What we miss when we focus on the average | Am I Normal? with Mona Chalabi

98,870 views

2021-11-02 ・ TED


New videos

What we miss when we focus on the average | Am I Normal? with Mona Chalabi

98,870 views ・ 2021-11-02

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Transcriber:
0
0
7000
00:00
When we think about data, we usually think about averages.
1
196
3160
λ²ˆμ—­: Jin Choi κ²€ν† : DK Kim
데이터에 λŒ€ν•΄ 생각할 λ•Œ μš°λ¦¬λŠ” 보톡 평균을 λ– μ˜¬λ¦½λ‹ˆλ‹€.
00:03
Average height, average salary,
2
3356
1800
평균 ν‚€, 평균 연봉,
00:05
average number of hours spent on video calls.
3
5196
2400
μ˜μƒ 톡화에 μ“°λŠ” 평균 톡화 μ‹œκ°„.
00:07
It’s tempting to focus on these neat little summaries of our world.
4
7636
3600
세상에 λŒ€ν•œ 간단λͺ…λ£Œν•œ μš”μ•½μ— μ£Όλͺ©ν•˜κ³  μ‹Άμ–΄μ§‘λ‹ˆλ‹€.
00:11
But the world is a lot messier than these averages can make it out to be.
5
11276
3600
κ·ΈλŸ¬λ‚˜ 세상은 평균듀보닀 훨씬 더 λ³΅μž‘ν•©λ‹ˆλ‹€.
00:14
So instead, I look for the outliers.
6
14916
2480
κ·Έλž˜μ„œ λŒ€μ‹ μ— μ €λŠ” 아웃라이어λ₯Ό μ°Ύμ•„λ΄…λ‹ˆλ‹€.
00:17
They can offer a better reflection of this chaos we call life.
7
17436
3520
μ•„μ›ƒλΌμ΄μ–΄λŠ” 삢이라고 λΆ€λ₯΄λŠ” 이 ν˜Όλˆμ„ 더 잘 λ°˜μ˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
00:20
And they can offer a different perspective
8
20996
2040
그리고 μ΄ν•΄ν•œλ‹€κ³  μƒκ°ν•˜λŠ” 것듀에 λŒ€ν•΄ 또 λ‹€λ₯Έ 관점을 쀄 수 μžˆμŠ΅λ‹ˆλ‹€.
00:23
on the things that we think we understand.
9
23076
2000
00:25
[Am I Normal? with Mona Chalabi]
10
25116
2480
[μ œκ°€ μ •μƒμΈκ°€μš”? - λͺ¨λ‚˜ 찰라비]
00:27
Take, for instance, the stats around teens and cigarettes.
11
27636
2760
μ‹­ λŒ€μ™€ 담배에 κ΄€ν•œ 톡계λ₯Ό 예둜 λ“€μ–΄ λ³Όκ²Œμš”.
00:30
According to the CDC, between 1997 and 2019,
12
30436
3560
λ―Έκ΅­ μ§ˆλ³‘ν†΅μ œμ˜ˆλ°©μ„Όν„°μ— λ”°λ₯΄λ©΄ 1997λ…„κ³Ό 2019λ…„ 사이에
00:34
the percentage of American high school students who smoked plummeted
13
34036
3200
λ―Έκ΅­ κ³ λ“±ν•™μƒμ˜ 흑연λ₯ μ΄
36%μ—μ„œ 단 6%둜 κΈ‰κ°ν–ˆμŠ΅λ‹ˆλ‹€.
00:37
from 36 to just six percent.
14
37276
2280
00:39
That seems like a pretty big win,
15
39556
1960
κ½€ 쒋은 μ„±κ³Όμ²˜λŸΌ λ³΄μ΄μ§€λ§Œ
00:41
but when you break apart the data and look at the outliers,
16
41516
2840
자료λ₯Ό μͺΌκ°œμ–΄ 아웃라이어λ₯Ό μ‚΄νŽ΄λ³΄λ©΄ μ™„μ „νžˆ λ‹€λ₯Έ 상황이 λ©λ‹ˆλ‹€.
00:44
it is a totally different picture.
17
44356
1640
λ―Έκ΅­ 원주민과 μ•Œλž˜μŠ€μΉ΄ μΆœμ‹  ν•™μƒλ“€μ—μ„œ
00:46
Among American Indian and native Alaskan students,
18
46036
2360
00:48
cigarette usage is much higher than that six percent average.
19
48436
3040
흑연λ₯ μ΄ ν‰κ· μΉ˜μΈ 6%보닀 훨씬 λ†’μŠ΅λ‹ˆλ‹€.
00:51
It comes in at a sizable 21 percent.
20
51516
2760
μƒλ‹Ήνžˆ 높은 수치인 21%λ‚˜ λ©λ‹ˆλ‹€.
00:54
All other racial and ethnic groups were in the single digits.
21
54316
3080
λ‹€λ₯Έ λͺ¨λ“  인쒅과 λ―Όμ‘± μ§‘λ‹¨μ˜ 흑연λ₯ μ€ ν•œ μžλ¦¬μ˜€μŠ΅λ‹ˆλ‹€.
00:57
So what first seemed like this great success story
22
57436
2760
κ·ΈλŸ¬λ‹ˆκΉŒ μ²˜μŒμ— μœ„λŒ€ν•œ μ„±κ³΅λ‹΄μ²˜λŸΌ λ³΄μ˜€λ˜ 것은
01:00
is actually an indicator of how much work we need to do
23
60196
3480
사싀은 κ°€μž₯ μ†Œμ™Έλœ 곡동체에 λ„λ‹¬ν•˜κΈ° μœ„ν•΄
01:03
to reach some of the most marginalized communities.
24
63716
2840
μš°λ¦¬κ°€ μ–Όλ§ˆλ‚˜ 더 주의λ₯Ό κΈ°μšΈμ—¬μ•Ό ν•˜λŠ”κ°€μ— λŒ€ν•œ μ§€ν‘œμž…λ‹ˆλ‹€.
01:06
In general, when we present data as a scatterplot,
25
66556
2440
일반적으둜 자료λ₯Ό 점으둜 μ°μ–΄μ„œ 보면
01:09
the average would usually look like this.
26
69036
2080
평균은 보톡 μ΄λ ‡κ²Œ μƒκ²ΌμŠ΅λ‹ˆλ‹€.
01:11
And where there are outliers,
27
71156
1400
아웃라이어가 μžˆμ„ λ•Œ 일반적인 접근법은 μ•„μ›ƒλΌμ΄μ–΄μ˜ κ°€μΉ˜λ₯Ό ν‰κ°€μ ˆν•˜ν•˜κ³ 
01:12
the typical approach is to undervalue them,
28
72596
2520
01:15
to see them as a deviation from the average
29
75156
2400
ν‰κ· μ—μ„œ λ˜λŠ” μ‚¬νšŒκ°€ μƒκ°ν•˜λŠ” μ •μƒμ—μ„œ μΌνƒˆν•œ κ²ƒμœΌλ‘œ λ΄…λ‹ˆλ‹€.
01:17
or from what society thinks is normal.
30
77596
2280
01:19
But I like to call these outliers β€œlost birds.”
31
79916
3560
ν•˜μ§€λ§Œ μ €λŠ” 이 아웃라이어듀을 β€˜κΈΈ μžƒμ€ μƒˆλ“€β€™μ΄λΌ λΆ€λ₯΄κ³  μ‹Άμ–΄μš”.
01:23
It's a nickname I use for something or someone who has gone astray.
32
83516
4120
이건 μ œκ°€ λ°©ν™©ν•˜κ³  μžˆλŠ” μ‚¬λžŒμ΄λ‚˜ 무언가λ₯Ό λΆ€λ₯Ό λ•Œ μ“°λŠ” λ³„μΉ­μ΄μ—μš”.
01:27
If you look hard enough,
33
87676
1240
꼼꼼히 λ“€μ—¬λ‹€ λ³Έλ‹€λ©΄
01:28
you'll find that these lost birds pop up everywhere.
34
88916
3120
이 κΈΈ μžƒμ€ μƒˆλ“€μ΄ λͺ¨λ“  κ³³μ—μ„œ νŠ€μ–΄λ‚˜μ˜¨λ‹€λŠ” κ±Έ μ•Œκ²Œ 될 κ±°μ˜ˆμš”.
01:32
Like my mom, for example.
35
92756
1400
예λ₯Ό λ“€μ–΄ 저희 μ—„λ§ˆμ²˜λŸΌμš”.
01:34
She doesn't like being on camera, so this puppet will have to do.
36
94196
3080
μ—„λ§ˆλŠ” 사진 μ°νžˆλŠ” κ±Έ μ‹«μ–΄ν•˜λ‹ˆ μΈν˜•μ΄ λŒ€μ‹ ν•  κ±°μ˜ˆμš”.
01:37
She's a soft spoken, hijabi woman who isn't much bigger than this puppet.
37
97276
3440
μ—„λ§ˆλŠ” 이 μΈν˜•λ³΄λ‹€ 많이 크지 μ•Šκ³ , νžˆμž‘μ„ μ“΄ 상λƒ₯ν•œ μ—¬μ„±μž…λ‹ˆλ‹€.
01:40
Because of that, it's easy for some people to underestimate her.
38
100716
3200
κ·Έλž˜μ„œ μ–΄λ–€ μ‚¬λžŒλ“€μ€ μ—„λ§ˆλ₯Ό μ‰½κ²Œ κ³Όμ†Œν‰κ°€ν–ˆμ–΄μš”.
01:43
But don't let those first impressions fool you.
39
103956
2200
ν•˜μ§€λ§Œ 첫인상에 속지 λ§ˆμ„Έμš”.
β€œλ‚΄ μ„ΈλŒ€μ—μ„œλŠ”
01:46
β€œIn my generation,
40
106196
1680
01:47
we used to listen and accept what they tell us.
41
107916
3760
λ‹€λ₯Έ μ‚¬λžŒλ“€μ˜ 말을 λ“£κ³  μˆ˜μš©ν•˜λŠ” 것에 μ΅μˆ™ν–ˆμ–΄.
01:51
'Do what you're told.'
42
111716
1680
β€˜μ‹œν‚€λŠ” λŒ€λ‘œ 해라.’
01:53
But when I got older,
43
113436
1880
ν•˜μ§€λ§Œ λ‚΄κ°€ λ‚˜μ΄κ°€ λ“€κ³  λ‚˜μ„œ
01:55
I just changed and I started to argue my point and get what I want."
44
115356
4880
λ‚˜λŠ” λ°”λ€Œμ—ˆκ³  λ‚΄ μ˜κ²¬μ„ μ£Όμž₯ν–ˆκ³  μ›ν•˜λŠ” κ±Έ μ–»μ–΄λƒˆμ§€.”
02:01
My mom's a retired doctor, an avid ugly-dress maker,
45
121316
3120
저희 μ—„λ§ˆλŠ” μ€ν‡΄ν•œ μ˜μ‚¬μ΄κ³ , λͺ»μƒκΈ΄ μ˜·μ„ μ—΄μ‹¬νžˆ λ§Œλ“œμ‹œκ³ 
02:04
a mother of two and a grandmother of none.
46
124476
2000
두 μ•„μ΄μ˜ μ—„λ§ˆμ΄μž 손주 μ—†λŠ” ν• λ¨Έλ‹ˆμ˜ˆμš”.
02:06
Though she spends a fair amount of time trying to speak that into existence,
47
126516
3640
손주λ₯Ό λ‚³μœΌλΌκ³  μ„€λ“ν•˜λŠ” 데 κ½€ λ§Žμ€ μ‹œκ°„μ„ μ“°κΈ΄ ν•˜μ…¨μ§€λ§Œμš”.
02:10
"I think for every mother, for her daughter, she wants a grandchild."
48
130156
5000
β€œλ‚΄ 생각에 λͺ¨λ“  μ—„λ§ˆλ“€μ€ 자기 λ”Έμ—κ²Œ 손주λ₯Ό 원해.”
02:15
(Laughter)
49
135196
3040
(μ›ƒμŒ)
02:18
"Sorry, Mona."
50
138276
1160
β€œλ―Έμ•ˆ, λͺ¨λ‚˜.”
02:19
Moving on.
51
139476
1160
λ„˜μ–΄κ°€μ£ .
02:20
My mom is also a lost bird.
52
140676
1680
저희 μ—„λ§ˆ λ˜ν•œ κΈΈ μžƒμ€ μƒˆμž…λ‹ˆλ‹€.
02:22
"Me?"
53
142396
1160
β€œλ‚˜?”
02:23
She has, statistically speaking, gone astray.
54
143596
2400
ν†΅κ³„ν•™μ μœΌλ‘œ λ§ν•˜λ©΄, μ—„λ§ˆλŠ” μ›λž˜μ˜ 길을 λ²—μ–΄λ‚¬μ–΄μš”.
02:26
"Yeah, but it was a good deviation."
55
146036
2480
β€œκ·Έλž˜, ν•˜μ§€λ§Œ 쒋은 μΌνƒˆμ΄μ—ˆμ–΄.”
02:28
Back in the late '70s,
56
148516
1160
70λ…„λŒ€ ν›„λ°˜μ— μ—„λ§ˆλŠ” μ˜ν•™ μˆ˜μ—…μ„ λ°›κ³  κ°œμ—…μ„ ν•˜λ €κ³ 
02:29
my mom left Iraq and moved to the UK
57
149716
1760
02:31
to further her medical training and practice.
58
151516
2200
이라크λ₯Ό λ– λ‚˜ 영ꡭ으둜 μ΄μ£Όν–ˆμŠ΅λ‹ˆλ‹€.
02:33
She's among the four percent of people born in Iraq who now live abroad.
59
153756
3480
μ—„λ§ˆλŠ” μ΄λΌν¬μ—μ„œ νƒœμ–΄λ‚˜ μ™Έκ΅­μ—μ„œ μ‚΄κ³  μžˆλŠ” 4% μ•ˆμ— λ“  μ‚¬λžŒμž…λ‹ˆλ‹€.
02:37
By the early 2000s,
60
157596
1280
2000λ…„λŒ€ μ΄ˆλ°˜μ—λŠ”
02:38
just three percent of UK doctors with her experience
61
158876
2920
μ—„λ§ˆμ˜ 경우λ₯Ό ν¬ν•¨ν•΄μ„œ 영ꡭ μ˜μ‚¬μ˜ 였직 3%만이
02:41
were non-white and practicing in her speciality.
62
161836
2640
μœ μƒ‰μΈμ’…μ΄μ—ˆκ³  μ—„λ§ˆμ™€ 같은 λΆ„μ•Όμ—μ„œ κ°œμ—…ν•˜κ³  μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
02:44
My mom is a lost bird because she is an outlier.
63
164516
2800
저희 μ—„λ§ˆλŠ” κΈΈ μžƒμ€ μƒˆμΈλ° μ™œλƒν•˜λ©΄ μ•„μ›ƒλΌμ΄μ–΄μ΄κ±°λ“ μš”.
02:47
She's one of the rare few to leave her home country
64
167356
2440
μ—„λ§ˆλŠ” 쑰ꡭ을 λ– λ‚œ 정말 μ†Œμˆ˜μ˜ μ‚¬λžŒλ“€ 쀑 ν•œ λͺ…이고
02:49
and even rarer still among her medical peers.
65
169836
2520
μ—„λ§ˆμ™€ 같은 의료인 μ€‘μ—μ„œλŠ” μ—¬μ „νžˆ 더 μ†Œμˆ˜μ— μ†ν•©λ‹ˆλ‹€.
02:52
We all think that the people that we love are special,
66
172356
2520
μš°λ¦¬λŠ” λͺ¨λ‘ μ‚¬λž‘ν•˜λŠ” μ‚¬λžŒλ“€μ„ νŠΉλ³„ν•˜λ‹€κ³  μƒκ°ν•˜κ³ 
02:54
and there is some truth to that.
67
174876
1560
그건 μ–΄λŠ 정도 μ‚¬μ‹€μž…λ‹ˆλ‹€.
02:56
But it’s worth considering the ways that we are all lost birds.
68
176436
2960
κ·ΈλŸ¬λ‚˜ 우리 λͺ¨λ‘λŠ” κΈΈ μžƒμ€ μƒˆλΌκ³  λ³΄λŠ” 방식을 κ³ λ €ν•  κ°€μΉ˜κ°€ μžˆμŠ΅λ‹ˆλ‹€.
μ™œλƒν•˜λ©΄ 평균에 μ£Όλͺ©ν•˜κ³  아웃라이어듀을 λ¬΄μ‹œν•  λ•Œ
02:59
Because when we focus on the average and we ignore the outliers,
69
179396
3040
03:02
we lose all of the richness and insights that those stories provide.
70
182476
3320
κ·Έλ“€μ˜ 이야기가 μ£ΌλŠ” 톡찰λ ₯κ³Ό ν’μš”λ‘œμ›€ λͺ¨λ‘λ₯Ό μžƒκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
03:05
But when we dig into the deviations, we get to see the bigger picture.
71
185796
3920
κ·Έ μΌνƒˆμ„ νŒŒκ³ λ“€μ–΄ 보면 더 큰 그림을 λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
03:09
One from a bird's-eye view.
72
189716
1760
높이 λ‚˜λŠ” μƒˆμ˜ 눈으둜 λ³Έ κ·Έλ¦Όμ„μš”.
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7