Juan Enriquez: The life-code that will reshape the future

87,621 views ・ 2007-05-16

TED


請雙擊下方英文字幕播放視頻。

譯者: Chiru Chang 審譯者: Joan Liu
00:26
I'm supposed to scare you, because it's about fear, right?
0
26000
3000
在這充滿危機感的時代, 我應該要來嚇唬各位, 對吧?
00:30
And you should be really afraid,
1
30000
2000
你們也真的應該要感到害怕,
00:32
but not for the reasons why you think you should be.
2
32000
2000
但不是因為你們想像中的原因.
00:35
You should be really afraid that --
3
35000
2000
你們真正該擔心的是 --
00:37
if we stick up the first slide on this thing -- there we go -- that you're missing out.
4
37000
4000
如果我們把第一張投影片放出來 -- 就像這樣 -- 是你錯過了什麼.
00:43
Because if you spend this week thinking about Iraq and
5
43000
4000
因為如果你一個禮拜下來都在想著
00:47
thinking about Bush and thinking about the stock market,
6
47000
4000
伊拉克, 布希, 還有股市,
00:51
you're going to miss one of the greatest adventures that we've ever been on.
7
51000
2000
那你就會錯過人類到目前為止最偉大的探險之一.
00:54
And this is what this adventure's really about.
8
54000
2000
而這, 就是這個探險的主體.
00:56
This is crystallized DNA.
9
56000
4000
這是DNA(去氧核糖核酸)的結晶體.
01:00
Every life form on this planet -- every insect, every bacteria, every plant,
10
60000
3000
地球上的每一個生物體 -- 每一隻昆蟲, 每一個細菌, 每一棵植物,
01:03
every animal, every human, every politician -- (Laughter)
11
63000
3000
每一隻動物, 每一個人, 甚至每一個政治人物 -- (笑聲)
01:08
is coded in that stuff.
12
68000
2000
都是用這個玩意兒編碼.
01:10
And if you want to take a single crystal of DNA, it looks like that.
13
70000
4000
如果你想看個單一的DNA結晶體, 它長的就這個樣子.
01:14
And we're just beginning to understand this stuff.
14
74000
2000
而且我們才剛開始了解這個東西.
01:17
And this is the single most exciting adventure that we have ever been on.
15
77000
3000
這真的是我們所經歷過最令人興奮的探險.
01:21
It's the single greatest mapping project we've ever been on.
16
81000
3000
這是我們所從事過最偉大的圖譜建置工程.
01:24
If you think that the mapping of America's made a difference,
17
84000
2000
如果你們認為把美洲大陸放到地圖上這件事
01:26
or landing on the moon, or this other stuff,
18
86000
3000
或是登陸月球, 或是人類其他重大歷史事件對世界的發展有重大的影響,
01:29
it's the map of ourselves and the map of every plant
19
89000
3000
那麼, 我們人類, 還有每一棵植物,
01:32
and every insect and every bacteria that really makes a difference.
20
92000
3000
每一隻昆蟲, 還有每一個細菌的基因圖譜, 才會真正重大的改變世界.
01:35
And it's beginning to tell us a lot about evolution.
21
95000
3000
它已經開始告訴我們好多關於演化的事情.
01:40
(Laughter)
22
100000
4000
(笑聲)
01:44
It turns out that what this stuff is --
23
104000
2000
我們發現這東西 --
01:46
and Richard Dawkins has written about this --
24
106000
2000
Richard Dawkins 早就寫過這件事 --
01:48
is, this is really a river out of Eden.
25
108000
2000
這真的就是 "伊甸園之河".
01:50
So, the 3.2 billion base pairs inside each of your cells
26
110000
4000
所以, 你們每個人細胞中的32億對鹼基對
01:54
is really a history of where you've been for the past billion years.
27
114000
3000
其實就是你們過去幾億年來的歷史紀錄.
01:57
And we could start dating things,
28
117000
1000
所以我們可以開始鑑定日期,
01:58
and we could start changing medicine and archeology.
29
118000
3000
可以開始改變醫學和考古學.
02:02
It turns out that if you take the human species about 700 years ago,
30
122000
3000
就拿700年前的人類來說,
02:05
white Europeans diverged from black Africans in a very significant way.
31
125000
3000
我們就發現當時的歐洲人跟非洲人就有非常大的差異.
02:08
White Europeans were subject to the plague.
32
128000
5000
歐洲人當時飽受鼠疫侵害.
02:14
And when they were subject to the plague, most people didn't survive,
33
134000
3000
感染到鼠疫的人, 很少有人存活,
02:17
but those who survived had a mutation on the CCR5 receptor.
34
137000
4000
但只要是當時存活的人, 身上的CCR5接受子上都有個突變.
02:21
And that mutation was passed on to their kids
35
141000
2000
這個突變就被傳給他們的後代.
02:23
because they're the ones that survived,
36
143000
2000
因為只有擁有這種突變的人存活了下來,
02:25
so there was a great deal of population pressure.
37
145000
2000
所以這種突變就在族群中非常普遍.
02:27
In Africa, because you didn't have these cities,
38
147000
2000
在非洲, 因為沒有這些人口密集的都市, 就沒有造成瘟疫盛行,
02:29
you didn't have that CCR5 population pressure mutation.
39
149000
3000
在非洲人身上就不會看到CCR5突變的普及.
02:32
We can date it to 700 years ago.
40
152000
3000
我們可以精準的鑑定出這件事的發生是在700年前.
02:35
That is one of the reasons why AIDS is raging across Africa as fast as it is,
41
155000
4000
而這也就是為何愛滋病在非洲橫行,
02:39
and not as fast across Europe.
42
159000
4000
卻沒有在歐洲傳染得那麼快速的原因.
02:43
And we're beginning to find these little things for malaria,
43
163000
3000
我們也開始發現像是瘧疾,
02:46
for sickle cell, for cancers.
44
166000
3000
鐮刀型細胞, 還有癌症, 其實都有類似的故事.
02:50
And in the measure that we map ourselves,
45
170000
2000
所以, 能夠把自己的基因圖譜建立起來,
02:52
this is the single greatest adventure that we'll ever be on.
46
172000
2000
真的將是人類最偉大的探險.
02:54
And this Friday, I want you to pull out a really good bottle of wine,
47
174000
4000
本週五, 我邀各位一起, 拿出一瓶極品的好酒,
02:58
and I want you to toast these two people.
48
178000
2000
向這兩位致敬.
03:01
Because this Friday, 50 years ago, Watson and Crick found the structure of DNA,
49
181000
4000
因為就在50年前的本週五, Watson和Crick發現了DNA的結構.
03:05
and that is almost as important a date
50
185000
3000
這個日期幾乎就跟2月12日,
03:08
as the 12th of February when we first mapped ourselves,
51
188000
3000
也就是我們首次完成人類基因圖譜的日子同等重要.
03:11
but anyway, we'll get to that.
52
191000
2000
這個我們後頭還會再細談.
03:13
I thought we'd talk about the new zoo.
53
193000
2000
我們先來談談最新的發展.
03:15
So, all you guys have heard about DNA, all the stuff that DNA does,
54
195000
4000
各位都已經聽過關於DNA的事, 還有DNA能做些甚麼,
03:19
but some of the stuff we're discovering is kind of nifty
55
199000
3000
不過我們最近的一個新發現實在是很酷
03:22
because this turns out to be the single most abundant species on the planet.
56
202000
5000
因為我們發現它是世界上數量最龐大的物種.
03:27
If you think you're successful or cockroaches are successful,
57
207000
3000
如果你們認為人類繁衍很成功, 或是蟑螂的繁衍很成功,
03:30
it turns out that there's ten trillion trillion Pleurococcus sitting out there.
58
210000
3000
我們最近才發現世界上有十兆兆個這種名為 Pleurococcus的單細胞綠藻,
03:33
And we didn't know that Pleurococcus was out there,
59
213000
3000
而我們卻一直都不知道有這種生物的存在.
03:36
which is part of the reason
60
216000
1000
這就是這個物種基因圖譜建置計畫
03:37
why this whole species-mapping project is so important.
61
217000
5000
如此重要的原因之一.
03:42
Because we're just beginning to learn
62
222000
2000
就是因為有了這個圖譜, 我們才開始知道
03:44
where we came from and what we are.
63
224000
1000
我們到底從何而來, 還有我們到底是什麼.
03:46
And we're finding amoebas like this. This is the amoeba dubia.
64
226000
3000
我們也開始發現像這樣的變形蟲. 這是無恆變形蟲.
03:50
And the amoeba dubia doesn't look like much,
65
230000
2000
這個無恆變形蟲看起來其貌不揚,
03:52
except that each of you has about 3.2 billion letters,
66
232000
3000
不過你們每個人身上都帶著32億個字母,
03:55
which is what makes you you,
67
235000
2000
而這些字母就躲在你們的基因深處
03:57
as far as gene code inside each of your cells,
68
237000
3000
決定了你們是甚麼樣一個人.
04:00
and this little amoeba which, you know,
69
240000
3000
而這個小小的變形蟲,
04:03
sits in water in hundreds and millions and billions,
70
243000
2000
成萬成億的飄在水中,
04:06
turns out to have 620 billion base pairs of gene code inside.
71
246000
6000
身上卻有6千2百億對鹼基對.
04:12
So, this little thingamajig has a genome
72
252000
3000
換句話說, 這個小到不行的小不點兒的基因體
04:15
that's 200 times the size of yours.
73
255000
2000
是你的200倍大.
04:18
And if you're thinking of efficient information storage mechanisms,
74
258000
3000
如果你想要一個很有效率的資訊儲存裝置,
04:22
it may not turn out to be chips.
75
262000
2000
你的答案可能不是晶片,
04:25
It may turn out to be something that looks a little like that amoeba.
76
265000
4000
而是一個類似那隻變形蟲的東西.
04:29
And, again, we're learning from life and how life works.
77
269000
4000
所以呢, 我們正在重新了解生命, 還有生命到底是怎麼一回事.
04:33
This funky little thing: people didn't used to think
78
273000
4000
這個怪異的小東西. 人們從來就沒有想到過
04:37
that it was worth taking samples out of nuclear reactors
79
277000
3000
要從核子反應爐中取出任何的樣本
04:40
because it was dangerous and, of course, nothing lived there.
80
280000
3000
因為很危險, 而且想當然爾, 裡頭根本也不可能有什麼生物存活.
04:43
And then finally somebody picked up a microscope
81
283000
3000
然後就終於有一天有人拿起了一個顯微鏡
04:46
and looked at the water that was sitting next to the cores.
82
286000
3000
看看核反應爐裡面的水.
04:49
And sitting next to that water in the cores
83
289000
2000
而就在這些反應核週圍的水裡
04:51
was this little Deinococcus radiodurans, doing a backstroke,
84
291000
3000
有隻小小的奇異球菌 Deinococcus radiodurans 正在仰泳,
04:54
having its chromosomes blown apart every day,
85
294000
2000
它每天都要經歷染色體被炸開六七次,
04:56
six, seven times, restitching them,
86
296000
3000
再把染色體修補好
04:59
living in about 200 times the radiation that would kill you.
87
299000
2000
好端端的活在人類致死輻射量的200倍的環境中.
05:02
And by now you should be getting a hint as to how diverse
88
302000
3000
所以你應該可以開始理解到說這個探險的旅途
05:05
and how important and how interesting this journey into life is,
89
305000
2000
將有多麼的多元, 重要, 而且有趣,
05:07
and how many different life forms there are,
90
307000
3000
這世界上究竟還有多少種不同的生物,
05:10
and how there can be different life forms living in
91
310000
3000
還有這些不同的生物究竟是如何的
05:13
very different places, maybe even outside of this planet.
92
313000
3000
在地球上, 甚至是在別的星球上, 生存.
05:17
Because if you can live in radiation that looks like this,
93
317000
2000
因為如果你可以在這種等級的輻射之下生存,
05:19
that brings up a whole series of interesting questions.
94
319000
3000
那真的會引發一整串的有趣的問題.
05:23
This little thingamajig: we didn't know this thingamajig existed.
95
323000
3000
這個小小的小不點: 我們原本根本就不知道有這個小不點存在.
05:27
We should have known that this existed
96
327000
2000
我們其實應該要知道他的存在的
05:29
because this is the only bacteria that you can see to the naked eye.
97
329000
3000
因為它是我們唯一能夠用肉眼看到的細菌.
05:32
So, this thing is 0.75 millimeters.
98
332000
3000
這小東西大約0.75公厘大.
05:35
It lives in a deep trench off the coast of Namibia.
99
335000
2000
它住在那米比亞外海的一個深溝裡.
05:38
And what you're looking at with this namibiensis
100
338000
2000
而你們現在所看到的這個 namibiensis
05:40
is the biggest bacteria we've ever seen.
101
340000
2000
就是我們現今見過最大的細菌.
05:42
So, it's about the size of a little period on a sentence.
102
342000
3000
它大概就只有句子後面的句點那麼一丁點大.
05:46
Again, we didn't know this thing was there three years ago.
103
346000
4000
而我們在三年前還根本不知道有它的存在.
05:50
We're just beginning this journey of life in the new zoo.
104
350000
3000
我們才剛開始這個生命的旅程.
05:54
This is a really odd one. This is Ferroplasma.
105
354000
3000
這個傢伙真的很怪. 它叫作 Ferroplasma.
05:58
The reason why Ferroplasma is interesting is because it eats iron,
106
358000
3000
這個Ferroplasma有趣的原因在於他會吃鐵,
06:02
lives inside the equivalent of battery acid,
107
362000
3000
而且生存在幾乎就等於電池酸液的環境之中,
06:06
and excretes sulfuric acid.
108
366000
2000
而且會分泌硫酸.
06:10
So, when you think of odd life forms,
109
370000
2000
所以如果你想到這一大堆怪異的生物,
06:12
when you think of what it takes to live,
110
372000
3000
想到他們究竟是如何生存,
06:16
it turns out this is a very efficient life form,
111
376000
2000
就會發現它其實非常的有效率.
06:18
and they call it an archaea. Archaea means "the ancient ones."
112
378000
4000
它的名字叫作"古菌", 意思就是"古老"的意思.
06:22
And the reason why they're ancient is because this thing came up
113
382000
4000
它之所以古老的原因是這個東西
06:26
when this planet was covered
114
386000
2000
在地球還都被類似電池中的硫酸
06:28
by things like sulfuric acid in batteries,
115
388000
1000
的東西包覆時就出現在地球上了,
06:29
and it was eating iron when the earth was part of a melted core.
116
389000
4000
在地球還是一整塊熔岩的時候就在這裡吃鐵了.
06:34
So, it's not just dogs and cats and whales and dolphins
117
394000
4000
所以在這個旅途中, 你不應該只是對
06:38
that you should be aware of and interested in on this little journey.
118
398000
4000
小狗, 小貓, 鯨魚和海豚這些東西感興趣.
06:42
Your fear should be that you are not,
119
402000
3000
你應該擔心的是你搞錯了,
06:45
that you're paying attention to stuff which is temporal.
120
405000
3000
你關心的都是些短暫的東西.
06:48
I mean, George Bush -- he's going to be gone, alright? Life isn't.
121
408000
5000
我的意思是說, 喬治布希 -- 他總有一天會成為過去, 對吧? 但生命不會.
06:54
Whether the humans survive or don't survive,
122
414000
3000
不管人類是存活下去或是沒有存活下去,
06:57
these things are going to be living on this planet or other planets.
123
417000
3000
這些生物將會繼續在這個地球, 甚至在別的星球上存活下去.
07:00
And it's just beginning to understand this code of DNA
124
420000
4000
我們才剛開始了解DNA的遺傳密碼
07:04
that's really the most exciting intellectual adventure
125
424000
3000
這實在是我們所有的智能探險中
07:07
that we've ever been on.
126
427000
3000
最最刺激的一次.
07:10
And you can do strange things with this stuff. This is a baby gaur.
127
430000
4000
我們可以用這個東西作些怪事. 這是隻雀鱔的幼兒.
07:14
Conservation group gets together,
128
434000
2000
保育團體會聚在一起,
07:16
tries to figure out how to breed an animal that's almost extinct.
129
436000
4000
討論要如何繁衍一種即將絕種的動物.
07:21
They can't do it naturally, so what they do with this thing is
130
441000
3000
他們無法用自然的方法辦到, 所以他們就利用這個東西.
07:24
they take a spoon, take some cells out of an adult gaur's mouth, code,
131
444000
5000
他們會拿個湯匙, 從一隻成年的雀鱔嘴裡刮出一些細胞, 解開他的密碼,
07:30
take the cells from that and insert it into a fertilized cow's egg,
132
450000
4000
再拿些細胞注入牛的受精卵中,
07:35
reprogram cow's egg -- different gene code.
133
455000
3000
把牛的卵重新編排成不同的基因密碼
07:39
When you do that, the cow gives birth to a gaur.
134
459000
4000
然後, 牛就會生出一隻雀鱔.
07:44
We are now experimenting with bongos, pandas, elands, Sumatran tigers,
135
464000
6000
我們現在正在拿紫羚, 貓熊, 和蘇門答臘虎作實驗.
07:50
and the Australians -- bless their hearts --
136
470000
3000
還有澳洲人 -- 上天保佑他們 --
07:53
are playing with these things.
137
473000
1000
在玩這些東西.
07:54
Now, the last of these things died in September 1936.
138
474000
4000
這些東西中的最後一隻在1936年九月死去了.
07:58
These are Tasmanian tigers. The last known one died at the Hobart Zoo.
139
478000
4000
這是塔斯馬尼亞虎. 我們所知道的最後一隻是在Hobart動物園死去的.
08:02
But it turns out that as we learn more about gene code
140
482000
3000
不過隨著我們對基因密碼
08:05
and how to reprogram species,
141
485000
2000
和如何重整基因密碼的了解越多,
08:07
we may be able to close the gene gaps in deteriorate DNA.
142
487000
5000
我們就越有機會修補缺損DNA的基因缺口.
08:12
And when we learn how to close the gene gaps,
143
492000
3000
我們一旦學會了如何修補這些基因缺口,
08:15
then we can put a full string of DNA together.
144
495000
2000
就可以重新把一串完整的DNA修復回來.
08:18
And if we do that, and insert this into a fertilized wolf's egg,
145
498000
4000
然後, 我們就可以把這個完整的DNA串注入一個狼的受精卵中,
08:23
we may give birth to an animal
146
503000
2000
就可以生出一隻
08:25
that hasn't walked the earth since 1936.
147
505000
2000
自1936年起就從地球上消失的生物.
08:28
And then you can start going back further,
148
508000
2000
然後你就可以追溯到更早之前的時間,
08:30
and you can start thinking about dodos,
149
510000
2000
可以開始想多多鳥,
08:33
and you can think about other species.
150
513000
1000
還有其它的物種.
08:35
And in other places, like Maryland, they're trying to figure out
151
515000
3000
另外還有像在美國馬里蘭州, 就有些人在試圖找出
08:38
what the primordial ancestor is.
152
518000
2000
所有生物的元祖.
08:40
Because each of us contains our entire gene code
153
520000
3000
就因為我們每個人身上都帶著
08:43
of where we've been for the past billion years,
154
523000
3000
我們過去幾億年來曾經是些什麼,
08:46
because we've evolved from that stuff,
155
526000
2000
因為我們就是從那些東西演化而來,
08:48
you can take that tree of life and collapse it back,
156
528000
2000
我們可以沿著那棵演化樹倒溯回去,
08:50
and in the measure that you learn to reprogram,
157
530000
3000
當我們學會了重整基因密碼,
08:53
maybe we'll give birth to something
158
533000
2000
我們就有可能生出一個
08:55
that is very close to the first primordial ooze.
159
535000
2000
非常接近第一個原始生命體的有機質.
08:57
And it's all coming out of things that look like this.
160
537000
2000
這一切, 都是從長得像這樣的東西生產出來的.
08:59
These are companies that didn't exist five years ago.
161
539000
2000
這些公司在五年之前還不存在.
09:01
Huge gene sequencing facilities the size of football fields.
162
541000
4000
面積大得像好幾座美式足球場的巨型基因序列設施.
09:05
Some are public. Some are private.
163
545000
2000
有些是公立的, 有些是私立的.
09:07
It takes about 5 billion dollars to sequence a human being the first time.
164
547000
3000
第一次將人類的基因序列完整的排列出來花了約美金50億元.
09:11
Takes about 3 million dollars the second time.
165
551000
2000
第二次作同一件事需要約美金300萬元.
09:13
We will have a 1,000-dollar genome within the next five to eight years.
166
553000
4000
在未來五到八年之內, 我們作出一整套人類的基因圖譜就會只需要美金1千元.
09:17
That means each of you will contain on a CD your entire gene code.
167
557000
4000
到時候你們每一個人都會用一張CD片把你整套的遺傳密碼存起來.
09:22
And it will be really boring. It will read like this.
168
562000
2000
它看起來非常無聊, 就像這樣.
09:25
(Laughter)
169
565000
2000
(笑聲)
09:27
The really neat thing about this stuff is that's life.
170
567000
2000
不過這玩意兒最妙的地方就在於, 這就是生命.
09:29
And Laurie's going to talk about this one a little bit.
171
569000
3000
待會兒Laurie會跟大家聊一聊這一個東西.
09:32
Because if you happen to find this one inside your body,
172
572000
2000
因為如果你發現你身上有這個東西,
09:34
you're in big trouble, because that's the source code for Ebola.
173
574000
2000
你的麻煩就大了. 因為這是伊波拉病毒的原始碼.
09:38
That's one of the deadliest diseases known to humans.
174
578000
2000
那是目前所知致死率最高的人類疾病.
09:40
But plants work the same way and insects work the same way,
175
580000
2000
但是植物和昆蟲也都是這樣運作,
09:42
and this apple works the same way.
176
582000
2000
這顆蘋果也是.
09:44
This apple is the same thing as this floppy disk.
177
584000
2000
這顆蘋果基本上就跟這片磁片一樣.
09:46
Because this thing codes ones and zeros,
178
586000
2000
因為磁片上是用一和零編碼,
09:48
and this thing codes A, T, C, Gs, and it sits up there,
179
588000
2000
而蘋果則是用 A, T, C, G 編碼. 他就靜靜的坐在樹上,
09:50
absorbing energy on a tree, and one fine day
180
590000
3000
吸取能源, 直到某天風和日麗, 它吸足了能量,
09:53
it has enough energy to say, execute, and it goes [thump]. Right?
181
593000
4000
要啟動生命程序, 就會"咚"的一聲掉下來, 對吧?
09:57
(Laughter)
182
597000
3000
(笑聲)
10:00
And when it does that, pushes a .EXE, what it does is,
183
600000
4000
然後, 他就會啟動一個 .EXE 的程式,
10:04
it executes the first line of code, which reads just like that,
184
604000
3000
開始執行第一行的編碼, 就像這樣
10:07
AATCAGGGACCC, and that means: make a root.
185
607000
3000
AATCAGGGACCC, 意思就是: 造一條根.
10:10
Next line of code: make a stem.
186
610000
2000
下一行: 造一枝莖.
10:12
Next line of code, TACGGGG: make a flower that's white,
187
612000
3000
再下一行, TACGGGG: 造一朵白色的花,
10:15
that blooms in the spring, that smells like this.
188
615000
3000
在春天裡綻放, 散出這樣的氣味.
10:18
In the measure that you have the code
189
618000
2000
如果你擁有它的密碼
10:20
and the measure that you read it --
190
620000
3000
並擁有解讀它的能力 --
10:23
and, by the way, the first plant was read two years ago;
191
623000
2000
就像我們兩年前第一次讀懂了一株植物;
10:25
the first human was read two years ago;
192
625000
2000
兩年前第一次讀懂了一個人;
10:27
the first insect was read two years ago.
193
627000
2000
兩年前第一次讀懂了一隻昆蟲.
10:29
The first thing that we ever read was in 1995:
194
629000
3000
事實上我們第一次讀懂一個生物是在1995年
10:32
a little bacteria called Haemophilus influenzae.
195
632000
2000
一個叫作流感嗜血桿菌的小細菌.
10:35
In the measure that you have the source code, as all of you know,
196
635000
3000
眾所皆知, 一旦你擁有了原始碼,
10:38
you can change the source code, and you can reprogram life forms
197
638000
2000
你就可以改變原始碼, 重新改寫生物形式
10:40
so that this little thingy becomes a vaccine,
198
640000
2000
所以這個小東西就會變成一個疫苗,
10:42
or this little thingy starts producing biomaterials,
199
642000
3000
或是開始生產生物材料,
10:45
which is why DuPont is now growing a form of polyester
200
645000
3000
這就是為什麼現在杜邦公司可以"生長"出一種聚酯
10:48
that feels like silk in corn.
201
648000
2000
摸起來就跟玉米中的細絲一模一樣.
10:51
This changes all rules. This is life, but we're reprogramming it.
202
651000
5000
這會改變所有的規則. 這是生命, 但是我們正在重新改寫它.
10:58
This is what you look like. This is one of your chromosomes.
203
658000
4000
你就長這個樣子. 這是你的一條染色體.
11:02
And what you can do now is,
204
662000
2000
而我們現在可以作的就是
11:04
you can outlay exactly what your chromosome is,
205
664000
3000
把你的染色體全部譜出來
11:07
and what the gene code on that chromosome is right here,
206
667000
3000
到時我們就可以看到那條染色體上的基因密碼到底是什麼,
11:10
and what those genes code for, and what animals they code against,
207
670000
3000
知道那些基因是作什麼用的, 知道它跟哪一種動物的基因很像,
11:13
and then you can tie it to the literature.
208
673000
2000
然後就可以把這個資訊聯結到文獻之中.
11:15
And in the measure that you can do that, you can go home today,
209
675000
3000
我們一旦可以這樣作, 就可以回到家裡,
11:18
and get on the Internet, and access
210
678000
2000
上網連上世界上
11:20
the world's biggest public library, which is a library of life.
211
680000
3000
最大的公共圖書館, 也就是生命的圖書館.
11:24
And you can do some pretty strange things
212
684000
2000
然後就可以作一些很怪異的事情.
11:26
because in the same way as you can reprogram this apple,
213
686000
2000
因為就如同你可以改變這顆蘋果的基因,
11:29
if you go to Cliff Tabin's lab at the Harvard Medical School,
214
689000
2000
如果你到哈佛大學醫學院Cliff Tabin的研究室,
11:32
he's reprogramming chicken embryos to grow more wings.
215
692000
4000
你就可以看到他正在改造雞的胚胎好讓它多長幾隻翅膀.
11:38
Why would Cliff be doing that? He doesn't have a restaurant.
216
698000
3000
Cliff 這樣作是為了什麼? 他又不開餐館.
11:41
(Laughter)
217
701000
1000
(笑聲)
11:43
The reason why he's reprogramming that animal to have more wings
218
703000
3000
他要讓小雞多長幾隻翅膀的目的,
11:46
is because when you used to play with lizards as a little child,
219
706000
3000
是因為我們都知道小時候玩弄蜥蜴時,
11:49
and you picked up the lizard, sometimes the tail fell off, but it regrew.
220
709000
4000
我們把蜥蜴抓起來, 有時候它的尾巴會掉下來, 可是會再長出來.
11:53
Not so in human beings:
221
713000
3000
但人類不能這樣.
11:56
you cut off an arm, you cut off a leg -- it doesn't regrow.
222
716000
3000
人如果切斷一條手臂, 或切斷一條腿, 是不會長回來的.
11:59
But because each of your cells contains your entire gene code,
223
719000
4000
但是因為你每一個細胞都包含了你全部的遺傳密碼,
12:04
each cell can be reprogrammed, if we don't stop stem cell research
224
724000
4000
每一個細胞都可以作重整, 只要我們不中斷幹細胞的研究,
12:08
and if we don't stop genomic research,
225
728000
2000
不中斷基因體的研究,
12:10
to express different body functions.
226
730000
3000
我們就可以了解身體各種功能的基因表現.
12:14
And in the measure that we learn how chickens grow wings,
227
734000
3000
我們一旦學會了如何讓雞長出翅膀,
12:17
and what the program is for those cells to differentiate,
228
737000
2000
了解讓那些細胞特化的機制,
12:19
one of the things we're going to be able to do
229
739000
3000
我們將能作好多事情, 其中包括
12:22
is to stop undifferentiated cells, which you know as cancer,
230
742000
3000
制止未分化細胞的增生, 也就是一般所謂的癌症,
12:26
and one of the things we're going to learn how to do
231
746000
2000
我們也將能夠
12:28
is how to reprogram cells like stem cells
232
748000
3000
改造幹細胞
12:31
in such a way that they express bone, stomach, skin, pancreas.
233
751000
6000
讓這些細胞表現成骨骼, 胃, 皮膚, 脾臟.
12:38
And you are likely to be wandering around -- and your children --
234
758000
3000
在不久的將來, 你和你的小孩
12:41
on regrown body parts in a reasonable period of time,
235
761000
3000
將可以帶著重新生長出來的身體部位到處晃蕩,
12:45
in some places in the world where they don't stop the research.
236
765000
3000
只要在這些研究沒有被停下來的地方,
12:50
How's this stuff work? If each of you differs
237
770000
5000
這是如何辦到的? 如果你們之中每一個人
12:55
from the person next to you by one in a thousand, but only three percent codes,
238
775000
3000
跟鄰座的人在百分之三的遺傳密碼中有千分之一的差異,
12:58
which means it's only one in a thousand times three percent,
239
778000
2000
也就是千分之一再乘以百分之三,
13:00
very small differences in expression and punctuation
240
780000
3000
在基因的表現和分歧上只要發生如此小的差異
13:03
can make a significant difference. Take a simple declarative sentence.
241
783000
3000
就可以產生很顯著的差異. 就拿這個簡單的敘述句當例子.
13:08
(Laughter)
242
788000
2000
(笑聲)
13:10
Right?
243
790000
1000
對吧?
13:11
That's perfectly clear. So, men read that sentence,
244
791000
4000
這就非常清楚了. 如果男人讀這句話,
13:15
and they look at that sentence, and they read this.
245
795000
2000
他們的解讀是: "女人, 沒有了她的男人, 就什麼都不是."
13:23
Okay?
246
803000
1000
對吧?
13:24
Now, women look at that sentence and they say, uh-uh, wrong.
247
804000
4000
不過若換成女人看這個句子, 她們會說, 不對不對.
13:28
This is the way it should be seen.
248
808000
2000
這句話應該是: "女人: 沒有了她, 男人就什麼都不是."
13:32
(Laughter)
249
812000
8000
(笑聲)
13:40
That's what your genes are doing.
250
820000
1000
這就是你們的基因在作的事.
13:41
That's why you differ from this person over here by one in a thousand.
251
821000
5000
這也就是為什麼你跟這邊這個人差異這麼大了.
13:46
Right? But, you know, he's reasonably good looking, but...
252
826000
3000
對吧? 他雖然還蠻帥的, 但是...
13:49
I won't go there.
253
829000
2000
不扯這個了.
13:52
You can do this stuff even without changing the punctuation.
254
832000
3000
你即使不改變句讀, 都可以讓它很不一樣.
13:56
You can look at this, right?
255
836000
4000
這是國稅局, 對吧?
14:00
And they look at the world a little differently.
256
840000
2000
不過國稅局看到同樣的字, 解讀會不太一樣.
14:02
They look at the same world and they say...
257
842000
2000
他們看著相同的字卻會念成 "他們的"...
14:04
(Laughter)
258
844000
6000
(笑聲)
14:10
That's how the same gene code -- that's why you have 30,000 genes,
259
850000
4000
這就是為什麼同樣是三萬個基因, 你有三萬個基因,
14:14
mice have 30,000 genes, husbands have 30,000 genes.
260
854000
3000
老鼠有三萬個基因, 丈夫有三萬個基因.
14:17
Mice and men are the same. Wives know that, but anyway.
261
857000
3000
老鼠跟人都一樣 (雙關語: 老鼠跟男人都一樣). 這點作妻子的早就知道了 ...
14:21
You can make very small changes in gene code
262
861000
2000
你可以在基因密碼中作點非常小的改變就得到非常不同的結果,
14:23
and get really different outcomes,
263
863000
2000
即使是用同一串字母.
14:27
even with the same string of letters.
264
867000
2000
"讓我們一起去吧" // "讓我們去逮她吧"
14:31
That's what your genes are doing every day.
265
871000
2000
這就是你的基因每天在作的事.
14:34
That's why sometimes a person's genes
266
874000
2000
這也就是為什麼有的時候一個人的基因
14:36
don't have to change a lot to get cancer.
267
876000
2000
不需要作太多的改變就會得到癌症.
14:42
These little chippies, these things are the size of a credit card.
268
882000
4000
這些小晶片, 大小就差不多跟信用卡一樣大,
14:47
They will test any one of you for 60,000 genetic conditions.
269
887000
2000
就可以檢測你有沒有60,000種基因的組合狀態.
14:50
That brings up questions of privacy and insurability
270
890000
3000
這下隱私權跟保險受不受理的問題就會冒出來了
14:53
and all kinds of stuff, but it also allows us to start going after diseases,
271
893000
2000
還有其他類似的問題, 不過它也能讓我們開始真正的解決疾病的問題
14:56
because if you run a person who has leukemia through something like this,
272
896000
3000
因為如果你讓一個有血癌的人作這個篩檢
15:00
it turns out that three diseases with
273
900000
2000
會非常有幫助, 因為有三種不同的疾病
15:02
completely similar clinical syndromes
274
902000
4000
在臨床上的症狀幾乎完全類似
15:06
are completely different diseases.
275
906000
2000
卻是三種完全不同的疾病.
15:08
Because in ALL leukemia, that set of genes over there over-expresses.
276
908000
3000
因為在所有的血癌中, 這一組基因都會過度表現.
15:11
In MLL, it's the middle set of genes,
277
911000
2000
若是MLL型血癌, 就是中間那組基因,
15:13
and in AML, it's the bottom set of genes.
278
913000
2000
若是AML型血癌, 就是下面那組基因.
15:15
And if one of those particular things is expressing in your body,
279
915000
5000
如果找出來是這幾個基因在作怪
15:20
then you take Gleevec and you're cured.
280
920000
2000
那就服用 Gleevec 便可以治癒
15:23
If it is not expressing in your body,
281
923000
2000
但如果不是這幾個基因的問題
15:25
if you don't have one of those types --
282
925000
2000
那你就不是這幾種類型的血癌
15:27
a particular one of those types -- don't take Gleevec.
283
927000
3000
不是其中的一種, 那就不要服用 Gleevec.
15:30
It won't do anything for you.
284
930000
1000
用那個藥對你一點用處都沒有.
15:32
Same thing with Receptin if you've got breast cancer.
285
932000
2000
如果你有乳癌, 要不要服用 Receptin 也是同樣的問題.
15:35
Don't have an HER-2 receptor? Don't take Receptin.
286
935000
3000
如果沒有 HER-2 接受體, 就不要服用 Receptin.
15:38
Changes the nature of medicine. Changes the predictions of medicine.
287
938000
4000
這會改變醫學的本質. 會改變醫學的預測.
15:42
Changes the way medicine works.
288
942000
2000
改變行醫的方式.
15:44
The greatest repository of knowledge when most of us went to college
289
944000
3000
當年我們還在念大學時最偉大的知識儲藏庫
15:47
was this thing, and it turns out that
290
947000
2000
就是這個, 但如今
15:49
this is not so important any more.
291
949000
2000
它已經沒有那麼重要了.
15:51
The U.S. Library of Congress, in terms of its printed volume of data,
292
951000
4000
美國國會圖書館所館藏的資料量
15:55
contains less data than is coming out of a good genomics company
293
955000
4000
遠少於從一個好的基因體公司
15:59
every month on a compound basis.
294
959000
3000
每個月累積生產出來的資料量.
16:02
Let me say that again: A single genomics company
295
962000
3000
我再重複一次: 單單一個基因體公司
16:05
generates more data in a month, on a compound basis,
296
965000
3000
在一個月之內累積出來的資料產出
16:08
than is in the printed collections of the Library of Congress.
297
968000
3000
會比國會圖書館的館藏還要多.
16:12
This is what's been powering the U.S. economy. It's Moore's Law.
298
972000
4000
這是美國經濟的原動力. 這是摩爾定律.
16:16
So, all of you know that the price of computers halves every 18 months
299
976000
5000
大家都知道, 電腦每18個月, 價錢就會砍一半
16:21
and the power doubles, right?
300
981000
2000
但運算能力變兩倍, 對吧?
16:23
Except that when you lay that side by side with the speed
301
983000
4000
但是如果你把它跟基因資料
16:27
with which gene data's being deposited in GenBank,
302
987000
3000
被輸入基因資料庫的速度並排
16:30
Moore's Law is right here: it's the blue line.
303
990000
4000
這是摩爾定律, 就是藍線.
16:35
This is on a log scale, and that's what superexponential growth means.
304
995000
4000
這是對數刻度, 意思就是它正在以超指數成長.
16:39
This is going to push computers to have to grow faster
305
999000
4000
這會迫使電腦以比以前更快
16:43
than they've been growing, because so far,
306
1003000
2000
的速度成長, 因為到目前為止
16:45
there haven't been applications that have been required
307
1005000
3000
都還沒有任何需求說要比摩爾定律更快
16:48
that need to go faster than Moore's Law. This stuff does.
308
1008000
3000
但這個就會了
16:51
And here's an interesting map.
309
1011000
2000
這是張很有趣的地圖
16:53
This is a map which was finished at the Harvard Business School.
310
1013000
4000
這地圖是在哈佛商學院完成的
16:57
One of the really interesting questions is, if all this data's free,
311
1017000
3000
有趣的是, 如果這些資料都是免費的
17:00
who's using it? This is the greatest public library in the world.
312
1020000
4000
那是誰在用它? 這是世界上最大的公共圖書館
17:04
Well, it turns out that there's about 27 trillion bits
313
1024000
3000
約有27兆位元的資料
17:07
moving inside from the United States to the United States;
314
1027000
3000
在美國內部傳過來傳過去
17:10
about 4.6 trillion is going over to those European countries;
315
1030000
4000
約4.6兆位元的資料被傳到歐洲去
17:14
about 5.5's going to Japan; there's almost no communication
316
1034000
3000
約5.5兆位元傳到日本去; 但日本內部幾乎沒有交換任何資訊,
17:17
between Japan, and nobody else is literate in this stuff.
317
1037000
4000
除此之外, 世界其他各處都沒有人讀得懂這些東西.
17:21
It's free. No one's reading it. They're focusing on the war;
318
1041000
5000
明明是免費的, 但是沒有人在讀. 大家只關注戰爭
17:26
they're focusing on Bush; they're not interested in life.
319
1046000
2000
關注布希, 但沒有人關心生命.
17:29
So, this is what a new map of the world looks like.
320
1049000
2000
所以, 這就是新的世界地圖
17:32
That is the genomically literate world. And that is a problem.
321
1052000
6000
這是世界上讀得懂基因體的地區的地圖. 這裡有個問題.
17:38
In fact, it's not a genomically literate world.
322
1058000
2000
就是, 這世界上大部分的地區都讀不懂基因體.
17:40
You can break this out by states.
323
1060000
2000
你可以用州去細分這張地圖
17:42
And you can watch states rise and fall depending on
324
1062000
2000
你可以看到一個州因為它是否
17:44
their ability to speak a language of life,
325
1064000
2000
讀得懂生命的語言而盛衰
17:46
and you can watch New York fall off a cliff,
326
1066000
2000
你可以看到紐約從懸崖上摔落
17:48
and you can watch New Jersey fall off a cliff,
327
1068000
2000
你可以看到紐澤西摔落
17:50
and you can watch the rise of the new empires of intelligence.
328
1070000
3000
你可以看到新的智慧帝國興起
17:54
And you can break it out by counties, because it's specific counties.
329
1074000
3000
你也可以用縣細分這張地圖
17:57
And if you want to get more specific,
330
1077000
2000
如果你想更仔細
17:59
it's actually specific zip codes.
331
1079000
2000
還可以用郵遞區號細分
18:01
(Laughter)
332
1081000
2000
(笑聲)
18:03
So, you want to know where life is happening?
333
1083000
3000
所以, 你想知道生命在哪裡蓬勃發展嗎?
18:06
Well, in Southern California it's happening in 92121. And that's it.
334
1086000
5000
在南加州的話就是郵遞區號92121的地方
18:12
And that's the triangle between Salk, Scripps, UCSD,
335
1092000
5000
就是沙克學院(Salk), Scripps研究院, 和加州大學聖地牙哥分校 (UCSD)
18:17
and it's called Torrey Pines Road.
336
1097000
2000
之間的三角形, 叫作Torrey Pines 路的地方.
18:19
That means you don't need to be a big nation to be successful;
337
1099000
3000
所以你並不需要國力強大才能成功;
18:22
it means you don't need a lot of people to be successful;
338
1102000
2000
你也不需要人數眾多才能成功;
18:24
and it means you can move most of the wealth of a country
339
1104000
3000
你可以將一個國家大部分的財富
18:27
in about three or four carefully picked 747s.
340
1107000
3000
搬進三, 四台精心挑選的747客機裡頭.
18:31
Same thing in Massachusetts. Looks more spread out but --
341
1111000
4000
麻塞諸塞州的狀況也是一樣, 雖然看起來比較分散些但是 --
18:35
oh, by the way, the ones that are the same color are contiguous.
342
1115000
3000
喔, 對了, 同樣的顏色代表連續分部.
18:39
What's the net effect of this?
343
1119000
2000
所以這個現象的淨效應是什麼?
18:41
In an agricultural society, the difference between
344
1121000
2000
在農業社會裡,
18:43
the richest and the poorest,
345
1123000
1000
最有錢和最窮的人的差異,
18:45
the most productive and the least productive, was five to one. Why?
346
1125000
4000
也就是產量最高者和產量最低者的差異, 是五比一. 為什麼?
18:49
Because in agriculture, if you had 10 kids
347
1129000
2000
因為在農業社會哩, 如果你有10個孩子
18:51
and you grow up a little bit earlier and you work a little bit harder,
348
1131000
3000
比別人早起工作, 也比別人努力工作,
18:54
you could produce about five times more wealth, on average,
349
1134000
2000
你可以平均比你的鄰居多出
18:56
than your neighbor.
350
1136000
1000
約五倍的財富.
18:58
In a knowledge society, that number is now 427 to 1.
351
1138000
3000
在知識社會裡, 這個數字是427比1.
19:02
It really matters if you're literate, not just in reading and writing
352
1142000
4000
所以你懂不懂一個語言, 不只是說你能否用英文,
19:06
in English and French and German,
353
1146000
2000
法文, 和德文, 讀跟寫,
19:08
but in Microsoft and Linux and Apple.
354
1148000
2000
還有微軟, Linux, 和蘋果.
19:11
And very soon it's going to matter if you're literate in life code.
355
1151000
4000
不久的將來, 你懂不懂生命密碼將會舉足輕重.
19:15
So, if there is something you should fear,
356
1155000
2000
所以如果你真的要擔心什麼
19:17
it's that you're not keeping your eye on the ball.
357
1157000
3000
重點不是要隨時注意周遭在發生些什麼事.
19:20
Because it really matters who speaks life.
358
1160000
2000
真正重要的是: 誰讀得懂生命的語言.
19:23
That's why nations rise and fall.
359
1163000
2000
這將會決定國家的盛衰.
19:26
And it turns out that if you went back to the 1870s,
360
1166000
3000
如果你回到1870年代
19:29
the most productive nation on earth was Australia, per person.
361
1169000
3000
世界上每人平均產量最高的國家是澳洲.
19:32
And New Zealand was way up there. And then the U.S. came in about 1950,
362
1172000
3000
當時紐西蘭的排名也很前面. 然後美國在1950年代興起,
19:35
and then Switzerland about 1973, and then the U.S. got back on top --
363
1175000
3000
然後瑞士在1973左右引領群雄, 然後美國又追上了 --
19:39
beat up their chocolates and cuckoo clocks.
364
1179000
2000
打敗了瑞士的巧克力和咕咕鐘.
19:43
And today, of course, you all know that the most productive nation
365
1183000
3000
當然當今世上產量最高的國家
19:46
on earth is Luxembourg, producing about one third more wealth
366
1186000
3000
是盧森堡, 每人每年產出
19:49
per person per year than America.
367
1189000
2000
比美國還多了三分之一.
19:52
Tiny landlocked state. No oil. No diamonds. No natural resources.
368
1192000
4000
小小的內陸國家, 沒有石油, 沒有鑽石, 沒有天然資源.
19:56
Just smart people moving bits. Different rules.
369
1196000
5000
只是聰明的人民從事資訊業. 用著完全不同的規則.
20:02
Here's differential productivity rates.
370
1202000
3000
這是生產力級差
20:06
Here's how many people it takes to produce a single U.S. patent.
371
1206000
3000
每多少個美國人可以生產出一個專利.
20:09
So, about 3,000 Americans, 6,000 Koreans, 14,000 Brits,
372
1209000
4000
所以美國要3,000人, 韓國要6,000人, 英國要14,000人,
20:13
790,000 Argentines. You want to know why Argentina's crashing?
373
1213000
3000
阿根廷要790,000人. 你想知道阿根廷的經濟為什麼在急速衰退嗎?
20:16
It's got nothing to do with inflation.
374
1216000
2000
跟通貨膨脹無關.
20:18
It's got nothing to do with privatization.
375
1218000
2000
跟私有化無關.
20:20
You can take a Harvard-educated Ivy League economist,
376
1220000
4000
你可以把一個哈佛大學畢業的長春藤經濟學家,
20:24
stick him in charge of Argentina. He still crashes the country
377
1224000
3000
讓他負責阿根廷的經濟. 那個國家的經濟還是不會有起色.
20:27
because he doesn't understand how the rules have changed.
378
1227000
2000
因為他不會了解, 遊戲規則如何改變了.
20:30
Oh, yeah, and it takes about 5.6 million Indians.
379
1230000
3000
對了, 印度呢? 要560萬印度人.
20:33
Well, watch what happens to India.
380
1233000
2000
我們來看看印度的狀況.
20:35
India and China used to be 40 percent of the global economy
381
1235000
3000
印度和中國在工業革命的前夕
20:38
just at the Industrial Revolution, and they are now about 4.8 percent.
382
1238000
5000
曾經佔世界經濟的40%, 現在只佔4.8%.
20:43
Two billion people. One third of the global population producing 5 percent of the wealth
383
1243000
4000
二十億人口. 世界上三分之一的人口生產世界上5%的財富.
20:47
because they didn't get this change,
384
1247000
3000
因為他們沒有搭上這個改革,
20:50
because they kept treating their people like serfs
385
1250000
2000
因為他們一直把人當農奴對待,
20:52
instead of like shareholders of a common project.
386
1252000
3000
而不是當作一個共同產業的股東.
20:56
They didn't keep the people who were educated.
387
1256000
3000
他們沒有留住受到良好教育的人.
20:59
They didn't foment the businesses. They didn't do the IPOs.
388
1259000
2000
他們沒有助長企業, 沒有重視智慧財產.
21:02
Silicon Valley did. And that's why they say
389
1262000
4000
矽谷作到了. 這就是為什麼他們說
21:06
that Silicon Valley has been powered by ICs.
390
1266000
2000
矽谷是靠 IC 撐起來的.
21:09
Not integrated circuits: Indians and Chinese.
391
1269000
3000
可是這個 IC 指的不是積體電路, 而是印度人(Indians)和華人(Chinese).
21:12
(Laughter)
392
1272000
4000
(笑聲)
21:16
Here's what's happening in the world.
393
1276000
2000
這就是世界上正在發生的事.
21:18
It turns out that if you'd gone to the U.N. in 1950,
394
1278000
3000
如果你在1950年到聯合國去
21:21
when it was founded, there were 50 countries in this world.
395
1281000
2000
那時聯合國剛成立, 世界上只有50個國家.
21:23
It turns out there's now about 192.
396
1283000
3000
現在世界上有192個國家.
21:26
Country after country is splitting, seceding, succeeding, failing --
397
1286000
4000
許多國家一直在變動: 分裂, 獨立, 演變, 失敗.
21:31
and it's all getting very fragmented. And this has not stopped.
398
1291000
5000
國家趨於分裂, 而且這個趨勢並沒有停止.
21:36
In the 1990s, these are sovereign states
399
1296000
3000
1990年的時候, 這些獨立國家
21:39
that did not exist before 1990.
400
1299000
2000
在1990年之前並不存在.
21:41
And this doesn't include fusions or name changes or changes in flags.
401
1301000
5000
而且這還不包括合併, 更名, 或國旗變更的新國家.
21:46
We're generating about 3.12 states per year.
402
1306000
3000
我們每年產生3.12個新國家.
21:49
People are taking control of their own states,
403
1309000
3000
越來越多的人民在掌控自己的國家.
21:52
sometimes for the better and sometimes for the worse.
404
1312000
3000
有的時候變得比較好, 有的時候是越弄越糟.
21:55
And the really interesting thing is,
405
1315000
2000
不過真正有趣的是,
21:57
you and your kids are empowered to build great empires,
406
1317000
2000
你和你的孩子都有能力創造偉大的帝國,
21:59
and you don't need a lot to do it.
407
1319000
2000
而且所需的並不多.
22:01
(Music)
408
1321000
2000
(音樂)
22:03
And, given that the music is over, I was going to talk
409
1323000
3000
我本來還要談
22:06
about how you can use this to generate a lot of wealth,
410
1326000
3000
你們能夠如何運用這個生產很多的財富,
22:09
and how code works.
411
1329000
2000
還有這個密碼如何運作.
22:11
Moderator: Two minutes.
412
1331000
1000
(主持人: 兩分鐘)
22:12
(Laughter)
413
1332000
2000
(笑聲)
22:14
Juan Enriquez: No, I'm going to stop there and we'll do it next year
414
1334000
4000
不過, 我還是停下來好了, 等明年再說
22:18
because I don't want to take any of Laurie's time.
415
1338000
2000
因為我不想佔用 Laurie 的時間.
22:21
But thank you very much.
416
1341000
1000
謝謝各位.
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7