
1125000
4000
์ œ์ผ ์ƒ์‚ฐ์ ์ธ ์‚ฌ๋žŒ๋“ค๊ณผ ๊ทธ๋ ‡์ง€ ์•Š์€ ์‚ฌ๋žŒ๋“ค์˜ ์ฐจ์ด๋Š” 5 ๋Œ€ 1 ์ด์—ˆ์–ด์š”. ์™œ๋ƒ๊ตฌ์š”?
18:49
Because in agriculture, if you had 10 kids
347
1129000
2000
์™œ๋ƒ๋ฉด ๋†์—…์—์„œ๋Š”, ๋งŒ์•ฝ 10๋ช…์˜ ์ž์‹์ด ์žˆ๋‹ค๋ฉด,
18:51
and you grow up a little bit earlier and you work a little bit harder,
348
1131000
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์กฐ๊ธˆ ์ผ์ฐ์ผ์–ด๋‚˜ ์กฐ๊ธˆ ๋” ๋งŽ์ด ์ผ์„ ํ•˜๋ฉด,
18:54
you could produce about five times more wealth, on average,
349
1134000
2000
ํ‰๊ท ์ ์œผ๋กœ, ์•„๋งˆ 5๋ฐฐ๋Š” ๋”์šฑ ์ƒ์‚ฐ์„ ํ•  ์ˆ˜ ์žˆ์—ˆ์„๊ฒ๋‹ˆ๋‹ค.
18:56
than your neighbor.
350
1136000
1000
๋‹น์‹ ์˜ ์ด์›ƒ๋ณด๋‹ค์š”.
18:58
In a knowledge society, that number is now 427 to 1.
351
1138000
3000
์ง€์‹์‚ฌํšŒ์—์„œ๋Š”, ๋น„์œจ์ด 427 ๋Œ€ 1 ์ž…๋‹ˆ๋‹ค.
19:02
It really matters if you're literate, not just in reading and writing
352
1142000
4000
์ด๊ฒƒ์ด ๋œปํ•˜๋Š” ๋ฐ”๋Š” ๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ธ€์„ ์•ˆ๋‹ค๋ฉด, ๋‹จ์‹œ ์ฝ๊ณ  ์“ฐ๋Š”๊ฒƒ ์ œ์™ธํ•˜๊ตฌ์š”,
19:06
in English and French and German,
353
1146000
2000
์˜์–ด๋กœ, ๋ถˆ์–ด๋กœ, ๋…์ผ์–ด๋กœ,
19:08
but in Microsoft and Linux and Apple.
354
1148000
2000
๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ๋‚˜ ๋ฆฌ๋ˆ…์Šค๋‚˜ ์• ํ”Œ๋กœ ๋ง์ด์ง€์š”.
19:11
And very soon it's going to matter if you're literate in life code.
355
1151000
4000
๊ณง ๋‹น์‹ ์ด ์ƒ๋ช…์˜ ์ฝ”๋“œ๋ฅผ ์•„๋Š๋ƒ๊ฐ€ ๋ฌธ์ œ๊ฐ€ ๋  ๊ฒƒ์ด์—์š”.
19:15
So, if there is something you should fear,
356
1155000
2000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„์ด ์ •๋ง ๋‘๋ ค์›Œํ• ๊ฒƒ์ด ์žˆ๋‹ค๋ฉด,
19:17
it's that you're not keeping your eye on the ball.
357
1157000
3000
๊ทธ๊ฑด ์—ฌ๋Ÿฌ๋ถ„์ด ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด์—์š”.
19:20
Because it really matters who speaks life.
358
1160000
2000
์™œ๋ƒํ•˜๋ฉด ๋ˆ„๊ฐ€ ์ƒ๋ช…์„ ๋งํ•˜๊ณ  ์žˆ๋Š๋ƒ๊ฐ€ ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์—์š”.
19:23
That's why nations rise and fall.
359
1163000
2000
์ด๊ฒƒ์ด ๊ตญ๊ฐ€๊ฐ€ ์˜ฌ๋ผ๊ฐ€๊ณ  ๋’ค์ณ์ง€๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.
19:26
And it turns out that if you went back to the 1870s,
360
1166000
3000
๋งŒ์•ฝ 1870๋…„์œผ๋กœ ๋Œ์•„๊ฐ€๋ฉด,
19:29
the most productive nation on earth was Australia, per person.
361
1169000
3000
์ œ์ผ ์ƒ์‚ฐ์ ์ธ ๋‚˜๋ผ๋Š”, ์‚ฌ๋žŒ๋‹น, ํ˜ธ์ฃผ์˜€์–ด์š”.
19:32
And New Zealand was way up there. And then the U.S. came in about 1950,
362
1172000
3000
๋‰ด์งˆ๋žœ๋“œ๋Š” ์ด ์œ„์— ์žˆ์—ˆ๊ณ , ๋ฏธ๊ตญ์€ 1950๋…„๋Œ€์— ์˜ฌ๋ผ์™”์–ด์š”.
19:35
and then Switzerland about 1973, and then the U.S. got back on top --
363
1175000
3000
์Šค์œ„์Šค๋Š” 1973๋…„๋„์—, ๊ทธ๋ฆฌ๊ณ  ๋ฏธ๊ตญ์ด ๋‹ค์‹œ ์œ„๋กœ ์˜ฌ๋ผ์™”์–ด์š”--
19:39
beat up their chocolates and cuckoo clocks.
364
1179000
2000
์Šค์œ„์Šค์˜ ์ดˆ์ฝœ๋ ›๊ณผ ๋ป๊พธ๊ธฐ ์‹œ๊ณ„๋ฅผ ์•ž์ง€๋ฅด๋ฉด์„œ.
19:43
And today, of course, you all know that the most productive nation
365
1183000
3000
๊ทธ๋ฆฌ๊ณ  ์˜ค๋Š˜, ๋ฌผ๋ก , ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์ œ์ผ ์ƒ์‚ฐ์ ์ธ ๋‚˜๋ผ๋ฅผ ์•Œ๊ณ  ์žˆ์–ด์š”,
19:46
on earth is Luxembourg, producing about one third more wealth
366
1186000
3000
๋ฃฉ์…ˆ๋ฒŒ๊ทธ์ด์ง€์š”, ๋ฏธ๊ตญ ๋ถ€์˜ 3๋ถ„์˜ 1์„ ๋” ๋ฒŒ๊ณ  ์žˆ๋Š” ๊ณณ์ด์š”,
19:49
per person per year than America.
367
1189000
2000
์‚ฌ๋žŒ๋‹น, ์—ฐ๊ฐ„.
19:52
Tiny landlocked state. No oil. No diamonds. No natural resources.
368
1192000
4000
์ž‘์€ ์œก์ง€์— ๋‘˜๋Ÿฌ์‹ธ์ธ ์ฃผ. ๊ธฐ๋ฆ„๋„ ์—†๊ณ , ๋‹ค์ด์•„๋ชฌ๋“œ๋„ ์—†๊ณ , ์ฒœ์—ฐ์ž์›๋„ ์—†์–ด์š”.
19:56
Just smart people moving bits. Different rules.
369
1196000
5000
๊ทธ๋ƒฅ ๋˜‘๋˜‘ํ•œ ์‚ฌ๋žŒ๋“ค์ด ๋น„ํŠธ๋ฅผ ์›€์ง์ด๊ณ ์žˆ์ง€์š”. ๋‹ค๋ฅธ ๋ฒ•์น™์ด ์ž‘์šฉํ•ด์š”.
20:02
Here's differential productivity rates.
370
1202000
3000
์ด๊ฒƒ์€ ์ƒ์‚ฐ๋ ฅ์˜ ๊ฒฉ์ฐจ ์†๋„์ž…๋‹ˆ๋‹ค.
20:06
Here's how many people it takes to produce a single U.S. patent.
371
1206000
3000
๋ฏธ๊ตญ ํŠนํ—ˆ๊ถŒ ํ•˜๋‚˜๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ ํ•„์š”ํ•œ ์‚ฌ๋žŒ๋“ค์ด์—์š”.
20:09
So, about 3,000 Americans, 6,000 Koreans, 14,000 Brits,
372
1209000
4000
๋ฏธ๊ตญ์ธ 3์ฒœ๋ช…, ํ•œ๊ตญ์ธ 6์ฒœ๋ช…, ์˜๊ตญ์ธ ๋งŒ4์ฒœ๋ช…,
20:13
790,000 Argentines. You want to know why Argentina's crashing?
373
1213000
3000
์•„๋ฅด์  ํ‹ด 79๋งŒ๋ช…. ์•„๋ฅด์  ํ‹ฐ๋‚˜๊ฐ€ ์™œ ์˜ˆ์™ธ์ ์ธ์ง€ ์•„์‹œ๋‚˜์š”?
20:16
It's got nothing to do with inflation.
374
1216000
2000
์ด๊ฒƒ์€ ์ธํ”Œ๋ ˆ์ด์…˜๊ณผ๋Š” ์ƒ๊ด€์ด ์—†์–ด์š”.
20:18
It's got nothing to do with privatization.
375
1218000
2000
๋ฏผ์˜ํ™” ์™€๋„ ์ƒ๊ด€์ด ์—†๊ตฌ์š”.
20:20
You can take a Harvard-educated Ivy League economist,
376
1220000
4000
Harvard ์—์„œ ๊ต์œก๋ฐ›์€ ์•„์ด๋น„๋ฆฌ๊ทธ์ถœ์‹  ๊ฒฝ์ œํ•™์ž๋ฅผ ๋ถˆ๋Ÿฌ์„œ,
20:24
stick him in charge of Argentina. He still crashes the country
377
1224000
3000
์•„๋ฅด์  ํ‹ฐ๋‚˜๋ฅผ ์šด์˜ํ•˜๊ฒŒ ํ•˜๋ฉด, ๊ทธ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์‹คํŒจํ•  ๊ฒƒ์ด์—์š”.
20:27
because he doesn't understand how the rules have changed.
378
1227000
2000
์™œ๋ƒ๋ฉด ๊ทธ๋Š” ๋ฒ•์น™๋“ค์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ–ˆ๋Š”์ง€ ๋ชจ๋ฅด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
20:30
Oh, yeah, and it takes about 5.6 million Indians.
379
1230000
3000
์•„ ์ฐธ, 560๋งŒ์˜ ์ธ๋„์ธ๋“ค์ด ํ•„์š”ํ•˜๊ตฌ์š”.
20:33
Well, watch what happens to India.
380
1233000
2000
์ž, ์ธ๋„๊ฐ€ ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ๋ณด์„ธ์š”.
20:35
India and China used to be 40 percent of the global economy
381
1235000
3000
์ธ๋„์™€ ์ค‘๊ตญ์€ ์„ธ๊ณ„ ๊ฒฝ์ œ์˜ 40%๋ฅผ ๋งก๊ณ  ์žˆ์—ˆ์–ด์š”,
20:38
just at the Industrial Revolution, and they are now about 4.8 percent.
382
1238000
5000
์‚ฐ์—…ํ˜๋ช… ์งํ›„์—์š”, ์ง€๊ธˆ์€ 4.8%์ž…๋‹ˆ๋‹ค.
20:43
Two billion people. One third of the global population producing 5 percent of the wealth
383
1243000
4000
2์กฐ์˜ ์‚ฌ๋žŒ๋“ค. ์„ธ๊ณ„์ธ๊ตฌ์˜ 3๋ถ„์˜ 1์ด 5%์˜ ๋ถ€๋ฅผ ๋งŒ๋“ค๊ณ  ์žˆ์–ด์š”
20:47
because they didn't get this change,
384
1247000
3000
์™œ๋ƒ๋ฉด ๊ทธ๋“ค์€ ์ด ๋ณ€ํ™”๋ฅผ ๋ฐ›์•„๋“ค์ด์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์ด๊ณ ,
20:50
because they kept treating their people like serfs
385
1250000
2000
๊ทธ๋“ค์€ ์‚ฌ๋žŒ๋“ค์„ ์•„์ง๋„ ๋†๋…ธ๋Œ€์ ‘์„ ํ•˜๊ธฐ๋•Œ๋ฌธ์ด์—์š”,
20:52
instead of like shareholders of a common project.
386
1252000
3000
ํ”ํ•œ ํ”„๋กœ์ ํŠธ์ผ์„ ๋งก์€ ์ฃผ์ฃผ์™€ ๊ฐ™๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š” ๋Œ€์‹ ์—์š”.
20:56
They didn't keep the people who were educated.
387
1256000
3000
๊ทธ๋“ค์€ ์ง€์‹์ธ๋“ค์„ ์ง€์ผœ์ฃผ์ง€ ์•Š์•˜์–ด์š”
20:59
They didn't foment the businesses. They didn't do the IPOs.
388
1259000
2000
๊ทธ๋“ค์€ ์‚ฌ์—…์„ ์‹œ์ž‘ํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. IPO (Initial Public Offering) ๋„ ํ•˜์ง€ ์•Š์•˜๊ตฌ์š”.
21:02
Silicon Valley did. And that's why they say
389
1262000
4000
์‹ค๋ฆฌ์ฝ˜ ๋ฐธ๋ฆฌ๋Š” ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๊ทธ๋“ค์ด
21:06
that Silicon Valley has been powered by ICs.
390
1266000
2000
์‹ค๋ฆฌ์ฝ˜ ๋ฐธ๋ฆฌ๋Š” IC๋กœ ๋ถ€ํ„ฐ ์ž‘๋™๋œ๋‹ค๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
21:09
Not integrated circuits: Indians and Chinese.
391
1269000
3000
์ง‘์ ํšŒ๋กœ๊ฐ€ ์•„๋‹ˆ๊ณ : ์ธ๋„์ธ๊ณผ ์ค‘๊ตญ์ธ์ด์š”.
21:12
(Laughter)
392
1272000
4000
(์›ƒ์Œ)
21:16
Here's what's happening in the world.
393
1276000
2000
์ด๊ฒƒ์ด ์„ธ๊ณ„์—์„œ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š”์ผ์ด์—์š”.
21:18
It turns out that if you'd gone to the U.N. in 1950,
394
1278000
3000
ํŒ๋ช…์ด ๋œ๊ฒƒ์€, ๋งŒ์•ฝ 1950๋…„๋„ U.N ์— ๊ฐ„๋‹ค๋ฉด,
21:21
when it was founded, there were 50 countries in this world.
395
1281000
2000
์„ธ์›Œ์กŒ์„ ๋‹น์‹ , ์ด ์„ธ๊ณ„์—” 50๊ฐœ์˜ ๊ตญ๊ฐ€๋“ค์ด ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์ฃ .
21:23
It turns out there's now about 192.
396
1283000
3000
์ง€๊ธˆ์€ 192๊ฐœ๊ฐ€ ์žˆ์ง€์š”.
21:26
Country after country is splitting, seceding, succeeding, failing --
397
1286000
4000
๊ตญ๊ฐ€๋“ค์€ ๋‚˜๋ˆ„๊ณ , ๋ถ„๋ฆฌ ๋…๋ฆฝํ•˜๊ณ , ์„ฑ๊ณตํ•˜๊ณ , ์‹คํŒจํ•˜๊ณ  ์žˆ์–ด์š”.
21:31
and it's all getting very fragmented. And this has not stopped.
398
1291000
5000
๋ชจ๋“ ๊ฒƒ์€ ๋‚˜๋‰˜์–ด์ง€๊ณ  ์žˆ์–ด์š”. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ๋ฉˆ์ถฐ์ง„์ ์ด ์—†๊ตฌ์š”.
21:36
In the 1990s, these are sovereign states
399
1296000
3000
1990๋…„๋Œ€์—” ๊ตฐ์ฃผํ˜•ํƒœ์˜ ์ฃผ๊ฐ€ ์žˆ์—ˆ์–ด์š”,
21:39
that did not exist before 1990.
400
1299000
2000
1990 ๋…„ ์ด์ „์—๋Š” ์—†์—ˆ๋˜ ๊ฒƒ์ด์š”.
21:41
And this doesn't include fusions or name changes or changes in flags.
401
1301000
5000
์ด๊ฒƒ์€ ํ•ฉ์นจ, ์ด๋ฆ„ ๊ณ ์น˜๊ธฐ, ๊นƒ๋ฐœ์˜ ๋ณ€ํ™”๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์€ ๊ฒƒ์ด์—์š”.
21:46
We're generating about 3.12 states per year.
402
1306000
3000
์šฐ๋ฆฌ๋Š” ๋งคํ•ด ๋Œ€๋žต 3.12 ์ฃผ๋ฅผ ๋งŒ๋“ค๊ณ ์žˆ์–ด์š”.
21:49
People are taking control of their own states,
403
1309000
3000
์‚ฌ๋žŒ๋“ค์€ ์ž์‹ ๋งŒ์˜ ์ฃผ๋ฅผ ์ปจํŠธ๋กค ํ•˜๊ณ  ์žˆ๊ณ ,
21:52
sometimes for the better and sometimes for the worse.
404
1312000
3000
์–ด๋–ค๋•Œ๋Š” ์ข‹๊ฒŒ ์–ด๋–ค๋•Œ๋Š” ๋‚˜์˜๊ฒŒ.
21:55
And the really interesting thing is,
405
1315000
2000
์ •๋ง ํฅ๋ฏธ๋กœ์šด๊ฒƒ์€,
21:57
you and your kids are empowered to build great empires,
406
1317000
2000
์—ฌ๋Ÿฌ๋ถ„๊ณผ ์—ฌ๋Ÿฌ๋ถ„ ์ž์‹๋“ค์ด ํ›Œ๋ฅญํ•œ ์™•๊ตญ์„ ๊ฑด์„คํ•  ๊ถŒํ•œ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์—์š”
21:59
and you don't need a lot to do it.
407
1319000
2000
๊ทธ๋ฆฌ๊ณ  ๋ณ„๋กœ ๋งŽ์€๊ฒƒ์„ ํ•  ํ•„์š”๋„ ์—†์–ด์š”.
22:01
(Music)
408
1321000
2000
(์Œ์•…)
22:03
And, given that the music is over, I was going to talk
409
1323000
3000
๊ทธ๋ฆฌ๊ณ , ์ด ์Œ์•…์ด ๋๋‚˜๋ฉด, ์ €๋Š”
22:06
about how you can use this to generate a lot of wealth,
410
1326000
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์–ด๋–ป๊ฒŒ ๋งŽ์€ ๋ถ€๋ฅผ ๋งŒ๋“ค์ˆ˜ ์žˆ๋Š”์ง€ ์–˜๊ธฐํ•˜๋ ค๊ณ  ํ–ˆ์–ด์š”.
22:09
and how code works.
411
1329000
2000
๊ทธ๋ฆฌ๊ณ  ์–ด๋–ป๊ฒŒ ์ฝ”๋“œ๊ฐ€ ์ž‘์šฉํ•˜๋Š”์ง€๋„์š”.
22:11
Moderator: Two minutes.
412
1331000
1000
(์ค‘์žฌ์ž: 2๋ถ„)
22:12
(Laughter)
413
1332000
2000
(์›ƒ์Œ)
22:14
Juan Enriquez: No, I'm going to stop there and we'll do it next year
414
1334000
4000
์•„๋‹ˆ์š”, ์ €๋Š” ์—ฌ๊ธฐ์„œ ๋งˆ์น˜๊ณ  ๋‚ด๋…„์— ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
22:18
because I don't want to take any of Laurie's time.
415
1338000
2000
์™œ๋ƒํ•˜๋ฉด ๋กœ๋ฆฌ์˜ ์‹œ๊ฐ„์„ ๋บ๊ณ  ์‹ถ์ง€ ์•Š๊ฑฐ๋“ ์š”
22:21
But thank you very much.
416
1341000
1000
์•„๋ฌดํŠผ ์ •๋ง ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค!
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7