How we're using DNA tech to help farmers fight crop diseases | Laura Boykin

38,848 views

2019-11-04 ใƒป TED


New videos

How we're using DNA tech to help farmers fight crop diseases | Laura Boykin

38,848 views ใƒป 2019-11-04

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: JungJae Lee ๊ฒ€ํ† : Jihyeon J. Kim
00:12
I get out of bed for two reasons.
0
12991
2326
์ €๋Š” ๋‘ ๊ฐ€์ง€ ๋ชฉํ‘œ๋ฅผ ์œ„ํ•ด ์ผํ•ฉ๋‹ˆ๋‹ค.
00:15
One, small-scale family farmers need more food.
1
15341
4031
ํ•˜๋‚˜๋Š” ์†Œ๊ทœ๋ชจ ๊ฐ€์กฑ ๋†๋ถ€๋“ค์—๊ฒŒ ์‹๋Ÿ‰์ด ๋” ํ•„์š”ํ•˜๋‹ค๋Š” ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
00:19
It's crazy that in 2019 farmers that feed us are hungry.
2
19738
5178
2019๋…„์—๋„ ์‚ฌ๋žŒ์„ ๋จน์—ฌ ์‚ด๋ฆฌ๋Š” ๋†๋ถ€๋“ค์ด ๊ตถ์ฃผ๋ฆฐ๋‹ค๋Š” ๊ฑด ๋ฏฟ๊ธฐ ์–ด๋ ต์ฃ .
00:25
And two, science needs to be more diverse and inclusive.
3
25353
4833
๋‘ ๋ฒˆ์งธ๋Š” ๊ณผํ•™์ด ๋”์šฑ๋” ํญ๋„“๊ณ  ๋‹ค์–‘ํ•ด์ ธ์•ผ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
00:30
If we're going to solve the toughest challenges on the planet,
4
30679
3422
์ง€๊ตฌ์—์„œ ๊ฐ€์žฅ ์–ด๋ ค์šด ๋ฌธ์ œ๋ฅผ ํ’€๊ณ ์ž ํ•œ๋‹ค๋ฉด
00:34
like food insecurity for the millions living in extreme poverty,
5
34125
4333
๊ฐ€๋ น ๊ทน์‹ฌํ•˜๊ฒŒ ๊ฐ€๋‚œํ•œ ์ˆ˜๋ฐฑ๋งŒ์˜ ์‚ฌ๋žŒ์ด ๊ฒช๋Š” ์‹๋Ÿ‰ ๋ถ€์กฑ์„ ํ•ด๊ฒฐํ•˜๋ ค๋ฉด
00:38
it's going to take all of us.
6
38482
1619
๊ณผํ•™์ž ๋ชจ๋‘๊ฐ€ ๋‚˜์„œ์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
00:40
I want to use the latest technology
7
40680
2580
์ €๋Š” ์ตœ์‹  ๊ธฐ์ˆ  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
00:43
with the most diverse and inclusive teams on the planet
8
43284
3293
์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํญ๋„“๊ณ  ๋‹ค์–‘ํ•œ ํŒ€๊ณผ ํ•จ๊ป˜
00:46
to help farmers have more food.
9
46601
2067
๋†๋ถ€๋“ค์ด ๋” ๋งŽ์€ ์‹๋Ÿ‰์„ ์ƒ์‚ฐํ•˜๊ฒŒ๋” ๋•๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
00:49
I'm a computational biologist.
10
49545
1881
์ €๋Š” ์ปดํ“จํ„ฐ ์ƒ๋ฌผํ•™์ž์ž…๋‹ˆ๋‹ค.
00:51
I know -- what is that and how is it going to help end hunger?
11
51450
3404
๋„ค, ๊ทธ๊ฒŒ ๋Œ€์ฒด ๋ฌด์—‡์ด๊ณ  ์–ด๋–ป๊ฒŒ ๊ตถ์ฃผ๋ฆผ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
00:54
Basically, I like computers and biology
12
54878
3246
๊ธฐ๋ณธ์ ์œผ๋กœ ์ €๋Š” ์ปดํ“จํ„ฐ์™€ ์ƒ๋ฌผํ•™์„ ์ข‹์•„ํ•˜๊ณ 
00:58
and somehow, putting that together is a job.
13
58148
2444
์–ด์ฉŒ๋‹ค ๋ณด๋‹ˆ ์ง์—…์œผ๋กœ ๊ทธ ๋‘˜์„ ํ•ฉ์น˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
01:00
(Laughter)
14
60616
1083
(์›ƒ์Œ)
01:01
I don't have a story
15
61723
1520
์–ด๋ฆด ์ ๋ถ€ํ„ฐ
01:03
of wanting to be a biologist from a young age.
16
63267
3286
์ƒ๋ฌผํ•™์ž๊ฐ€ ๋˜๊ฒ ๋‹ค๊ณ  ๋งˆ์Œ๋จน์€ ๊ฒƒ์€ ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
01:06
The truth is, I played basketball in college.
17
66577
3706
์‚ฌ์‹ค์€ ๋Œ€ํ•™์—์„œ ๋†๊ตฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:10
And part of my financial aid package was I needed a work-study job.
18
70585
5143
๋‹น์‹œ ๋ฐ›๋˜ ์žฌ์ • ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ์ผํ™˜์œผ๋กœ ๊ทผ๋กœ ์žฅํ•™์ƒ ์ง์—…์ด ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:16
So one random day,
19
76300
1540
๊ทธ๋Ÿฌ๋˜ ์–ด๋Š ๋‚ ,
01:17
I wandered to the nearest building to my dorm room.
20
77864
3197
์ „ ๊ธฐ์ˆ™์‚ฌ ๊ฐ€์žฅ ๊ทผ์ฒ˜์— ์žˆ๋˜ ๊ฑด๋ฌผ์—์„œ ์„œ์„ฑ์ด๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
01:21
And it just so happens it was the biology building.
21
81085
2680
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ฑด๋ฌผ์ด ์šฐ์—ฐํ•˜๊ฒŒ๋„ ์ƒ๋ฌผํ•™๊ด€ ๊ฑด๋ฌผ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
01:24
I went inside and looked at the job board.
22
84347
2586
์•ˆ์œผ๋กœ ๋“ค์–ด๊ฐ€ ๊ตฌ์ธ๋ž€์„ ๋’ค์ ธ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
01:27
Yes, this is pre-the-internet.
23
87493
2164
๋„ค, ์•„์ง ์ธํ„ฐ๋„ท์ด ์—†๋˜ ์‹œ์ ˆ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
01:30
And I saw a three-by-five card
24
90430
2007
๊ทธ๋ฆฌ๊ณ  ์กฐ๊ทธ๋งˆํ•œ ์นด๋“œ์—
01:32
advertising a job to work in the herbarium.
25
92461
3155
์‹๋ฌผ ํ‘œ๋ณธ์‹ค์— ์ผ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ด‘๊ณ ๋ฅผ ๋ดค์Šต๋‹ˆ๋‹ค.
01:36
I quickly took down the number,
26
96601
2001
์žฌ๋นจ๋ฆฌ ๊ฑฐ๊ธฐ ์žˆ๋˜ ๋ฒˆํ˜ธ๋ฅผ ์ ์—ˆ๊ณ 
01:38
because it said "flexible hours,"
27
98626
1705
์นด๋“œ์— โ€œ์‹œ๊ฐ„ ์กฐ์ ˆ ๊ฐ€๋Šฅโ€์ด๋ผ ์“ฐ์—ฌ ์žˆ์—ˆ๊ธฐ ๋•Œ๋ฌธ์—
01:40
and I needed that to work around my basketball schedule.
28
100355
3257
์ œ ๋†๊ตฌ ์‹œ๊ฐ„ํ‘œ์— ๋งž์ถ”๊ธฐ์— ์ข‹๊ฒ ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
01:44
I ran to the library to figure out what an herbarium was.
29
104204
4587
๋‹น์žฅ ๋„์„œ๊ด€์œผ๋กœ ๋‹ฌ๋ ค๊ฐ€ ๋„๋Œ€์ฒด ์‹๋ฌผํ‘œ๋ณธ์‹ค์ด ๋ญ”์ง€๋ถ€ํ„ฐ ์ฐพ์•„๋ดค์Šต๋‹ˆ๋‹ค.
01:48
(Laughter)
30
108815
2207
(์›ƒ์Œ)
01:51
And it turns out
31
111046
1309
๊ทธ๋ฆฌ๊ณ  ์•Œ๊ณ  ๋ณด๋‹ˆ
01:52
an herbarium is where they store dead, dried plants.
32
112379
4079
์‹๋ฌผํ‘œ๋ณธ์‹ค์€ ์ฃฝ๊ณ  ๋ง๋ผ๋ถ™์€ ์‹๋ฌผ์„ ์ €์žฅํ•˜๋Š” ์žฅ์†Œ์˜€์Šต๋‹ˆ๋‹ค.
01:57
I was lucky to land the job.
33
117379
1714
์šด ์ข‹๊ฒŒ๋„ ์ง์—…์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
01:59
So my first scientific job
34
119117
3206
์ €์˜ ์ฒซ ๋ฒˆ์งธ ๊ณผํ•™์ž๋กœ์„œ์˜ ์ผ์€
02:02
was gluing dead plants onto paper for hours on end.
35
122347
5335
์ฃฝ์€ ์‹๋ฌผ์„ ๋ช‡ ์‹œ๊ฐ„์ด๊ณ  ์ข…์ด ์œ„์— ๋ถ™์ด๋Š” ์ผ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
02:07
(Laughter)
36
127706
3278
(์›ƒ์Œ)
02:11
It's so glamorous.
37
131008
1150
๊ต‰์žฅํžˆ ํ™”๋ คํ•˜์ง€์š”.
02:12
This is how I became a computational biologist.
38
132182
3139
์ œ๊ฐ€ ์ปดํ“จํ„ฐ ์ƒ๋ฌผํ•™์ž๊ฐ€ ๋œ ๊ณ„๊ธฐ์ž…๋‹ˆ๋‹ค.
02:16
During that time,
39
136323
1183
๋‹น์‹œ๋Š”
02:17
genomics and computing were coming of age.
40
137530
2722
์œ ์ „์ฒดํ•™๊ณผ ์ปดํ“จํŒ…์ด ๋ง‰ ์„ฑ์ˆ™ํ•˜๋˜ ์‹œ๊ธฐ์˜€์Šต๋‹ˆ๋‹ค.
02:20
And I went on to do my masters
41
140276
2404
๋•Œ๋ฌธ์— ์ €๋Š” ์„์‚ฌ ํ•™์œ„๋กœ
02:22
combining biology and computers.
42
142704
3095
์ƒ๋ฌผํ•™๊ณผ ์ปดํ“จํ„ฐ๋ฅผ ์กฐํ•ฉํ–ˆ์Šต๋‹ˆ๋‹ค.
02:25
During that time,
43
145823
1165
๊ทธ ๋™์•ˆ,
02:27
I worked at Los Alamos National Lab
44
147012
1779
๋กœ์Šค์•จ๋Ÿฌ๋ชจ์Šค ๊ตญ๋ฆฝ ์—ฐ๊ตฌ์†Œ์—์„œ
02:28
in the theoretical biology and biophysics group.
45
148815
2518
์ด๋ก ์ƒ๋ฌผํ•™๊ณผ ์ƒ๋ฌผ๋ฌผ๋ฆฌํ•™ ํŒ€์—์„œ ์ผํ–ˆ์Šต๋‹ˆ๋‹ค.
02:31
And it was there I had my first encounter with the supercomputer,
46
151776
3730
๊ทธ๊ณณ์—์„œ ์ €๋Š” ์ฒ˜์Œ์œผ๋กœ ์Šˆํผ์ปดํ“จํ„ฐ๋ฅผ ์ ‘ํ–ˆ๊ณ 
02:35
and my mind was blown.
47
155530
1674
๊ต‰์žฅํžˆ ๋†€๋ž์Šต๋‹ˆ๋‹ค.
02:37
With the power of supercomputing,
48
157840
2039
์Šˆํผ์ปดํ“จํ„ฐ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ
02:39
which is basically thousands of connected PCs on steroids,
49
159903
4223
๊ทผ์œก ๊ฐ•ํ™”์ œ๋ฅผ ๋ณต์šฉํ•˜๋Š” ์ˆ˜ ์ฒœ๋Œ€์˜ ์ปดํ“จํ„ฐ๋ฅผ ํ•˜๋‚˜๋กœ ์—ฐ๊ฒฐํ•œ ๊ฒƒ ๊ฐ™์•˜๊ณ 
02:44
we were able to uncover the complexities of influenza and hepatitis C.
50
164150
5473
๊ทธ ๋Šฅ๋ ฅ์„ ์ด์šฉํ•ด ์ธํ”Œ๋ฃจ์—”์ž์™€ Cํ˜• ๊ฐ„์—ผ์˜ ๋ณต์žกํ•œ ํŠน์ง•์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:50
And it was during this time that I saw the power
51
170134
2331
๊ทธ ์‹œ๊ธฐ ์ €๋Š” ์ •๋ง ๊ฐ•๋ ฅํ•œ ํž˜๊ณผ
02:52
of using computers and biology combined, for humanity.
52
172489
4120
์ปดํ“จํ„ฐ์™€ ์ƒ๋ฌผํ•™์˜ ์กฐํ•ฉ์ด ์ธ๋ฅ˜์—๊ฒŒ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
02:56
And I wanted this to be my career path.
53
176633
2372
๊ทธ๋ž˜์„œ ๊ทธ ๊ธธ์ด ์ €์˜ ์ง„๋กœ๋กœ ์ด์–ด์ง€๊ธธ ์›ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:00
So, since 1999,
54
180030
1777
1999๋…„๋ถ€ํ„ฐ
03:01
I've spent the majority of my scientific career
55
181831
2698
์ €๋Š” ์ œ ๊ณผํ•™์ž ์ปค๋ฆฌ์–ด ๋Œ€๋ถ€๋ถ„์„
03:04
in very high-tech labs,
56
184553
1929
๊ณ ์„ฑ๋Šฅ ์ฒจ๋‹จ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์‹ค์—์„œ
03:06
surrounded by really expensive equipment.
57
186506
2733
์—„์ฒญ๋‚˜๊ฒŒ ๋น„์‹ผ ์žฅ๋น„์— ๋‘˜๋Ÿฌ์‹ธ์—ฌ ๋ณด๋ƒˆ์Šต๋‹ˆ๋‹ค.
03:09
So many ask me
58
189712
1643
์ •๋ง ๋งŽ์€ ๋ถ„์ด ๋ฌป์Šต๋‹ˆ๋‹ค.
03:11
how and why do I work for farmers in Africa.
59
191379
3867
์–ด์ฉŒ๋‹ค๊ฐ€ ์•„ํ”„๋ฆฌ์นด์˜ ๋†๋ถ€๋“ค์„ ์œ„ํ•ด ์ผํ•˜๊ฒŒ ๋˜์—ˆ๋Š”์ง€
03:15
Well, because of my computing skills,
60
195804
2302
๊ทธ๊ฑด ์ €์˜ ์ปดํ“จํŒ… ๊ธฐ์ˆ  ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:18
in 2013, a team of East African scientists
61
198130
4539
2013๋…„ ๋™์•„ํ”„๋ฆฌ์นด ๊ณผํ•™์žํŒ€์—์„œ
03:22
asked me to join the team in the plight to save cassava.
62
202693
4089
์นด์‚ฌ๋ฐ”๋ฅผ ์‚ด๋ฆฌ๋Š” ๋ฐ ๊ณค๊ฒฝ์„ ๊ฒช๊ณ  ์žˆ๋‹ค๊ณ  ํŒ€๊ณผ ํ•จ๊ป˜ ์ผํ•˜์ž๊ณ  ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.
03:27
Cassava is a plant whose leaves and roots feed 800 million people globally.
63
207766
6970
์นด์‚ฌ๋ฐ”๋Š” ์žŽ์‚ฌ๊ท€์™€ ๋ฟŒ๋ฆฌ๋กœ ์ง€๊ตฌ์ƒ ์•ฝ 8์–ต์— ํ•ด๋‹นํ•˜๋Š” ์ธ๊ตฌ๋ฅผ ๋จน์—ฌ ์‚ด๋ฆฌ๋Š” ์‹๋ฌผ์ž…๋‹ˆ๋‹ค.
03:35
And 500 million in East Africa.
64
215639
3037
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ค‘ 5์–ต ๋ช…์€ ๋™์•„ํ”„๋ฆฌ์นด ์‚ฌ๋žŒ์ž…๋‹ˆ๋‹ค.
03:38
So that's nearly a billion people
65
218994
2007
๋”ฐ๋ผ์„œ ๊ฑฐ์˜ 10์–ต ๋ช…์˜ ์ธ๊ตฌ๊ฐ€
03:41
relying on this plant for their daily calories.
66
221025
2968
ํ•˜๋ฃจํ•˜๋ฃจ ์‚ด๊ธฐ ์œ„ํ•œ ์—๋„ˆ์ง€์›์œผ๋กœ ๊ทธ ์‹๋ฌผ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
03:44
If a small-scale family farmer has enough cassava,
67
224581
3845
์†Œ๊ทœ๋ชจ ๋†๋ถ€ ๊ฐ€์กฑ์ด ์นด์‚ฌ๋ฐ”๋ฅผ ์ถฉ๋ถ„ํžˆ ์ˆ˜ํ™•ํ•˜๋ฉด
03:48
she can feed her family
68
228450
2144
์–ด๋จธ๋‹ˆ๊ฐ€ ๊ฐ€์กฑ์—๊ฒŒ ๋จน์ด๊ณ 
03:50
and she can sell it at the market for important things like school fees,
69
230618
4046
๋‚จ์€ ๊ฑด ์žฅํ„ฐ์— ํŒ”์•„ ํ•™๋น„์ฒ˜๋Ÿผ ์ค‘์š”ํ•œ ๋ฐ ์‚ฌ์šฉํ•˜๊ณ 
03:54
medical expenses and savings.
70
234688
2135
์˜๋ฃŒ๋น„๋ฅผ ๋Œ€๊ฑฐ๋‚˜ ์ €์ถ•์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:57
But cassava is under attack in Africa.
71
237752
3531
ํ•˜์ง€๋งŒ ์•„ํ”„๋ฆฌ์นด์—์„œ ์นด์‚ฌ๋ฐ”๊ฐ€ ๊ณต๊ฒฉ ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:01
Whiteflies and viruses are devastating cassava.
72
241665
4436
๊ฐ€๋ฃจ์ด์™€ ๋ฐ”์ด๋Ÿฌ์Šค๊ฐ€ ์นด์‚ฌ๋ฐ”์— ์—„์ฒญ๋‚œ ์†์ƒ์„ ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
04:06
Whiteflies are tiny insects
73
246593
2206
๊ฐ€๋ฃจ์ด๋Š” ์•„์ฃผ ์ž‘์€ ๊ณค์ถฉ์œผ๋กœ
04:08
that feed on the leaves of over 600 plants.
74
248823
2818
600์ข…๋ฅ˜๊ฐ€ ๋„˜๋Š” ์‹๋ฌผ์˜ ์žŽ์„ ๋จน์–ด ์น˜์›๋‹ˆ๋‹ค.
04:11
They are bad news.
75
251665
1801
๋ชน์‹œ ๋‚˜์œ ์†Œ์‹์ด์ฃ .
04:13
There are many species;
76
253490
1159
๋‹ค์–‘ํ•œ ์ข…์ด ์žˆ๋Š” ๋ฐ๋‹ค๊ฐ€
04:14
they become pesticide resistant;
77
254673
2269
์‚ด์ถฉ์ œ์— ๋ฉด์—ญ์ด ์ƒ๊ธฐ๊ณ 
04:16
and they transmit hundreds of plant viruses
78
256966
4254
์ˆ˜๋ฐฑ ๊ฐ€์ง€๋‚˜ ๋˜๋Š” ์‹๋ฌผ ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ์˜ฎ๊ฒจ
04:21
that cause cassava brown streak disease
79
261244
2524
์นด์‚ฌ๋ฐ” ๊ฐˆ์ƒ‰์ค„๋ณ‘๊ณผ
04:23
and cassava mosaic disease.
80
263792
1800
์นด์‚ฌ๋ฐ” ๋ชจ์ž์ดํฌ๋ณ‘์„ ์ผ์œผํ‚ต๋‹ˆ๋‹ค.
04:26
This completely kills the plant.
81
266085
2134
์ด ์งˆ๋ณ‘์€ ์นด์‚ฌ๋ฐ”๋ฅผ ์™„์ „ํžˆ ์ฃฝ์ž…๋‹ˆ๋‹ค.
04:29
And if there's no cassava,
82
269038
1817
๊ทธ๋ฆฌ๊ณ  ์นด์‚ฌ๋ฐ”๊ฐ€ ์—†์œผ๋ฉด
04:30
there's no food or income for millions of people.
83
270879
3999
์ˆ˜๋ฐฑ๋งŒ์˜ ์‚ฌ๋žŒ์ด ๊ตถ๊ณ  ๋นˆ๊ณคํ•ด์ง‘๋‹ˆ๋‹ค.
04:36
It took me one trip to Tanzania
84
276141
2476
ํƒ„์ž๋‹ˆ์•„์— ํ•œ ๋ฒˆ ๊ฐ€๋Š” ๊ฒƒ์œผ๋กœ๋„,
04:38
to realize that these women need some help.
85
278641
2738
์ด ์—ฌ์ธ๋“ค์—๊ฒŒ ์ •๋ง๋กœ ๋„์›€์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฑธ ๋Š๋‚„ ์ˆ˜ ์žˆ์—ˆ์ฃ .
04:41
These amazing, strong, small-scale family farmers,
86
281403
4253
์ด ๋†€๋ž๊ณ  ๊ฐ•์ธํ•œ, ์†Œ๊ทœ๋ชจ ๋†๋ถ€ ๊ฐ€์กฑ์€
04:45
the majority women,
87
285680
1268
๋Œ€๋ถ€๋ถ„ ์—ฌ์„ฑ์ด๊ณ 
04:46
are doing it rough.
88
286972
1267
๋ฌด์ฒ™ ํž˜๋“ค๊ฒŒ ์‚ด๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:48
They don't have enough food to feed their families,
89
288744
2436
๊ฐ€์กฑ์„ ๋จน์ผ ์‹๋Ÿ‰์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•„์„œ
04:51
and it's a real crisis.
90
291204
1588
์‹ฌ๊ฐํ•œ ์œ„๊ธฐ๋ฅผ ๊ฒช๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:53
What happens is
91
293530
1499
๋ฌด์Šจ ์ผ์ด ๋ฒŒ์–ด์ง€๋ƒ ํ•˜๋ฉด
04:55
they go out and plant fields of cassava when the rains come.
92
295053
2992
๋น„๊ฐ€ ์˜ค๋ฉด ๋ฐ–์œผ๋กœ ๋‚˜๊ฐ€ ๋“คํŒ์— ์นด์‚ฌ๋ฐ”๋ฅผ ์‹ฌ์Šต๋‹ˆ๋‹ค.
04:58
Nine months later,
93
298069
1706
ํ•˜์ง€๋งŒ ์•„ํ™‰ ๋‹ฌ์ด ์ง€๋‚ฌ๋Š”๋ฐ
04:59
there's nothing, because of these pests and pathogens.
94
299799
3080
๋ณ‘์ถฉํ•ด์™€ ๋ณ‘์›๊ท ์ด ์“ธ๊ณ  ์ง€๋‚˜๊ฐ€ ์•„๋ฌด๊ฒƒ๋„ ๋‚จ์€ ๊ฒŒ ์—†์Šต๋‹ˆ๋‹ค.
05:02
And I thought to myself,
95
302903
2158
์ด๋Ÿฐ ์ƒ๊ฐ์ด ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
05:05
how in the world can farmers be hungry?
96
305085
3198
์„ธ์ƒ์— ์–ด๋–ป๊ฒŒ ๋†๋ถ€๋“ค์ด ๊ตถ์„ ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์•ผ?
05:08
So I decided to spend some time on the ground
97
308815
2320
๊ทธ๋ž˜์„œ ํ˜„์žฅ์—์„œ ๋ฌธ์ œ๋ฅผ ๋“ค์ถฐ ๋ณด๊ธฐ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:11
with the farmers and the scientists
98
311159
1680
๋†๋ถ€์™€ ๊ณผํ•™์ž๋“ค๊ณผ ํ•จ๊ป˜
05:12
to see if I had any skills that could be helpful.
99
312863
2603
์ œ ๋Šฅ๋ ฅ์œผ๋กœ ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ๋„์™€์ค„ ์ˆ˜ ์žˆ์„์ง€ ๊ณ ๋ฏผํ–ˆ์Šต๋‹ˆ๋‹ค.
05:16
The situation on the ground is shocking.
100
316427
2856
์ƒํ™ฉ์€ ์ถฉ๊ฒฉ์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
05:19
The whiteflies have destroyed the leaves that are eaten for protein,
101
319307
4270
๊ฐ€๋ฃจ์ด๊ฐ€ ๋‹จ๋ฐฑ์งˆ์„ ์„ญ์ทจํ•˜๊ธฐ ์œ„ํ•ด ์žŽ์„ ํŒŒ๊ดดํ•˜๊ณ 
05:23
and the viruses have destroyed the roots that are eaten for starch.
102
323601
3582
๋ฐ”์ด๋Ÿฌ์Šค๋Š” ํƒ„์ˆ˜ํ™”๋ฌผ์„ ์–ป๊ธฐ ์œ„ํ•ด ๋ฟŒ๋ฆฌ๋ฅผ ํŒŒ๊ดดํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
05:27
An entire growing season will pass,
103
327592
2445
์นด์‚ฌ๋ฐ”์˜ ์„ฑ์žฅ๊ธฐ๊ฐ€ ๋ชจ๋‘ ์ง€๋‚˜
05:30
and the farmer will lose an entire year of income and food,
104
330061
4110
๋†๋ถ€๋“ค์€ ๊ทธ ํ•ด๋ฅผ ๋‚˜๊ธฐ ์œ„ํ•œ ์ˆ˜์ž…๊ณผ ์‹๋Ÿ‰์„ ๋ชจ์กฐ๋ฆฌ ์žƒ๊ณ 
05:34
and the family will suffer a long hunger season.
105
334195
3198
์˜จ ๊ฐ€์กฑ์ด ๊ธด ๋ณด๋ฆฟ๊ณ ๊ฐœ ๋‚ด๋‚ด ๊ตถ์ฃผ๋ฆฝ๋‹ˆ๋‹ค.
05:37
This is completely preventable.
106
337942
2080
์ถฉ๋ถ„ํžˆ ์˜ˆ๋ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌํƒœ์ž…๋‹ˆ๋‹ค.
05:40
If the farmer knew
107
340046
1324
๋งŒ์•ฝ ๋†๋ถ€๊ฐ€
05:41
what variety of cassava to plant in her field,
108
341394
3064
์–ด๋–ค ์ข…๋ฅ˜์˜ ์นด์‚ฌ๋ฐ”๋ฅผ ๋•…์— ์‹ฌ์–ด์•ผ ํ•˜๋Š”์ง€ ์•Œ๊ณ 
05:44
that was resistant to those viruses and pathogens,
109
344482
4325
๊ทธ ์ข…๋ฅ˜์˜ ์นด์‚ฌ๋ฐ”๊ฐ€ ๋ฐ”์ด๋Ÿฌ์Šค์™€ ๋ณ‘์›๊ท ์— ์ €ํ•ญํ•œ๋‹ค๋ฉด
05:48
they would have more food.
110
348831
1905
์ถฉ๋ถ„ํžˆ ๋” ๋งŽ์€ ์‹๋Ÿ‰์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:50
We have all the technology we need,
111
350760
2835
์šฐ๋ฆฌ์—๊ฒ ํ•„์š”ํ•œ ๋ชจ๋“  ๊ธฐ์ˆ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
05:53
but the knowledge and the resources
112
353619
3204
ํ•˜์ง€๋งŒ ์ง€์‹๊ณผ ์ž์›์€
05:56
are not equally distributed around the globe.
113
356847
3135
์ „ ์„ธ๊ณ„์— ๊ท ๋“ฑํ•˜๊ฒŒ ๋ถ„๋ฐฐ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:00
So what I mean specifically is,
114
360712
2562
์ €์—๊ฒŒ ๊ตฌ์ฒด์ ์œผ๋กœ ํ•„์š”ํ–ˆ๋˜ ๊ฒƒ์€
06:03
the older genomic technologies
115
363298
1852
๋ณ‘์ถฉํ•ด์™€ ๋ณ‘์›๊ท ์˜ ํŠน์„ฑ์„
06:05
that have been required to uncover the complexities
116
365174
2863
๋ถ„์„ํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๊ธฐ์กด์— ์ด๋ฏธ ๊ฐœ๋ฐœ๋œ
06:08
in these pests and pathogens --
117
368061
3062
์œ ์ „์ฒด ๊ธฐ์ˆ ์ด์—ˆ๋Š”๋ฐ
06:11
these technologies were not made for sub-Saharan Africa.
118
371147
2998
์ด ๊ธฐ์ˆ ์€ ์‚ฌํ•˜๋ผ ์‚ฌ๋ง‰ ์ด๋‚จ ์•„ํ”„๋ฆฌ์นด ์ง€์—ญ์—์„œ ์‚ฌ์šฉํ•˜๋„๋ก ๋งŒ๋“  ๊ฑด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:15
They cost upwards of a million dollars;
119
375058
2341
๊ฐ€๊ฒฉ์ด ๋ฐฑ๋งŒ ๋‹ฌ๋Ÿฌ๋ฅผ ๋„˜๋Š” ๋ฐ๋‹ค๊ฐ€
06:17
they require constant power
120
377423
1888
์ง€์†ํ•ด์„œ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•ด์•ผ ํ•˜๊ณ 
06:19
and specialized human capacity.
121
379335
1800
์ „๋ฌธ๊ฐ€๊ฐ€ ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:21
These machines are few and far between on the continent,
122
381970
2861
์žฅ์น˜๊ฐ€ ๊ทนํžˆ ๋“œ๋ฌผ๊ณ  ๋‹ค๋ฅธ ๋Œ€๋ฅ™์— ์žˆ์–ด์„œ
06:24
which is leaving many scientists battling on the front lines no choice
123
384855
4621
ํ˜„์žฅ์—์„œ ๊ณ ์ƒํ•˜๋Š” ๋งŽ์€ ๊ณผํ•™์ž๊ฐ€ ๋ฐ”๋‹ค ๋„ˆ๋จธ๋กœ
06:29
but to send the samples overseas.
124
389500
1999
์ƒ˜ํ”Œ์„ ๋ณด๋‚ด๋Š” ์ˆ˜๋ฐ–์— ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
06:31
And when you send the samples overseas,
125
391523
1960
๊ทธ๋ฆฌ๊ณ  ์ƒ˜ํ”Œ์„ ๋ฐ”๋‹ค ๋„ˆ๋จธ๋กœ ๋ณด๋‚ด๋ฉด
06:33
samples degrade, it costs a lot of money,
126
393507
2626
์ƒ˜ํ”Œ์˜ ์ƒํƒœ๊ฐ€ ์•ˆ ์ข‹์•„์ง€๊ณ  ๋น„์šฉ๋„ ๋งŽ์ด ๋“œ๋Š” ๋ฐ๋‹ค๊ฐ€
06:36
and trying to get the data back over weak internet
127
396157
3167
์—ฐ๊ตฌ ๋ฐ์ดํ„ฐ๋ฅผ ์•„ํ”„๋ฆฌ์นด์˜ ์ทจ์•ฝํ•œ ์ธํ„ฐ๋„ท ํšŒ์„ ์œผ๋กœ ๋ฐ›๊ธฐ๊ฐ€
06:39
is nearly impossible.
128
399348
1400
๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ–ˆ์Šต๋‹ˆ๋‹ค.
06:41
So sometimes it can take six months to get the results back to the farmer.
129
401142
4299
๋•Œ๋ฌธ์— ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›์•„ ๋†๋ถ€์—๊ฒŒ ์•Œ๋ ค์ฃผ๋Š” ๋ฐ ์—ฌ์„ฏ ๋‹ฌ์ด ๊ฑธ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:45
And by then, it's too late.
130
405465
1754
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋•Œ์ฏค์ด๋ฉด ์ƒํ™ฉ์€ ๋„ˆ๋ฌด ๋Šฆ์Šต๋‹ˆ๋‹ค.
06:47
The crop is already gone,
131
407243
1587
๋†์ž‘๋ฌผ์ด ์ด๋ฏธ ์ฃฝ์–ด
06:48
which results in further poverty and more hunger.
132
408854
3166
ํฐ ๊ถํ•๊ณผ ๊ตถ์ฃผ๋ฆผ๋งŒ ๋‚จ์Šต๋‹ˆ๋‹ค.
06:53
We knew we could fix this.
133
413306
2158
์ด ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑธ ์•Œ๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:55
In 2017,
134
415989
1404
2017๋…„
06:57
we had heard of this handheld, portable DNA sequencer
135
417417
4786
์†๋ฐ”๋‹ฅ๋งŒํ•œ ํœด๋Œ€์šฉ DNA ์—ผ๊ธฐ์„œ์—ด๋ถ„์„๊ธฐ๊ฐ€ ๋‚˜์™”๋‹ค๋Š” ์†Œ์‹์„ ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
07:02
called an Oxford Nanopore MinION.
136
422227
2509
์˜ฅ์Šคํฌ๋“œ ๋‚˜๋…ธํฌ์–ด ๋ฏธ๋‹ˆ์–ธ (Oxford Nanopore MinION)์ด๋ž€ ์žฅ์น˜์˜€์Šต๋‹ˆ๋‹ค.
07:04
This was being used in West Africa to fight Ebola.
137
424760
4153
์„œ์•„ํ”„๋ฆฌ์นด์—์„œ ์—๋ณผ๋ผ ๋ฐ”์ด๋Ÿฌ์Šค์— ๋Œ€ํ•ญํ•˜๋Š” ๋ฐ ์ด ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
07:08
So we thought:
138
428937
1497
์ €ํฌ๋Š” ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
07:10
Why can't we use this in East Africa to help farmers?
139
430458
3286
๋™์•„ํ”„๋ฆฌ์นด ๋†๋ถ€๋ฅผ ๋•๋Š” ๋ฐ ์ด ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ•ด๋ณด๋ฉด ์–ด๋–จ๊นŒ?
07:13
So, what we did was we set out to do that.
140
433768
4333
๊ทธ๋ž˜์„œ ์‹œ๋„ํ•ด๋ณด๊ธฐ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:18
At the time, the technology was very new,
141
438609
2698
๋‹น์‹œ ๊ต‰์žฅํžˆ ์‹ ๊ธฐ์ˆ ์ด์—ˆ๊ณ 
07:21
and many doubted we could replicate this on the farm.
142
441331
2952
๋งŽ์€ ์‚ฌ๋žŒ์ด ๊ทธ ์žฅ์น˜๋ฅผ ๋†์žฅ์šฉ์œผ๋กœ ๊ฐœ๋Ÿ‰ํ•˜๊ธฐ ํž˜๋“ค ๊ฑฐ๋ผ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
07:24
When we set out to do this,
143
444879
1317
์‹ฌ์ง€์–ด ์šฐ๋ฆฌ์™€ ํ•จ๊ป˜ ์ผํ•˜๋˜
07:26
one of our "collaborators" in the UK
144
446220
3881
์˜๊ตญ์˜ "ํ˜‘๋ ฅ์ž" ํ•œ ๋ถ„์ด
07:30
told us that we would never get that to work in East Africa,
145
450125
3627
๋†์žฅ์šฉ์œผ๋กœ ๊ฐœ๋Ÿ‰ํ•˜๊ธฐ๋Š” ๊ณ ์‚ฌํ•˜๊ณ  ๋™์•„ํ”„๋ฆฌ์นด์—์„œ ์“ฐ์ง€๋„ ๋ชปํ•  ๊ฑฐ๋ผ
07:33
let alone on the farm.
146
453776
1466
์žฅ๋‹ดํ•œ ์ ์ด ์žˆ์—ˆ์ฃ .
07:35
So we accepted the challenge.
147
455863
1769
์ €ํฌ๋Š” ๋„์ „์„ ๋ฐ›์•„๋“ค์˜€์Šต๋‹ˆ๋‹ค.
07:37
This person even went so far as to bet us two of the best bottles of champagne
148
457934
6453
๊ทธ๋ถ„์€ ์ƒ๋‹นํžˆ ๊ฐ’์ง„ ์ƒดํŽ˜์ธ์„ ๋ฌด๋ ค ๋‘ ๋ณ‘์ด๋‚˜ ๊ฑฐ์…จ์Šต๋‹ˆ๋‹ค.
07:44
that we would never get that to work.
149
464411
2958
์ €ํฌ๊ฐ€ ์ ˆ๋Œ€๋กœ ํ•ด๋‚ด์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฐ ๋ง์ด์ฃ .
07:48
Two words:
150
468871
1579
๋‘ ๋งˆ๋””๋งŒ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
07:50
pay up.
151
470474
1151
์ƒดํŽ˜์ธ ๊ฐ€์ ธ์˜ค์„ธ์š”.
07:51
(Laughter)
152
471649
2174
(์›ƒ์Œ)
07:53
(Applause)
153
473847
4152
(๋ฐ•์ˆ˜)
07:58
Pay up, because we did it.
154
478023
2913
๊ฐ€์ ธ์˜ค์„ธ์š”. ์šฐ๋ฆฌ๊ฐ€ ํ•ด๋ƒˆ์œผ๋‹ˆ๊นŒ์š”.
08:00
We took the entire high-tech molecular lab
155
480960
3285
์ฒจ๋‹จ ๋ถ„์ž ์—ฐ๊ตฌ์†Œ ํ•˜๋‚˜๋ฅผ ํ†ต์งธ๋กœ
08:04
to the farmers of Tanzania, Kenya and Uganda,
156
484269
3649
ํƒ„์ž๋‹ˆ์•„์™€ ์ผ€๋ƒ ๊ทธ๋ฆฌ๊ณ  ์šฐ๊ฐ„๋‹ค์˜ ๋†๋ถ€์—๊ฒŒ ์„ ๋ณด์˜€๊ณ 
08:07
and we called it Tree Lab.
157
487942
2032
๊ทธ๊ฑธ ํŠธ๋ฆฌ ์—ฐ๊ตฌ์†Œ(Tree lab)๋ผ ์ด๋ฆ„ ๋ถ™์˜€์Šต๋‹ˆ๋‹ค.
08:10
So what did we do?
158
490942
1191
๊ทธ๊ฑธ๋กœ ๋ญ˜ ํ–ˆ์„๊นŒ์š”?
08:12
Well, first of all, we gave ourselves a team name --
159
492157
2579
๊ฐ€์žฅ ๋จผ์ €, ์šฐ๋ฆฌ ํŒ€์— ์ด๋ฆ„์„ ๋ถ™์˜€์Šต๋‹ˆ๋‹ค.
08:14
it's called the Cassava Virus Action Project.
160
494760
2174
์นด์‚ฌ๋ฐ” ๋ฐ”์ด๋Ÿฌ์Šค ์•ก์…˜ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
08:16
We made a website,
161
496958
1357
ํ™ˆํŽ˜์ด์ง€๋ฅผ ๋งŒ๋“ค๊ณ 
08:18
we gathered support from the genomics and computing communities,
162
498339
3611
์œ ์ „์ฒดํ•™๊ณผ ์ปดํ“จํŒ… ์ปค๋ฎค๋‹ˆํ‹ฐ๋กœ๋ถ€ํ„ฐ ๋„์›€์„ ๋ฐ›์•„
08:21
and away we went to the farmers.
163
501974
1881
๊ทธ ๋„์›€์„ ๋†๋ถ€๋“ค์—๊ฒŒ ์ „ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:24
Everything that we need for our Tree Lab
164
504411
2809
ํŠธ๋ฆฌ ์—ฐ๊ตฌ์†Œ์—์„œ ํ•„์š”๋กœํ•œ ๋ชจ๋“  ์ž๋ฃŒ๋ฅผ
08:27
is being carried by the team here.
165
507244
2409
ํ˜„์ง€์—์„œ ์กฐ๋‹ฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:29
All of the molecular and computational requirements needed
166
509677
4047
๋ฐ”์ด๋Ÿฌ์Šค์— ์‹œ๋‹ฌ๋ฆฌ๋Š” ์‹๋ฌผ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋ชจ๋“  ํ‘œ๋ณธ๊ณผ
08:33
to diagnose sick plants is there.
167
513748
3301
์ปดํ“จํ„ฐ ๊ณ„์‚ฐ์— ํ•„์š”ํ•œ ์ž๋ฃŒ๊ฐ€ ์—ฌ๊ธฐ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:37
And it's actually all on this stage here as well.
168
517431
2828
์ด๊ฒŒ ํ˜„ ๋‹จ๊ณ„์—์„œ ์‹ค์งˆ์ ์œผ๋กœ ํ•„์š”ํ•œ ์ „๋ถ€์˜€์Šต๋‹ˆ๋‹ค.
08:41
We figured if we could get the data closer to the problem,
169
521161
3587
์šฐ๋ฆฌ๊ฐ€ ๋งŒ์•ฝ ๋ฌธ์ œ์— ์ธ์ ‘ํ•œ ์ž๋ฃŒ๋ฅผ ์–ป๊ณ 
08:44
and closer to the farmer,
170
524772
1618
๋†๋ถ€์—๊ฒŒ ์ธ์ ‘ํ•œ ์ž๋ฃŒ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด
08:46
the quicker we could tell her what was wrong with her plant.
171
526414
3356
๋‚˜๋ฌด์— ์–ด๋–ค ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š”์ง€ ๋” ๋นจ๋ฆฌ ๋งํ•ด ์ค„ ์ˆ˜ ์žˆ์œผ๋ฆฌ๋ผ ํŒ๋‹จํ–ˆ์Šต๋‹ˆ๋‹ค.
08:50
And not only tell her what was wrong --
172
530169
1873
๋ฌด์—‡์ด ๋ฌธ์ œ์ธ์ง€ ๋งํ•ด์ค„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
08:52
give her the solution.
173
532066
1392
๋Œ€์ฑ…๊นŒ์ง€๋„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ์œผ๋ฆฌ๋ผ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
08:53
And the solution is,
174
533482
1325
๊ทธ ๋Œ€์ฑ…์€
08:54
burn the field and plant varieties
175
534831
2623
๋ณ‘์— ์‹œ๋‹ฌ๋ฆฌ๋Š” ๋“คํŒ์„ ๋ถˆํƒœ์›Œ๋ฒ„๋ฆฌ๊ณ  ๋ณ€์ข…๋“ค์„ ์‹ฌ์–ด์„œ
08:57
that are resistant to the pests and pathogens she has in her field.
176
537478
3504
๋“คํŒ์— ์žˆ๋Š” ๋ณ‘์ถฉํ•ด์™€ ๋ณ‘์›๊ท ์— ์ €ํ•ญํ•˜๊ฒŒ๋” ํ•˜๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
09:01
So the first thing that we did was we had to do a DNA extraction.
177
541942
4204
๊ทธ๋ž˜์„œ ๋จผ์ € DNA ์ถ”์ถœ์„ ํ•ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:06
And we used this machine here.
178
546170
2539
์ถ”์ถœ์„ ์œ„ํ•ด ์ด ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
09:09
It's called a PDQeX,
179
549050
3199
์ด๊ฑด ํ”ผ๋””ํ์ด์—‘์Šค(PDQeX)๋ผ๋Š” ์žฅ์น˜๋กœ
09:12
which stands for "Pretty Damn Quick Extraction."
180
552273
3891
โ€˜์—„์ฒญ ๊ฒ๋‚˜ ๋น ๋ฅธ ์ถ”์ถœ' (Pretty Damn Quick Extraction)์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
09:16
(Laughter)
181
556188
2048
(์›ƒ์Œ)
09:18
I know.
182
558260
1150
๊ทธ๋ž˜์š”.
09:19
My friend Joe is really cool.
183
559768
2494
์ œ ์นœ๊ตฌ ์กฐ๋Š” ์ •๋ง ์ฟจํ•˜์ฃ .
09:23
One of the biggest challenges in doing a DNA extraction
184
563394
3360
DNA๋ฅผ ์ถ”์ถœํ•˜๋Š”๋ฐ ๊ฐ€์žฅ ํฐ ๋‚œ๊ด€ ํ•˜๋‚˜๋Š”
09:26
is it usually requires very expensive equipment,
185
566778
3315
์ถ”์ถœ์— ์ผ๋ฐ˜์ ์œผ๋กœ ๊ต‰์žฅํžˆ ๋น„์‹ผ ์žฅ๋น„๊ฐ€ ํ•„์š”ํ•˜๊ณ 
09:30
and takes hours.
186
570117
1404
์‹œ๊ฐ„์ด ๋งŽ์ด ๋“ ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
09:31
But with this machine,
187
571545
1492
ํ•˜์ง€๋งŒ ์ด ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ•ด์„œ
09:33
we've been able to do it in 20 minutes,
188
573061
2754
20๋ถ„ ์•ˆ์— ํ•˜๊ฒŒ ๋˜์—ˆ๊ณ ,
09:35
at a fraction of the cost.
189
575839
1246
๋น„์šฉ๋„ ์ผ๋ถ€๋ถ„๋ฐ–์— ๋“ค์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
09:37
And this runs off of a motorcycle battery.
190
577109
2888
๊ฒŒ๋‹ค๊ฐ€ ์ด ์žฅ์น˜๋Š” ์˜คํ† ๋ฐ”์ด ๋ฐฐํ„ฐ๋ฆฌ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.
09:41
From there, we take the DNA extraction and prepare it into a library,
191
581164
5143
์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๋Š” DNA ์ถ”์ถœ๊ธฐ๋ฅผ ๊ฐ€์ง€๊ณ  ๋„์„œ๊ด€์— ๊ฐ€์ ธ๊ฐ€
09:46
getting it ready to load on
192
586331
1779
์†๋ฐ”๋‹ฅ ํฌ๊ธฐ์˜ ํœด๋Œ€์šฉ
09:48
to this portable, handheld genomic sequencer,
193
588134
4292
์œ ์ „์ž ์—ผ๊ธฐ์„œ์—ด๋ถ„์„๊ธฐ๋กœ ์ „์†กํ•  ์ค€๋น„๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.
09:52
which is here,
194
592450
1151
์—ฌ๊ธฐ ์žˆ์ฃ .
09:53
and then we plug this into a mini supercomputer,
195
593625
3738
๊ทธ๋ฆฌ๊ณ  ์†Œํ˜• ์Šˆํผ์ปดํ“จํ„ฐ์— ์—ฐ๊ฒฐํ•˜๋Š”๋ฐ
09:57
which is called a MinIT.
196
597387
1822
์ด ์ปดํ“จํ„ฐ๋Š” ๋ฏธ๋‹›(MinIT)์ด๋ผ ํ•ฉ๋‹ˆ๋‹ค.
09:59
And both of these things are plugged into a portable battery pack.
197
599728
4102
๊ทธ๋ฆฌ๊ณ  ์žฅ์น˜๋ฅผ ๋ชจ๋‘ ํœด๋Œ€์šฉ ๋ฐฐํ„ฐ๋ฆฌ ํŒฉ์— ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
10:04
So we were able to eliminate
198
604569
1873
์ด๋ ‡๊ฒŒ ํœด๋Œ€์šฉ ๋ฐฐํ„ฐ๋ฆฌ๋กœ ์—ฐ๊ฒฐํ•ด์•ผ
10:06
the requirements of main power and internet,
199
606466
2405
์ฃผ ์ „๋ ฅ๊ณผ ์ธํ„ฐ๋„ท ์—†์ด๋„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ
10:08
which are two very limiting factors on a small-scale family farm.
200
608895
3928
์†Œ๊ทœ๋ชจ ๊ฐ€์กฑ ๋†์žฅ์—์„œ๋Š” ์ „๋ ฅ๊ณผ ์ธํ„ฐ๋„ท์„ ์•ˆ์ •์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:13
Analyzing the data quickly can also be a problem.
201
613807
2871
์ •๋ณด๋ฅผ ๋น ๋ฅด๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์€ ๋˜๋ ค ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:17
But this is where me being a computational biologist came in handy.
202
617033
3906
ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์— ์ปดํ“จํ„ฐ ์ƒ๋ฌผํ•™์ž์ธ ์ €์˜ ์—ญํ• ์ด ์œ ์šฉํ•ด์ง€์ฃ .
10:21
All that gluing of dead plants,
203
621382
2230
์ฃฝ์€ ์‹๋ฌผ์„ ํ’€๋กœ ๋ถ™์ด๊ณ 
10:23
and all that measuring,
204
623636
1560
๊ทธ ๋ชจ๋“  ๊ฑธ ์ธก์ •ํ•˜๊ณ 
10:25
and all that computing
205
625220
1992
์ปดํ“จํ„ฐ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ์ด ๋ชจ๋“  ์ผ์—์„œ ์‹œ์ž‘ํ•ด
10:27
finally came in handy in a real-world, real-time way.
206
627236
4151
๋น„๋กœ์†Œ ์ด๋ ‡๊ฒŒ ์‹ค์ œ ์„ธ๊ณ„์™€ ํ˜„์žฌ์— ํ•„์š”ํ•œ ๋Šฅ๋ ฅ์„ ๋ฐœํœ˜ํ•ฉ๋‹ˆ๋‹ค.
10:31
I was able to make customized databases
207
631411
3053
์ œ ๋Šฅ๋ ฅ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ˜„์ง€ ์ƒํ™ฉ์— ๋งž์ถฐ
10:34
and we were able to give the farmers results in three hours
208
634488
4595
๋†๋ถ€๋“ค์—๊ฒŒ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์—ฌ์„ฏ ๋‹ฌ์„
10:39
versus six months.
209
639107
1864
์„ธ ์‹œ๊ฐ„์œผ๋กœ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
10:41
(Applause)
210
641694
6968
(๋ฐ•์ˆ˜)
10:50
The farmers were overjoyed.
211
650085
2634
๋†๋ถ€๋“ค์€ ๋ฌด์ฒ™ ๊ธฐ๋ปํ–ˆ์Šต๋‹ˆ๋‹ค.
10:53
So how do we know that we're having impact?
212
653799
2796
์šฐ๋ฆฌ๊ฐ€ ๋†๋ถ€๋“ค์—๊ฒŒ ์ œ๊ณตํ•œ ๊ฒฐ๊ณผ๋Š” ์–ด๋–ป๊ฒŒ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ์„๊นŒ์š”?
10:56
Nine moths after our Tree Lab,
213
656619
2000
ํŠธ๋ฆฌ ์—ฐ๊ตฌ์†Œ๋ฅผ ์„ธ์šฐ๊ณ  ์•„ํ™‰ ๋‹ฌ ๋’ค
10:58
Asha went from having zero tons per hectare
214
658643
3230
์•„์ƒค๋ผ๋Š” ๋†๋ถ€๋Š” ์•ฝ ๋งŒ ์ œ๊ณฑ๋ฏธํ„ฐ์—์„œ ํ•˜๋‚˜๋„ ์ˆ˜ํ™•ํ•˜์ง€ ๋ชปํ•˜๋˜ ์นด์‚ฌ๋ฐ”๋ฅผ
11:01
to 40 tons per hectare.
215
661897
2008
40ํ†ค์ด๋‚˜ ์ˆ˜ํ™•ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:03
She had enough to feed her family
216
663929
1799
๊ทธ๋…€๋Š” ๊ฐ€์กฑ์„ ๋จน์ด๊ณ 
11:05
and she was selling it at the market,
217
665752
2690
์‹œ์žฅ์— ํŒ”๊ธฐ ์ถฉ๋ถ„ํ•œ ์‹๋Ÿ‰์„ ์ˆ˜ํ™•ํ•ด
11:08
and she's now building a house for her family.
218
668466
2735
์ด์ œ ๊ฐ€์กฑ์„ ์œ„ํ•œ ์ง‘์„ ์ง“๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:12
Yeah, so cool.
219
672212
1159
๋งž์•„์š”, ๊ต‰์žฅํžˆ ๋ฉ‹์ง€์ฃ .
11:13
(Applause)
220
673395
4254
(๋ฐ•์ˆ˜)
11:17
So how do we scale Tree Lab?
221
677673
1866
ํŠธ๋ฆฌ ์—ฐ๊ตฌ์†Œ๋ฅผ ์–ด๋–ป๊ฒŒ ๋” ๋„“๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
11:19
The thing is,
222
679940
1380
์žฌ๋ฏธ์žˆ๋Š” ์ ์€
11:21
farmers are scaled already in Africa.
223
681344
2103
์•„ํ”„๋ฆฌ์นด ๋†๋ถ€๋“ค์ด ์ด๋ฏธ ์ด๊ฑธ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
11:23
These women work in farmer groups,
224
683471
1889
์ด ์—ฌ์ธ๋“ค์€ ๋†๋ถ€ ์ง‘๋‹จ์œผ๋กœ ์ผ์„ ํ•˜๋ฉฐ
11:25
so helping Asha actually helped 3,000 people in her village,
225
685384
4126
๊ฒฐ๊ณผ๋ฌผ๋ฟ ์•„๋‹ˆ๋ผ ํ•ด๊ฒฐ์ฑ…๋„ ๊ณต์œ ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—
11:29
because she shared the results and also the solution.
226
689534
3652
์•„์ƒค๋ฅผ ๋•๋Š” ๊ฒƒ์€ ์‹ค์ œ๋กœ ๋งˆ์„์˜ 3,000๋ช…์„ ๋•๋Š” ๊ฒƒ๊ณผ ๊ฐ™์•˜์ฃ .
11:33
I remember every single farmer I've ever met.
227
693673
4191
์ €๋Š” ์ œ๊ฐ€ ๋งŒ๋‚œ ๋†๋ถ€๋ฅผ ํ•œ ๋ถ„ ํ•œ ๋ถ„ ๋‹ค ๊ธฐ์–ตํ•ฉ๋‹ˆ๋‹ค.
11:38
Their pain and their joy
228
698665
3563
๊ทธ ๊ณ ํ†ต๊ณผ ๊ธฐ์จ์„
11:42
is engraved in my memories.
229
702252
1800
์ œ ๋งˆ์Œ์†์— ์ƒˆ๊ฒผ์Šต๋‹ˆ๋‹ค.
11:44
Our science is for them.
230
704958
1865
์šฐ๋ฆฌ์˜ ๊ณผํ•™์€ ๊ทธ๋“ค์„ ์œ„ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:47
Tree Lab is our best attempt to help them become more food secure.
231
707711
5047
ํŠธ๋ฆฌ ์—ฐ๊ตฌ์†Œ๋Š” ๋†๋ถ€๋“ค์˜ ์‹๋Ÿ‰ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €ํฌ๊ฐ€ ๋…ธ๋ ฅํ•œ ์ตœ์„ ์˜ ์‹œ๋„์˜€์Šต๋‹ˆ๋‹ค.
11:53
I never dreamt
232
713180
1786
๊ฟˆ์—๋„ ์ƒ๊ฐํ•ด ๋ณด์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
11:54
that the best science I would ever do in my life
233
714990
2944
์ œ ์ธ์ƒ์—์„œ ๊ฐ€์žฅ ๋ฐœ์ „๋œ ๊ณผํ•™์œผ๋กœ
11:57
would be on that blanket in East Africa,
234
717958
3499
๋™์•„ํ”„๋ฆฌ์นด์˜ ๋„“์€ ๋•…์— ๋‚˜๊ฐ€
12:01
with the highest-tech genomic gadgets.
235
721481
2366
์ตœ์ฒจ๋‹จ ์œ ์ „์ฒด ์žฅ์น˜๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋ผ ๋ง์ด์ฃ .
12:04
But our team did dream
236
724312
2452
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ ํŒ€์€
12:06
that we could give farmers answers in three hours versus six months,
237
726788
4270
๋†๋ถ€๋“ค์—๊ฒŒ ํ•ด๊ฒฐ์ฑ…์„ ์—ฌ์„ฏ ๋‹ฌ์ด ์•„๋‹Œ ์„ธ ์‹œ๊ฐ„ ๋งŒ์— ์ œ๊ณตํ•˜๊ฒ ๋‹ค๋Š” ๊ฟˆ์„ ๊ฟจ๊ณ ,
12:11
and then we did it.
238
731082
1436
ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค.
12:12
Because that's the power of diversity and inclusion in science.
239
732542
4108
๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ๊ณผํ•™์„ ํญ๋„“๊ณ  ๋‹ค์–‘ํ•˜๊ฒŒ ์‚ฌ์šฉํ•  ๋•Œ ๋‚˜์˜ค๋Š” ํž˜์ž…๋‹ˆ๋‹ค.
12:17
Thank you.
240
737156
1151
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
12:18
(Applause)
241
738331
3151
(๋ฐ•์ˆ˜)
12:21
(Cheers)
242
741506
4083
(๊ฐˆ์ฑ„)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7