Which box do I check? | Am I Normal? With Mona Chalabi

54,185 views ・ 2021-11-16

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Transcriber:
0
0
7000
00:00
If you've been watching this series,
1
236
1720
λ²ˆμ—­: ji yoon Kang κ²€ν† : DK Kim
이 μ‹œλ¦¬μ¦ˆλ₯Ό 보고 μžˆλ‹€λ©΄ μ œκ°€ 자료λ₯Ό μ€‘μ‹œν•œλ‹€λŠ” 것을 μ•Œ κ²ƒμž…λ‹ˆλ‹€.
00:01
you'll know I care about data.
2
1996
1480
00:03
But data has its limitations, especially when it comes to language.
3
3516
4240
ν•˜μ§€λ§Œ μžλ£ŒλŠ” ν•œκ³„κ°€ 있고 특히 말둜 ν‘œν˜„ν•  λ•Œ κ·Έλ ‡μŠ΅λ‹ˆλ‹€.
00:07
Basically, if you get your categories wrong,
4
7796
2200
기본적으둜 λ²”μ£Ό ꡬ뢄을 잘λͺ»ν–ˆλ‹€λ©΄
00:09
you can wind up with some pretty misleading statistics,
5
9996
2680
맀우 잘λͺ»λœ 톡계λ₯Ό 얻을 수 μžˆμŠ΅λ‹ˆλ‹€.
00:12
and the US Census is a prime example.
6
12716
2400
λ―Έκ΅­ 인ꡬ 쑰사ꡭ이 λŒ€ν‘œμ μΈ μ˜ˆμž…λ‹ˆλ‹€.
00:15
[Am I Normal? with Mona Chalabi]
7
15156
2760
[λͺ¨λ‚˜ 샀라비와 ν•¨κ»˜ν•˜λŠ” λ‚˜λŠ” 정상인가?]
00:17
Taken every 10 years,
8
17956
1800
10λ…„λ§ˆλ‹€ μ‹œν–‰ν•˜λŠ”
00:19
this survey aims to collect demographic data
9
19756
2080
인ꡬ μ‘°μ‚¬λŠ” 인ꡬ 자료λ₯Ό μˆ˜μ§‘ν•˜κΈ° μœ„ν•œ κ²ƒμž…λ‹ˆλ‹€.
00:21
from each and every resident of the US and its territories.
10
21836
2800
λ―Έκ΅­ 본토와 λ―Έκ΅­λ Ή μ§€μ—­μ˜ λͺ¨λ“  κ±°μ£Όμžλ“€μ΄ λŒ€μƒμž…λ‹ˆλ‹€.
00:24
Those responses help the government to determine everything,
11
24636
3400
이 κ²°κ³ΌλŠ” μ •λΆ€κ°€ κ²°μ •ν•˜λŠ” λͺ¨λ“  것에 영ν–₯을 μ€λ‹ˆλ‹€.
00:28
from the allocation of seats in Congress and the Electoral College,
12
28036
3200
κ΅­νšŒμ™€ μ„ κ±°μΈλ‹¨μ˜ μ˜μ„ λ°°λΆ„λΆ€ν„°
00:31
to the allocation of hundreds of billions of dollars in federal funds.
13
31236
3320
μˆ˜μ²œμ–΅ λ‹¬λŸ¬μ˜ μ—°λ°© 기금 λ°°λΆ„κΉŒμ§€ 말이죠.
00:34
And those funds pay for things like new hospitals,
14
34596
3160
μ—°λ°© 기금이 μ“°μ΄λŠ” 곳은
μƒˆ 병원 건립, λ„λ‘œ μ •λΉ„, 학ꡐ 급식 사업 같은 κ²ƒμž…λ‹ˆλ‹€.
00:37
road improvements and school lunch programs.
15
37796
2080
00:39
And crucially, the statisticians that work there are nonpartisan.
16
39916
3920
μ€‘μš”ν•œ 것은, 이런 톡계λ₯Ό λ§Œλ“œλŠ” μ‚¬λžŒλ“€μ€ λΉ„μ •μΉ˜μ μž…λ‹ˆλ‹€.
00:43
They sit at the same desks, applying the same formulas,
17
43876
2600
λ°±μ•…κ΄€μ—μ„œ λˆ„κ°€ μ •κΆŒμ„ μž‘λ“  상관없이 같은 μžλ¦¬μ—μ„œ 같은 방식을 μ μš©ν•©λ‹ˆλ‹€.
00:46
no matter who is in charge at the White House.
18
46516
2160
00:48
So undoubtedly, the US Census Bureau does important work,
19
48716
2720
ν™•μ‹€νžˆ λ―Έκ΅­ 인ꡬ 쑰사ꡭ은 μ€‘μš”ν•œ 일을 ν•©λ‹ˆλ‹€.
00:51
but it does have some blind spots.
20
51436
1800
κ·ΈλŸ¬λ‚˜ 맹점이 λͺ‡ 가지 있죠.
00:53
For example, there has been a decades-long effort
21
53236
2320
예λ₯Ό λ“€λ©΄, μ‹­ λ…„ λ™μ•ˆ 인ꡬ 쑰사 ν•­λͺ©μ—
00:55
to add the category Middle Eastern or Northern African or MENA to the census.
22
55556
4600
쀑동 ν˜Ήμ€ 뢁아프리카(MENA) ν•­λͺ©μ„ μΆ”κ°€ν•˜λ €λŠ” μ‹œλ„κ°€ μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
01:00
Currently, the census defines people from these regions,
23
60156
3080
ν˜„μž¬ 인ꡬ 쑰사ꡭ은 이 지역 μ‚¬λžŒλ“€μ„ 저도 ν¬ν•¨ν•΄μ„œ, 백인으둜 κ΅¬λΆ„ν•©λ‹ˆλ‹€.
01:03
and that includes me, as white.
24
63276
2120
λ„€, 잘λͺ»λμ£ .
01:06
Yeah, that's incorrect.
25
66036
1800
01:07
In 2015, the census did test a version of this survey that included MENA.
26
67876
4440
2015λ…„ 인ꡬ μ‘°μ‚¬λŠ” MENA ν•­λͺ©μ„ ν¬ν•¨ν•΄μ„œ μ‹œν–‰ν–ˆμŠ΅λ‹ˆλ‹€.
01:12
It found that when given the MENA option,
27
72316
2160
MENA ν•­λͺ©μ΄ μžˆλŠ” 경우
01:14
the number of people from that region who identified as white
28
74516
3040
이 지역 μΆœμ‹  백인의 λΉ„μœ¨μ΄
01:17
dropped from 86 percent to 20 percent.
29
77556
3320
86%μ—μ„œ 20%둜 ν•˜λ½ν•œ κ²ƒμœΌλ‘œ λ°ν˜€μ‘ŒμŠ΅λ‹ˆλ‹€.
01:20
See, when you reconsider language, the numbers can change dramatically.
30
80876
4360
λ³΄λ‹€μ‹œν”Ό μ–Έμ–΄λ₯Ό κ°μ•ˆν•˜λ©΄ μˆ«μžκ°€ κΈ‰κ²©νžˆ λ³€ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
01:25
Unfortunately, though, the census still didn't make the change,
31
85276
3000
κ·ΈλŸ¬λ‚˜ μ•ˆνƒ€κΉκ²Œλ„ 인ꡬ μ‘°μ‚¬λŠ” μ—¬μ „νžˆ λ°”λ€Œμ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
01:28
saying that further tests were necessary to determine if MENA should appear
32
88276
3600
MENAκ°€ 인쒅 λ²”μ£Όκ°€ μ•„λ‹ˆλΌ λ―Όμ‘± 범주에 μžˆμ–΄μ•Ό ν•˜λŠ”μ§€μ— λŒ€ν•΄
01:31
under ethnicity instead of race.
33
91876
1800
확인이 더 ν•„μš”ν•˜λ‹€λŠ” 것이 μ΄μœ μž…λ‹ˆλ‹€.
01:33
That means that those who have rallied for its inclusion
34
93716
2680
κ·Έ ν•­λͺ©μ„ λ„£μœΌλ €κ³  μ• μ¨μ˜¨ μ‚¬λžŒλ“€μ΄ μ‹­ 년을 더 κΈ°λ‹€λ €μ•Ό ν•œλ‹€λŠ” λ§μž…λ‹ˆλ‹€.
01:36
will have to wait another decade to see if our community can be recognized.
35
96436
3720
우리 μ§‘λ‹¨μ˜ 인정 μ—¬λΆ€λ₯Ό μ•Œλ €λ©΄μš”.
01:40
This isn't the first time that language has restricted
36
100156
2520
인ꡬ μ‘°μ‚¬μ—μ„œ 인ꡬ λΆ„λ₯˜ 방식이 μ–Έμ–΄λ‘œ μ œν•œλœ 것은 처음이 μ•„λ‹™λ‹ˆλ‹€.
01:42
how people are represented in the census.
37
102716
2040
01:44
The very first one, way back in 1790,
38
104796
2760
κ°€μž₯ μ²˜μŒμ€ 였래 전인 1790년인데
01:47
only had three broad categories,
39
107556
2120
3개의 큰 λ²”μ£Όλ§Œ μžˆμ—ˆμ£ .
01:49
and I quote: "slaves, free white men and women, and all other free persons."
40
109716
4480
β€˜λ…Έμ˜ˆ, 백인 남녀 자유인, 그리고 κ·Έ μ™Έ λͺ¨λ“  μžμœ μΈβ€™μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
01:54
It would be another 30 years
41
114236
1760
30년이 더 μ§€λ‚˜μ„œμ•Ό
01:56
before distinct categories for free Blacks
42
116036
2520
흑인 μžμœ μΈμ„ μœ„ν•œ 별도 λ²”μ£Όκ°€ 생겼고
01:58
and another 40 years before American Indians
43
118556
2160
40년이 더 μ§€λ‚˜κ³  λ‚˜μ„œ
λ―Έ 원주민 ν•­λͺ©μ΄ 인ꡬ 쑰사에 λ‚˜νƒ€λ‚¬μŠ΅λ‹ˆλ‹€.
02:00
would appear on the census.
44
120756
1520
02:02
Since then, more and more categories have been added,
45
122316
2600
κ·Έλ•ŒλΆ€ν„°, 점차 더 λ§Žμ€ λ²”μ£Όκ°€ μΆ”κ°€λ˜μ—ˆμ§€λ§Œ
02:04
but progress has been slow.
46
124916
1680
진척은 λ”λŽ μŠ΅λ‹ˆλ‹€.
02:06
It wasn't until 2000 that people could choose more than one race
47
126636
3080
2000년이 λ˜μ–΄μ„œμ•Ό ν•˜λ‚˜ μ΄μƒμ˜ 인쒅을 κ³ λ₯Ό 수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
02:09
to describe themselves,
48
129716
1240
02:10
and for the very first time in 2020,
49
130956
2440
그리고 2020λ…„μ—μ„œμ•Ό 처음으둜
02:13
people who selected Black or white could go a bit more granular
50
133436
3200
흑인 λ˜λŠ” 백인만 μ„ νƒν–ˆλ˜ μ‚¬λžŒλ“€μ€ 쑰금 더 μ„ΈλΆ„ν•  수 μžˆμ—ˆκ³ 
02:16
and provide more detail about their origins,
51
136636
2080
μΆœμ‹ μ— κ΄€ν•œ μ„ΈλΆ€ 정보λ₯Ό μ œκ³΅ν•  수 있게 λμŠ΅λ‹ˆλ‹€.
02:18
like naming France or Somalia or spotlighting their Indigenous identity.
52
138756
3960
ν”„λž‘μŠ€λ‚˜ μ†Œλ§λ¦¬μ•„λΌλŠ” 이름을 λΆ™μ΄λŠ” κ²ƒμ΄λ‚˜
μžμ‹ λ“€μ˜ κ³ μœ ν•œ 정체성을 κ°•μ‘°ν•˜λŠ” κ²ƒμ²˜λŸΌμš”.
02:22
Right now, you might be thinking:
53
142716
2080
μ§€κΈˆ, μ΄λ ‡κ²Œ μƒκ°ν•˜μ‹€μ§€λ„ λͺ¨λ¦…λ‹ˆλ‹€.
02:24
Why does the wording on a survey even matter?
54
144796
2120
β€˜μΈκ΅¬ μ‘°μ‚¬μ—μ„œ 단어 선택이 μ™œ λ¬Έμ œκ°€ λœλ‹€λŠ” 거지?’
02:26
Race and ethnicity are social constructs anyway.
55
146956
2240
β€˜μΈμ’…μ΄λ‚˜ 민쑱은 μ–΄μ¨Œλ“  μ‚¬νšŒμ  ꡬ뢄인데.’
02:29
But that doesn't change the lived experience
56
149236
2240
κ·ΈλŸ¬λ‚˜ 그것이 이 쑰사에 μ œλŒ€λ‘œ λ°˜μ˜λ˜μ–΄ μžˆμ§€ μ•Šμ€ μ‚¬λžŒλ“€μ˜
02:31
of those who aren't truly reflected in these forms.
57
151516
2480
인생 κ²½ν—˜μ„ λ°”κΎΈλŠ” 것은 μ•„λ‹™λ‹ˆλ‹€.
02:33
Questionnaires need to ask the right questions
58
153996
2920
μ„€λ¬Έμ§€λŠ” μ§ˆλ¬Έμ„ μ œλŒ€λ‘œ ν•΄μ•Ό ν•©λ‹ˆλ‹€.
02:36
if they want to capture what's really happening in the world.
59
156956
2880
μ„Έμƒμ—μ„œ μ‹€μ œλ‘œ μ–΄λ–€ 일이 μΌμ–΄λ‚˜λŠ”μ§€ νŒŒμ•…ν•˜λ € ν•œλ‹€λ©΄μš”.
02:39
A Northern African non-binary person might be misgendered
60
159836
2680
제3의 성을 가진 뢁아프리카인은 성별이 잘λͺ» 뢀여될 수 있고
02:42
or considered white by the census,
61
162556
1640
인ꡬ μ‘°μ‚¬μ—μ„œ 백인으둜 간주될 μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
ν•˜μ§€λ§Œ κ·Έ 집단에 κ³ μœ ν•œ λΆˆκ· ν˜•μ μΈ μ°¨λ³„μ΄λ‚˜
02:44
but face disproportional discrimination,
62
164196
2120
02:46
health disparities or language barriers that are unique to their community.
63
166356
3560
건강 λΆˆν‰λ“± ν˜Ήμ€ μ–Έμ–΄ μž₯벽을 λ§ˆμ£Όν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
02:49
It's no wonder, then,
64
169916
1200
λ”°λΌμ„œ λ‹Ήμ—°ν•˜κ²Œλ„ μ†Œμ™Έλ˜κ³  μ·¨μ•½ν•œ 집단듀은
02:51
that it's often marginalized and vulnerable communities
65
171116
2640
02:53
ones whose identities are missing from these forms
66
173756
2360
μΈκ΅¬μ‘°μ‚¬μ—μ„œ 신원이 λ‚˜νƒ€λ‚˜μ§€ μ•Šκ³ 
μ •λΆ€ μž¬μ›κ³Ό 보호λ₯Ό 받지 λͺ»ν•˜λŠ” κ²½μš°κ°€ ν”ν•©λ‹ˆλ‹€.
02:56
that lack access to governmental resources and protections.
67
176156
2760
02:58
Now, there are some understandable historical reasons
68
178956
2760
μ‚¬λžŒλ“€μ΄ μ΄λŸ¬ν•œ μ’…λ₯˜μ˜ 자료 μˆ˜μ§‘μ— μ‘ν•˜μ§€ μ•ŠμœΌλ €λŠ” λ°μ—λŠ”
03:01
why people might not want to engage in this kind of data gathering.
69
181756
3160
납득할 λ§Œν•œ 역사적 μ΄μœ κ°€ λͺ‡ 가지 μžˆμŠ΅λ‹ˆλ‹€
03:04
But without the data, it’s just easier to deny the inequality is real.
70
184956
3680
κ·ΈλŸ¬λ‚˜ μžλ£Œκ°€ μ—†λ‹€λ©΄ λΆˆν‰λ“±μ΄ μ‹€μž¬ν•œλ‹€λŠ” 것을 λΆ€μ •ν•˜κΈ° 쉽죠.
03:08
If we want a more equitable society,
71
188676
2440
λ”μš± ν‰λ“±ν•œ μ‚¬νšŒλ₯Ό μ›ν•œλ‹€λ©΄
03:11
we have to measure our reality,
72
191116
1800
ν˜„μ‹€μ„ 보아야 ν•˜κ³ 
03:12
and the best way to start
73
192956
1440
κ°€μž₯ 쒋은 μ‹œμž‘μ€
03:14
is by using language that recognizes our differences.
74
194436
3320
차이λ₯Ό μΈμ‹ν•˜λŠ” μ–Έμ–΄λ₯Ό μ‚¬μš©ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7