What to trust in a "post-truth" world | Alex Edmans

155,340 views ใƒป 2018-12-03

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: maor madmon ืขืจื™ื›ื”: Ido Dekkers
00:13
Belle Gibson was a happy young Australian.
0
13675
2920
ื‘ืœ ื’ื™ื‘ืกื•ืŸ ื”ื™ื™ืชื” ืื•ืกื˜ืจืœื™ืช ืฆืขื™ืจื” ื•ืฉืžื—ื”.
00:16
She lived in Perth, and she loved skateboarding.
1
16619
3023
ื”ื™ื ื’ืจื” ื‘ืคืจืช' ื•ืื”ื‘ื” ืœื’ืœื•ืฉ ื‘ืกืงื™ื™ื˜ื‘ื•ืจื“.
00:20
But in 2009, Belle learned that she had brain cancer and four months to live.
2
20173
4449
ืื‘ืœ ื‘-2009, ื’ื™ืœืชื” ืฉื™ืฉ ืœื” ืกืจื˜ืŸ ื”ืžื•ื— ื•ื ื•ืชืจื• ืœื” 4 ื—ื•ื“ืฉื™ื ืœื—ื™ื•ืช.
00:25
Two months of chemo and radiotherapy had no effect.
3
25034
3533
ื—ื•ื“ืฉื™ื™ื ืฉืœ ื›ื™ืžื•ืชืจืคื™ื” ื•ื”ืงืจื ื•ืช ืœื ืขื–ืจื•.
00:29
But Belle was determined.
4
29145
1500
ืื‘ืœ ื‘ืœ ื”ื™ื™ืชื” ื ื—ื•ืฉื” ื‘ื“ืขืชื”.
00:30
She'd been a fighter her whole life.
5
30669
2130
ื”ื™ื ื”ื™ื™ืชื” ืœื•ื—ืžืช ืžืื– ื•ืžืชืžื™ื“.
00:32
From age six, she had to cook for her brother, who had autism,
6
32823
3294
ืžื’ื™ืœ ืฉืฉ ื”ื™ื ื‘ื™ืฉืœื” ืขื‘ื•ืจ ืื—ื™ื” ื”ืื•ื˜ื™ืกื˜,
00:36
and her mother, who had multiple sclerosis.
7
36141
2388
ื•ืื™ืžื” ืฉื—ื•ืœื” ื‘ื˜ืจืฉืช ื ืคื•ืฆื”.
00:38
Her father was out of the picture.
8
38553
1754
ืื‘ื ืฉืœื” ืœื ื”ื™ื” ื‘ืชืžื•ื ื” ื›ืœ ื—ื™ื™ื”.
00:40
So Belle fought, with exercise, with meditation
9
40736
3286
ืื– ื‘ืœ ื ืœื—ืžื”, ื‘ืขื–ืจืช ืคืขื™ืœื•ืช ื’ื•ืคื ื™ืช ื•ืžื“ื™ื˜ืฆื™ื”
00:44
and by ditching meat for fruit and vegetables.
10
44046
2840
ื”ืคืกื™ืงื” ืœืื›ื•ืœ ื‘ืฉืจ, ืื›ืœื” ืจืง ืคื™ืจื•ืช ื•ื™ืจืงื•ืช.
00:47
And she made a complete recovery.
11
47387
2200
ื•ื”ื™ื ื”ื—ืœื™ืžื”.
00:50
Belle's story went viral.
12
50784
1579
ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ื”ืชืคืฉื˜ ื‘ืจืฉืช ื›ืžื• ืืฉ ื‘ืฉื“ื” ืงื•ืฆื™ื.
00:52
It was tweeted, blogged about, shared and reached millions of people.
13
52387
3393
ื”ื•ื ืกื•ืคืจ ืฉื•ื‘ ื•ืฉื•ื‘ ื‘ื˜ื•ื•ื™ื˜ืจ ื•ื‘ื‘ืœื•ื’ื™ื ื•ื”ื’ื™ืข ืœืžื™ืœื™ื•ื ื™ ืื ืฉื™ื.
00:56
It showed the benefits of shunning traditional medicine
14
56246
3111
ื”ื•ื ื”ืฆื™ื’ ืืช ื”ื™ืชืจื•ื ื•ืช ืฉื‘ื–ื ื™ื—ืช ื”ืจืคื•ืื” ื”ืžืกื•ืจืชื™ืช
00:59
for diet and exercise.
15
59381
1467
ืขื‘ื•ืจ ืชื–ื•ื ื” ื ื›ื•ื ื” ื•ืคืขื™ืœื•ืช ื’ื•ืคื ื™ืช.
01:01
In August 2013, Belle launched a healthy eating app,
16
61381
4498
ื‘ืื•ื’ื•ืกื˜ 2013, ื‘ืœ ื”ืฉื™ืงื” ืืคืœื™ืงืฆื™ื” ืœืชื–ื•ื ื” ื ื›ื•ื ื”,
01:05
The Whole Pantry,
17
65903
1349
ื”ืžื–ื•ื•ื” ื”ืฉืœื,
01:07
downloaded 200,000 times in the first month.
18
67276
4023
ืฉื”ื•ืจื“ื” ืข"ื™ 200,000 ืžืฉืชืžืฉื™ื ื‘ื—ื•ื“ืฉ ื”ืจืืฉื•ืŸ.
01:13
But Belle's story was a lie.
19
73228
2799
ืื‘ืœ ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ื”ื™ื” ืฉืงืจ.
01:17
Belle never had cancer.
20
77227
1534
ื‘ืœ ืžืขื•ืœื ืœื ื—ืœืชื” ื‘ืกืจื˜ืŸ.
01:19
People shared her story without ever checking if it was true.
21
79601
4133
ืื ืฉื™ื ืฉื™ืชืคื• ืืช ื”ืกื™ืคื•ืจ ืฉืœื”, ื‘ืœื™ ืœื‘ื“ื•ืง ื‘ื›ืœืœ ืื ื”ื•ื ืืžื™ืชื™.
01:24
This is a classic example of confirmation bias.
22
84815
3220
ื–ื• ื“ื•ื’ืžื ืงืœืืกื™ืช, ืœื”ื˜ื™ื™ืช ืื™ืฉื•ืฉ.
01:28
We accept a story uncritically if it confirms what we'd like to be true.
23
88403
4676
ืื ื—ื ื• ืžืืžื™ื ื™ื ืœืกื™ืคื•ืจ ืื ื”ื•ื ืžืชืื™ื ืœืžื” ืฉืื ื—ื ื• ืžืืžื™ื ื™ื ื‘ื•.
01:33
And we reject any story that contradicts it.
24
93484
2506
ื•ืื ื—ื ื• ื“ื•ื—ื™ื ื›ืœ ืกื™ืคื•ืจ ืฉืกื•ืชืจ ืื•ืชื•.
01:36
How often do we see this
25
96937
1825
ื‘ืื™ื–ื• ืชื“ื™ืจื•ืช ืื ื—ื ื• ืจื•ืื™ื ื–ืืช
01:38
in the stories that we share and we ignore?
26
98786
3045
ื‘ืกื™ืคื•ืจื™ื ืฉืื ื—ื ื• ืžืฉืชืคื™ื ื•ื‘ืืœื” ืฉืื ื—ื ื• ืžืชืขืœืžื™ื ืžื”ื?
01:41
In politics, in business, in health advice.
27
101855
4182
ื‘ืคื•ืœื™ื˜ื™ืงื”, ื‘ืขืกืงื™ื, ื‘ืขืฆื•ืช ื‘ื ื•ืฉื ื‘ืจื™ืื•ืช.
01:47
The Oxford Dictionary's word of 2016 was "post-truth."
28
107180
4106
ื”ืžื™ืœื” ื”ื ื‘ื—ืจืช ืฉืœ ืžื™ืœื•ืŸ ืื•ืงืกืคื•ืจื“ ืขื‘ื•ืจ 2016 ื”ื™ื™ืชื” "ืคื•ืกื˜-ืืžืช".
01:51
And the recognition that we now live in a post-truth world
29
111768
3492
ื•ื”ื”ื›ืจื” ื‘ื›ืš, ืฉื”ืขื•ืœื ืฉื‘ื• ืื ื• ื—ื™ื™ื ื›ื™ื•ื ื”ื•ื ืขื•ืœื ืฉืœ ืคื•ืกื˜-ืืžืช,
01:55
has led to a much needed emphasis on checking the facts.
30
115284
3364
ื”ื•ื‘ื™ืœื” ืœื”ื›ืจื” ื ื—ื•ืฆื” ื‘ื™ื•ืชืจ ื‘ื—ืฉื™ื‘ื•ืช ืฉืœ ื‘ื“ื™ืงืช ืขื•ื‘ื“ื•ืช.
01:59
But the punch line of my talk
31
119339
1397
ืื‘ืœ ืฉื•ืจืช ื”ืžื—ืฅ ืฉืœ ื”ืฉื™ื—ื” ืฉืœื™,
02:00
is that just checking the facts is not enough.
32
120760
2991
ื”ื™ื ืฉื‘ื“ื™ืงื” ืฉืœ ื”ืขื•ื‘ื“ื•ืช ืื™ื ื” ืžืกืคื™ืงื”.
02:04
Even if Belle's story were true,
33
124347
2927
ืืคื™ืœื• ืื ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ื”ื™ื” ืืžื™ืชื™,
02:07
it would be just as irrelevant.
34
127298
2067
ื”ื•ื ื”ื™ื” ืœื ืจืœื•ื•ื ื˜ื™ ื‘ืื•ืชื” ืžื™ื“ื”.
02:10
Why?
35
130457
1150
ืœืžื”?
02:11
Well, let's look at one of the most fundamental techniques in statistics.
36
131957
3508
ื•ื‘ื›ืŸ, ื‘ื•ืื• ื ืกืชื›ืœ ืขืœ ืื—ืช ื”ืฉื™ื˜ื•ืช ื”ื‘ืกื™ืกื™ื•ืช ื‘ื™ื•ืชืจ ื‘ืกื˜ื˜ื™ืกื˜ื™ืงื”.
02:15
It's called Bayesian inference.
37
135489
2410
ื”ื™ื ื ืงืจืืช ื”ืกืงื” ื‘ื™ื™ืกื™ืื ื™ืช.
02:18
And the very simple version is this:
38
138251
2936
ื”ื’ืจืกื” ื”ืžื•ืคืฉื˜ืช ื”ื™ื ื–ืืช:
02:21
We care about "does the data support the theory?"
39
141211
3268
ืื›ืคืช ืœื ื• "ื”ืื ื”ื ืชื•ื ื™ื ืชื•ืžื›ื™ื ื‘ืชื™ืื•ืจื™ื”?"
02:25
Does the data increase our belief that the theory is true?
40
145053
3456
ื”ืื ื”ื ืชื•ื ื™ื ืžื—ื–ืงื™ื ืืช ืืžื•ื ืชื ื• ืฉื”ืชื™ืื•ืจื™ื” ื ื›ื•ื ื”?
02:29
But instead, we end up asking, "Is the data consistent with the theory?"
41
149520
4383
ื‘ืžืงื•ื ื–ืืช, ืื ื—ื ื• ืฉื•ืืœื™ื "ื”ืื ื”ื ืชื•ื ื™ื ืžืชืื™ืžื™ื ืœืชื™ืื•ืจื™ื”?"
02:34
But being consistent with the theory
42
154838
2515
ืื‘ืœ ื’ื ืื ื”ื ืžืชืื™ืžื™ื ืœืชื™ืื•ืจื™ื”,
02:37
does not mean that the data supports the theory.
43
157377
2929
ืœื ืื•ืžืจ ืฉื”ื ืชื•ื ื™ื ืชื•ืžื›ื™ื ื‘ืชื™ืื•ืจื™ื”.
02:40
Why?
44
160799
1159
ืœืžื”?
02:41
Because of a crucial but forgotten third term --
45
161982
3825
ื‘ื’ืœืœ ืขื•ื‘ื“ื” ืžื›ืจื™ืขื” ืฉืœื™ืฉื™ืช ืฉืื ื—ื ื• ื ื•ื˜ื™ื ืœืฉื›ื•ื— -
02:45
the data could also be consistent with rival theories.
46
165831
3558
ืื•ืชื ื ืชื•ื ื™ื ื™ื›ื•ืœื™ื ืœืชืžื•ืš ื’ื ื‘ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช.
02:49
But due to confirmation bias, we never consider the rival theories,
47
169918
4667
ื‘ื’ืœืœ ื”ื˜ื™ื™ืช ื”ืื™ืฉื•ืฉ, ืื ื—ื ื• ืืฃ ืคืขื ืœื ื—ื•ืฉื‘ื™ื ืขืœ ื”ืชื™ืื•ืจื™ื•ืช ื”ืื—ืจื•ืช,
02:54
because we're so protective of our own pet theory.
48
174609
3151
ื›ื™ ืื ื—ื ื• ื›ืœ ื›ืš ืžื’ื•ื ื ื™ื ื›ืœืคื™ ื”ืชื™ืื•ืจื™ื” ืฉืœื ื•.
02:58
Now, let's look at this for Belle's story.
49
178688
2413
ื‘ื•ืื• ื ื‘ื—ืŸ ืืช ื–ื” ืขื‘ื•ืจ ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ.
03:01
Well, we care about: Does Belle's story support the theory
50
181125
4214
ืžื” ืฉืื›ืคืช ืœื ื• ืžืžื ื•: ื”ืื ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ืชื•ืžืš ื‘ืชื™ืื•ืจื™ื”
03:05
that diet cures cancer?
51
185363
1603
ืฉืชื–ื•ื ื” ื ื›ื•ื ื” ื™ื›ื•ืœื” ืœืจืคื ืกืจื˜ืŸ?
03:06
But instead, we end up asking,
52
186990
1787
ืื‘ืœ ื‘ืžืงื•ื ื–ื”, ืื ื—ื ื• ืฉื•ืืœื™ื,
03:08
"Is Belle's story consistent with diet curing cancer?"
53
188801
4045
"ื”ืื ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ืชื•ืžืš ื‘ื”ื ื—ื” ืฉืชื–ื•ื ื” ื™ื›ื•ืœื” ืœืจืคื ืกืจื˜ืŸ?"
03:13
And the answer is yes.
54
193790
1604
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื ื›ืŸ.
03:15
If diet did cure cancer, we'd see stories like Belle's.
55
195839
4103
ืื ืชื–ื•ื ื” ื”ื™ื™ืชื” ื™ื›ื•ืœื” ืœืจืคื ืกืจื˜ืŸ, ื”ื™ื™ื ื• ืจื•ืื™ื ืกื™ืคื•ืจื™ื ื›ืžื• ืฉืœ ื‘ืœ.
03:20
But even if diet did not cure cancer,
56
200839
2849
ืื‘ืœ ืืคื™ืœื• ืื ืชื–ื•ื ื” ืœื ื™ื›ื•ืœื” ืœืจืคื ืกืจื˜ืŸ,
03:23
we'd still see stories like Belle's.
57
203712
2643
ืขื“ื™ื™ืŸ ื”ื™ื™ื ื• ืจื•ืื™ื ืกื™ืคื•ืจื™ื ื›ืžื• ืฉืœ ื‘ืœ.
03:26
A single story in which a patient apparently self-cured
58
206744
5190
ืกื™ืคื•ืจื™ื ื‘ื•ื“ื“ื™ื ืฉื‘ื”ื ื ืจืื” ืฉื—ื•ืœื” ืžืชืจืคื ืœืœื ืขื–ืจื” ืจืคื•ืื™ืช,
03:31
just due to being misdiagnosed in the first place.
59
211958
3174
ืจืง ื‘ื’ืœืœ ืฉื”ื•ื ืื•ื‘ื—ืŸ ืœื ื ื›ื•ืŸ ืžืœื›ืชื—ื™ืœื”.
03:35
Just like, even if smoking was bad for your health,
60
215680
3326
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืคื™ืœื• ืื ืขื™ืฉื•ืŸ ืžื–ื™ืง ืœื‘ืจื™ืื•ืช,
03:39
you'd still see one smoker who lived until 100.
61
219030
3304
ืขื“ื™ื™ืŸ ืชื•ื›ืœื• ืœืžืฆื•ื ืžืขืฉืŸ ืื—ื“ ืฉื—ื™ ืขื“ ื’ื™ืœ 100.
03:42
(Laughter)
62
222664
1150
(ืฆื—ื•ืง)
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืคื™ืœื• ืื ื—ื™ื ื•ืš ื˜ื•ื‘ ื”ื•ื ืื™ื ื“ื™ืงืฆื™ื” ืœื”ืฆืœื—ื” ื›ืœื›ืœื™ืช,
03:44
Just like, even if education was good for your income,
63
224157
2562
03:46
you'd still see one multimillionaire who didn't go to university.
64
226743
4281
ืขื“ื™ื™ืŸ ืชื•ื›ืœื• ืœืžืฆื•ื ืžื™ืœื™ื•ื ืจ ืื—ื“ ืฉืœื ื”ืœืš ืœืื•ื ื™ื‘ืจืกื™ื˜ื”.
03:51
(Laughter)
65
231048
4984
(ืฆื—ื•ืง)
03:56
So the biggest problem with Belle's story is not that it was false.
66
236056
3911
ืื– ื”ื‘ืขื™ื” ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ืขื ื”ืกื™ืคื•ืจ ืฉืœ ื‘ืœ ื”ื™ื ืœื, ืฉื”ื•ื ื”ื™ื” ืฉืงืจ.
03:59
It's that it's only one story.
67
239991
2531
ื”ื‘ืขื™ื” ื”ื™ื ืฉื–ื” ืจืง ืกื™ืคื•ืจ ืื—ื“.
04:03
There might be thousands of other stories where diet alone failed,
68
243094
4381
ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืืœืคื™ ืกื™ืคื•ืจื™ื ืื—ืจื™ื, ืฉื‘ื”ื ืฉื™ื ื•ื™ ื”ืชื–ื•ื ื” ืœื ื”ื•ืขื™ืœ.
04:07
but we never hear about them.
69
247499
1934
ืื‘ืœ ืœืขื•ืœื ืœื ื ืฉืžืข ืขืœื™ื”ื.
04:10
We share the outlier cases because they are new,
70
250141
3896
ืื ื—ื ื• ืžืฉืชืคื™ื ืืช ื”ืžืงืจื™ื ื”ืงื™ืฆื•ื ื™ื™ื, ื›ื™ ื”ื ื—ื“ืฉื™ื,
04:14
and therefore they are news.
71
254061
1867
ื•ืœื›ืŸ ื”ื ื—ื“ืฉื•ืช.
04:16
We never share the ordinary cases.
72
256657
2476
ืื ื—ื ื• ืืฃ ืคืขื ืœื ืžืฉืชืคื™ื ืืช ื”ืžืงืจื™ื ื”ืจื’ื™ืœื™ื.
04:19
They're too ordinary, they're what normally happens.
73
259157
3213
ื”ื ืจื’ื™ืœื™ื ืžื“ื™, ื”ื ืžื” ืฉื‘ื“ืจืš ื›ืœืœ ืงื•ืจื”.
04:23
And that's the true 99 percent that we ignore.
74
263125
3095
ื•ืืœื• ื”-99% ื”ืืžื™ืชื™ื™ื ืฉืžื”ื ืื ื—ื ื• ืžืชืขืœืžื™ื.
04:26
Just like in society, you can't just listen to the one percent,
75
266244
2968
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื‘ื—ื‘ืจื”, ืื™ ืืคืฉืจ ืœื”ืงืฉื™ื‘ ืจืง ืœืื—ื•ื– ืื—ื“,
04:29
the outliers,
76
269236
1158
ืœื—ืจื™ื’,
04:30
and ignore the 99 percent, the ordinary.
77
270418
2666
ื•ืœื”ืชืขืœื ืž-99% ื”ืื—ืจื™ื, ื”ืจื’ื™ืœื™ื.
04:34
Because that's the second example of confirmation bias.
78
274022
3254
ื›ื™ ื–ื• ื”ื“ื•ื’ืžื” ื”ืฉื ื™ื™ื” ืœื”ื˜ื™ื™ืช ื”ืื™ืฉื•ืฉ.
04:37
We accept a fact as data.
79
277300
2769
ืื ื—ื ื• ืžืชื™ื™ื—ืก ืœืขื•ื‘ื“ื” ื›ืืœ ืžื™ื“ืข.
04:41
The biggest problem is not that we live in a post-truth world;
80
281038
3968
ื”ื‘ืขื™ื” ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ืื™ื ื” ืฉืื ื—ื ื• ื—ื™ื™ื ื‘ืขื•ืœื ืฉืœ ืคื•ืกื˜-ืืžืช;
04:45
it's that we live in a post-data world.
81
285030
3769
ื”ื‘ืขื™ื” ื”ื™ื ืฉืื ื—ื ื• ื—ื™ื™ื ื‘ืขื•ืœื ืฉืœ ืคื•ืกื˜-ื ืชื•ื ื™ื.
04:49
We prefer a single story to tons of data.
82
289792
3744
ืื ื—ื ื• ืžืขื“ื™ืคื™ื ืกื™ืคื•ืจ ื‘ื•ื“ื“ ืขืœ ืคื ื™ ื˜ื•ื ื•ืช ืฉืœ ื ืชื•ื ื™ื.
04:54
Now, stories are powerful, they're vivid, they bring it to life.
83
294752
3016
ืœืกื™ืคื•ืจื™ื ื™ืฉ ื›ื•ื—, ื”ื ื—ื™ื™ื, ื”ื ืžืคื™ื—ื™ื ื—ื™ื™ื ื‘ืขื•ื‘ื“ื•ืช.
04:57
They tell you to start every talk with a story.
84
297792
2222
ืื•ืžืจื™ื ืฉืฆืจื™ืš ืœืคืชื•ื— ื›ืœ ื”ืจืฆืื” ื‘ืกื™ืคื•ืจ.
05:00
I did.
85
300038
1150
ื–ื” ืžื” ืฉืื ื™ ืขืฉื™ืชื™.
05:01
But a single story is meaningless and misleading
86
301696
4754
ืื‘ืœ ืกื™ืคื•ืจ ืื—ื“ ื”ื•ื ื—ืกืจ ืžืฉืžืขื•ืช ื•ืžื˜ืขื”
05:06
unless it's backed up by large-scale data.
87
306474
2849
ื›ืœ ืขื•ื“ ื”ื•ื ืื™ื ื• ืžื’ื•ื‘ื” ื‘ืžื™ื“ืข ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ.
05:11
But even if we had large-scale data,
88
311236
2357
ื•ืืคื™ืœื• ืื ื™ืฉ ืœื ื• ืžื™ื“ืข ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ,
05:13
that might still not be enough.
89
313617
2158
ื–ื” ืขืœื•ืœ ืขื“ื™ื™ืŸ ืœื ืœื”ืกืคื™ืง.
05:16
Because it could still be consistent with rival theories.
90
316260
3138
ื›ื™ ื”ืžื™ื“ืข ืขื“ื™ื™ืŸ ื™ื›ื•ืœ ืœื”ืชื™ื™ืฉื‘ ืขื ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช.
05:20
Let me explain.
91
320136
1150
ืื ื™ ืืกื‘ื™ืจ.
05:22
A classic study by psychologist Peter Wason
92
322072
3262
ื‘ืžื—ืงืจ ืงืœืืกื™ ืฉื ืขืจืš ืขืœ ื™ื“ื™ ื”ืคืกื™ื›ื•ืœื•ื’ ืคื™ื˜ืจ ื•ื•ืกื•ืŸ
05:25
gives you a set of three numbers
93
325358
1952
ื ื•ืชื ื™ื ืœื ื—ืงืจ ืจืฆืฃ ืฉืœ ืฉืœื•ืฉื” ืžืกืคืจื™ื
05:27
and asks you to think of the rule that generated them.
94
327334
2905
ื•ืžื‘ืงืฉื™ื ืžืžื ื• ืœื—ืฉื•ื‘ ืขืœ ื”ื›ืœืœ ืฉื™ืฆืจ ืืช ื”ืจืฆืฃ.
05:30
So if you're given two, four, six,
95
330585
4476
ืื– ืื ืงื™ื‘ืœืช 2, 4, 6
05:35
what's the rule?
96
335085
1150
ืžื” ื”ื›ืœืœ?
05:36
Well, most people would think, it's successive even numbers.
97
336895
3219
ืจื•ื‘ ื”ืื ืฉื™ื ื™ื—ืฉื‘ื• ืฉื”ื›ืœืœ ื”ื•ื ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื ืขื•ืงื‘ื™ื.
05:40
How would you test it?
98
340767
1515
ืื™ืš ืชื‘ื“ืงื• ืื ื–ื” ื ื›ื•ืŸ?
05:42
Well, you'd propose other sets of successive even numbers:
99
342306
3262
ืชืฆื™ืขื• ืจืฆืคื™ื ืื—ืจื™ื ืฉืœ ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื ืขื•ืงื‘ื™ื:
05:45
4, 6, 8 or 12, 14, 16.
100
345592
3318
4, 6, 8 ืื• 12, 14, 16.
05:49
And Peter would say these sets also work.
101
349546
2800
ื•ืคื™ื˜ืจ ื™ืขื ื” ืฉื’ื ื”ืจืฆืคื™ื ื”ืœืœื• ื˜ื•ื‘ื™ื,
05:53
But knowing that these sets also work,
102
353124
2564
ืื‘ืœ ื”ื™ื“ื™ืขื” ืฉื”ืจืฆืคื™ื ื”ืœืœื• ืขื•ื ื™ื ืขืœ ื”ื›ืœืœ,
05:55
knowing that perhaps hundreds of sets of successive even numbers also work,
103
355712
4765
ื•ืฉื™ื™ืชื›ืŸ ืฉืžืื•ืช ืจืฆืคื™ื ืฉืœ ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื ืขื•ืงื‘ื™ื ืขื•ื ื™ื ืขืœ ื”ื›ืœืœ,
06:00
tells you nothing.
104
360501
1348
ืœื ืื•ืžืจืช ื›ืœื•ื.
06:02
Because this is still consistent with rival theories.
105
362572
3358
ื›ื™ ื”ืžื™ื“ืข ื”ื–ื” ืขื“ื™ื™ืŸ ืžืชื™ื™ืฉื‘ ืขื ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช.
06:06
Perhaps the rule is any three even numbers.
106
366889
3205
ืื•ืœื™ ื”ื›ืœืœ ื”ื•ื 'ื›ืœ ืฉืœื•ืฉื” ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื'.
06:11
Or any three increasing numbers.
107
371000
2133
ืื• ื›ืœ ืจืฆืฃ ืขื•ืœื” ืฉืœ ืžืกืคืจื™ื.
06:14
And that's the third example of confirmation bias:
108
374365
2888
ื•ื–ื•ื”ื™ ื”ื“ื•ื’ืžื” ื”ืฉืœื™ืฉื™ืช ืฉืœ ื”ื˜ื™ื™ืช ื”ืื™ืฉื•ืจ:
06:17
accepting data as evidence,
109
377277
3689
ื”ื ื˜ื™ื™ื” ืœืงื‘ืœ ืžื™ื“ืข ื›ืจืื™ื”,
06:20
even if it's consistent with rival theories.
110
380990
3000
ื’ื ืื ื”ื•ื ืžืชื™ื™ืฉื‘ ืขื ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช.
06:24
Data is just a collection of facts.
111
384704
2952
ืžื™ื“ืข ื”ื•ื ืจืง ืื•ืกืฃ ืฉืœ ืขื•ื‘ื“ื•ืช.
06:28
Evidence is data that supports one theory and rules out others.
112
388402
4923
ืจืื™ื” ื”ื™ื ืžื™ื“ืข ืฉืชื•ืžืš ื‘ืชื™ืื•ืจื™ื” ืื—ืช ื•ืคื•ืกืœ ืืช ื”ืžืชื—ืจื•ืช.
06:34
So the best way to support your theory
113
394665
2483
ื•ืœื›ืŸ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœืืฉืฉ ืืช ื”ืชื™ืื•ืจื™ื” ืฉืœื›ื
06:37
is actually to try to disprove it, to play devil's advocate.
114
397172
3930
ื”ื™ื ืœื ืกื•ืช ืœื”ืคืจื™ืš ืื•ืชื”, ืœืฉื—ืง ืืช ืคืจืงืœื™ื˜ื• ืฉืœ ื”ืฉื˜ืŸ.
06:41
So test something, like 4, 12, 26.
115
401466
4718
ื ืกื• ืžืฉื”ื• ื›ืžื• 4, 12, 26.
06:46
If you got a yes to that, that would disprove your theory
116
406938
3683
ืื ืงื™ื‘ืœืชื ืชืฉื•ื‘ื” ื—ื™ื•ื‘ื™ืช, ื”ื™ื ืชืคืจื™ืš ืืช ื”ืชื™ืื•ืจื™ื” ืฉืœื›ื
06:50
of successive even numbers.
117
410645
1936
ืœื’ื‘ื™ ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื ืขื•ืงื‘ื™ื.
06:53
Yet this test is powerful,
118
413232
2016
ืื‘ืœ ื”ื›ื•ื— ื”ืืžื™ืชื™ ืฉืœ ื”ื‘ื“ื™ืงื” ื”ื–ื•,
06:55
because if you got a no, it would rule out "any three even numbers"
119
415272
4845
ื”ื•ื ื‘ื›ืš ืฉืื ื”ืชืฉื•ื‘ื” ืฉืœื™ืœื™ืช, ื”ื™ื ืฉื•ืœืœืช ืืช "ื›ืœ ืฉืœื•ืฉื” ืžืกืคืจื™ื ื–ื•ื’ื™ื™ื"
07:00
and "any three increasing numbers."
120
420141
1712
ื•ืืช "ื›ืœ ืจืฆืฃ ืขื•ืœื” ืฉืœ ืžืกืคืจื™ื."
07:01
It would rule out the rival theories, but not rule out yours.
121
421877
3341
ื”ื™ื ืชืฉืœื•ืœ ืืช ื”ืชื™ืื•ืจื™ื•ืช ื”ืžืชื—ืจื•ืช ืื‘ืœ ืœื ืืช ื”ืชื™ืื•ืจื™ื” ืฉืœื›ื.
07:05
But most people are too afraid of testing the 4, 12, 26,
122
425968
4794
ืื‘ืœ ืจื•ื‘ ื”ืื ืฉื™ื ืคื•ื—ื“ื™ื ืžื›ื“ื™ ืœื ืกื•ืช ืืช 4, 12, 26,
07:10
because they don't want to get a yes and prove their pet theory to be wrong.
123
430786
4163
ื›ื™ ื”ื ืœื ืจื•ืฆื™ื ืœืงื‘ืœ ืชืฉื•ื‘ื” ื—ื™ื•ื‘ื™ืช ื•ืœื”ื•ื›ื™ื— ืฉื”ืชื™ืื•ืจื™ื” ืฉืœื”ื ืœื ื ื›ื•ื ื”.
07:16
Confirmation bias is not only about failing to search for new data,
124
436727
5676
ื”ื˜ื™ื™ืช ื”ืื™ืฉื•ืจ ืื™ื ื” ื ื•ื‘ืขืช ืจืง ืžื›ืš ืฉืœื ืžื—ืคืฉื™ื ืื—ืจ ืžื™ื“ืข ื ื•ืกืฃ,
07:22
but it's also about misinterpreting data once you receive it.
125
442427
3073
ื”ื™ื ื ื•ื‘ืขืช ื’ื ืžืคื™ืจื•ืฉ ืžื•ื˜ืขื” ืฉืœ ื”ืžื™ื“ืข ืฉืื ื—ื ื• ืžืงื‘ืœื™ื.
07:26
And this applies outside the lab to important, real-world problems.
126
446339
3548
ื•ื–ื” ื ื›ื•ืŸ ื’ื ืžื—ื•ืฅ ืœืžืขื‘ื“ื”, ื‘ื—ื™ื™ื ื”ืืžื™ืชื™ื™ื ืฉืœื ื•.
07:29
Indeed, Thomas Edison famously said,
127
449911
3309
ืฆื™ื˜ื•ื˜ ืžืคื•ืจืกื ืฉืœ ืชื•ืžืืก ืื“ื™ืกื•ืŸ ืื•ืžืจ,
07:33
"I have not failed,
128
453244
1888
"ืœื ื ื›ืฉืœืชื™,
07:35
I have found 10,000 ways that won't work."
129
455156
4188
ื”ืฆืœื—ืชื™ ืœืžืฆื•ื 10,000 ื“ืจื›ื™ื ืฉืœื ืขื•ื‘ื“ื•ืช."
07:40
Finding out that you're wrong
130
460281
2627
ื”ื’ื™ืœื•ื™ ืฉืืชื” ื˜ื•ืขื”
07:42
is the only way to find out what's right.
131
462932
2733
ื”ื•ื ื”ื“ืจืš ื”ื™ื—ื™ื“ ืœืžืฆื•ื ืืช ืžื” ืฉื ื›ื•ืŸ.
07:46
Say you're a university admissions director
132
466654
2946
ื ื’ื™ื“ ืฉืืชื ืื—ืจืื™ื ืขืœ ื”ืงื‘ืœื” ืœืื•ื ื™ื‘ืจืกื™ื˜ื”
07:49
and your theory is that only students with good grades
133
469624
2563
ื•ืืชื ื—ื•ืฉื‘ื™ื ืฉืจืง ืกื˜ื•ื“ื ื˜ื™ื ืขื ืฆื™ื•ื ื™ื ื˜ื•ื‘ื™ื
07:52
from rich families do well.
134
472211
1763
ืžืžืฉืคื—ื•ืช ืขืฉื™ืจื•ืช, ื™ืฆืœื™ื—ื• ื‘ืœื™ืžื•ื“ื™ื.
07:54
So you only let in such students.
135
474339
2190
ืื– ืืชื ืžืงื‘ืœื™ื ืจืง ืกื˜ื•ื“ื ื˜ื™ื ื›ืืœื•.
07:56
And they do well.
136
476553
1150
ื•ื”ื ืžืฆืœื™ื—ื™ื ื‘ืœื™ืžื•ื“ื™ื.
07:58
But that's also consistent with the rival theory.
137
478482
2772
ืื‘ืœ ื–ื” ื’ื ืžืชื™ื™ืฉื‘ ืขื ื“ืขื•ืช ืžืชื—ืจื•ืช.
08:01
Perhaps all students with good grades do well,
138
481593
2747
ืื•ืœื™ ื›ืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉื™ืฉ ืœื”ื ืฆื™ื•ื ื™ื ื˜ื•ื‘ื™ื ื™ืฆืœื™ื—ื• ื‘ืœื™ืžื•ื“ื™ื,
08:04
rich or poor.
139
484364
1181
ื‘ืœื™ ืงืฉืจ ืœืขื•ืฉืจ ืื• ืขื•ื ื™.
08:06
But you never test that theory because you never let in poor students
140
486307
3730
ืื‘ืœ ืืชื ืœืขื•ืœื ืœื ื‘ื•ื“ืงื™ื ืืช ื”ืชื™ืื•ืจื™ื” ื”ื–ื•, ื›ื™ ืืชื ืœื ืžืงื‘ืœื™ื ืกื˜ื•ื“ื ื˜ื™ื ืขื ื™ื™ื.
08:10
because you don't want to be proven wrong.
141
490061
2800
ื›ื™ ืืชื ืœื ืจื•ืฆื™ื ืœื”ื•ื›ื™ื— ืฉืืชื ื˜ื•ืขื™ื.
08:14
So, what have we learned?
142
494577
1857
ืื–, ืžื” ืœืžื“ื ื•?
08:17
A story is not fact, because it may not be true.
143
497315
3560
ืกื™ืคื•ืจ ืื™ื ื• ืขื•ื‘ื“ื”, ื›ื™ ื”ื•ื ืขืœื•ืœ ืœื”ื™ื•ืช ืฉืงืจ.
08:21
A fact is not data,
144
501498
2087
ืขื•ื‘ื“ื” ืื—ืช ืื™ื ื” ืžื™ื“ืข,
08:23
it may not be representative if it's only one data point.
145
503609
4039
ืื•ืœื™ ื”ื™ื ืื™ื ื” ืžื™ื™ืฆื’ืช ืืช ื”ื›ืœืœ ืื ื”ื™ื ืขื•ื‘ื“ื” ื‘ื•ื“ื“ืช.
08:28
And data is not evidence --
146
508680
2349
ื•ืžื™ื“ืข ืื™ื ื• ืจืื™ื” --
08:31
it may not be supportive if it's consistent with rival theories.
147
511053
3678
ื”ื•ื ืœื ืชื•ืžืš ื‘ืชื™ืื•ืจื™ื” ืฉืœื›ื, ืื ื”ื•ื ื‘ื•-ื–ืžื ื™ืช ืžืชื™ื™ืฉื‘ ืขื ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช.
08:36
So, what do you do?
148
516146
2277
ืื–, ืžื” ืชืขืฉื•?
08:39
When you're at the inflection points of life,
149
519464
2682
ื›ืฉืืชื ื‘ื ืงื•ื“ื•ืช ืฆื•ืžืช ื‘ื—ื™ื™ื›ื,
08:42
deciding on a strategy for your business,
150
522170
2566
ืžื—ืœื™ื˜ื™ื ืขืœ ืืกื˜ืจื˜ื’ื™ื” ื—ื“ืฉื” ืœืขืกืง ืฉืœื›ื,
08:44
a parenting technique for your child
151
524760
2611
ืกื’ื ื•ืŸ ื”ื•ืจื•ืช ืœื™ืœื“ ืฉืœื›ื,
08:47
or a regimen for your health,
152
527395
2428
ืื• ืžืฉื˜ืจ ื‘ืจื™ืื•ืช ื—ื“ืฉ,
08:49
how do you ensure that you don't have a story
153
529847
3539
ืื™ืš ืชื•ื•ื“ืื• ืฉืืชื ืžืกืชืžื›ื™ื ืขืœ ืจืื™ื•ืช
08:53
but you have evidence?
154
533410
1468
ื•ืœื ืขืœ ืกื™ืคื•ืจ?
08:56
Let me give you three tips.
155
536268
1619
ืืชืŸ ืœื›ื ืฉืœื•ืฉ ืขืฆื•ืช.
08:58
The first is to actively seek other viewpoints.
156
538641
3984
ื”ืจืืฉื•ื ื” ื”ื™ื ืชืžื™ื“ ืœื—ืคืฉ ื ืงื•ื“ื•ืช ืžื‘ื˜ ืื—ืจื•ืช.
09:02
Read and listen to people you flagrantly disagree with.
157
542649
3594
ืงืจืื• ื•ื”ืื–ื™ื ื• ืœืื ืฉื™ื ืฉืืชื ืžืžืฉ ืœื ืžืกื›ื™ืžื™ื ืื™ืชื.
09:06
Ninety percent of what they say may be wrong, in your view.
158
546267
3488
90% ืžืžื” ืฉื”ื ืื•ืžืจื™ื ืขืœื•ืœ ืœื”ื™ื•ืช ืฉื’ื•ื™, ืœื“ืขืชื›ื.
09:10
But what if 10 percent is right?
159
550728
2133
ืื‘ืœ ืžื” ืื 10% ื”ื ื“ื‘ืจื™ ื˜ืขื?
09:13
As Aristotle said,
160
553851
1619
ื›ืžื• ืฉืืžืจ ืืจื™ืกื˜ื•,
09:15
"The mark of an educated man
161
555494
2214
"ื”ืกื™ืžืŸ ืœืื“ื ืžืฉื›ื™ืœ
09:17
is the ability to entertain a thought
162
557732
3397
ื”ื•ื ื”ื™ื›ื•ืœืช ืœื—ืฉื•ื‘ ืœืขื•ืžืง ืขืœ ื“ืขื”
09:21
without necessarily accepting it."
163
561153
2333
ื‘ืœื™ ืœืงื‘ืœ ืื•ืชื”."
09:24
Surround yourself with people who challenge you,
164
564649
2254
ื”ืงื™ืคื• ืืช ืขืฆืžื›ื ื‘ืื ืฉื™ื ืฉืžืืชื’ืจื™ื ืืชื›ื,
09:26
and create a culture that actively encourages dissent.
165
566917
3699
ื•ืฆืจื• ืชืจื‘ื•ืช ืฉืžืขื•ื“ื“ืช ืžื—ืœื•ืงื•ืช.
09:31
Some banks suffered from groupthink,
166
571347
2318
ื›ืžื” ื‘ื ืงื™ื ืกื‘ืœื• ืžืชืžื™ืžื•ืช ื“ืขื™ื,
09:33
where staff were too afraid to challenge management's lending decisions,
167
573689
4309
ื”ืขื•ื‘ื“ื™ื ืฉืœื”ื ืคื—ื“ื• ืœื—ืœื•ืง ืขืœ ื”ื”ื•ืจืื•ืช ืฉื”ื•ื ื—ืชื• ืžืœืžืขืœื”,
09:38
contributing to the financial crisis.
168
578022
2466
ืฉืชืจืžื• ืœืžืฉื‘ืจ ื”ื›ืœื›ืœื™.
09:41
In a meeting, appoint someone to be devil's advocate
169
581029
4199
ื‘ื›ืœ ืคื’ื™ืฉื”, ืžื ื• ืžื™ืฉื”ื• ืœื”ื™ื•ืช ืคืจืงืœื™ื˜ื• ืฉืœ ื”ืฉื˜ืŸ
09:45
against your pet idea.
170
585252
1642
ืฉื™ืชื ื’ื“ ืœืจืขื™ื•ื ื•ืช ืฉืœื›ื.
09:47
And don't just hear another viewpoint --
171
587720
2571
ื•ืืœ ืชืกืชืคืงื• ื‘ืฉืžื™ืขืช ื“ืขื•ืช ืžื ื•ื’ื“ื•ืช.
09:50
listen to it, as well.
172
590315
2176
ื”ืื–ื™ื ื• ืœื”ืŸ ื”ื™ื˜ื‘.
09:53
As psychologist Stephen Covey said,
173
593389
2404
ื›ืžื• ืฉืืžืจ ื”ืคืกื™ื›ื•ืœื•ื’ ืกื˜ื™ื‘ืŸ ืงื•ื‘ื™,
09:55
"Listen with the intent to understand,
174
595817
3397
"ื”ืงืฉื™ื‘ื• ื‘ืžื˜ืจื” ืœื”ื‘ื™ืŸ,
09:59
not the intent to reply."
175
599238
1666
ืœื ื‘ืžื˜ืจื” ืœืขื ื•ืช."
10:01
A dissenting viewpoint is something to learn from
176
601642
3492
ื“ืขื” ืžื ื•ื’ื“ืช ื”ื™ื ืžืฉื”ื• ืฉืฆืจื™ืš ืœืœืžื•ื“ ืžืžื ื•,
10:05
not to argue against.
177
605158
1548
ืœื ืœื”ืชื•ื•ื›ื— ืื™ืชื•.
10:07
Which takes us to the other forgotten terms in Bayesian inference.
178
607690
3866
ืžื” ืฉืžื—ื–ื™ืจ ืื•ืชื ื• ืœืขื•ื“ ืžื•ืฉื’ ื ืฉื›ื— ื‘ื”ืกืงื” ื”ื‘ื™ื™ืกื™ืื ื™ืช.
10:12
Because data allows you to learn,
179
612198
2324
ื›ื™ื•ื•ืŸ ืฉืžื™ื“ืข ืžืืคืฉืจ ืœื›ื ืœืœืžื•ื“,
10:14
but learning is only relative to a starting point.
180
614546
3515
ืื‘ืœ ื”ืœืžื™ื“ื” ื”ื™ื ื™ื—ืกื™ืช ืœื ืงื•ื“ืช ื”ื”ืชื—ืœื”.
10:18
If you started with complete certainty that your pet theory must be true,
181
618085
5716
ืื ื”ืชื—ืœืชื ื‘ื•ื•ื“ืื•ืช ืžื•ื—ืœื˜ืช ืฉื”ืชื™ืื•ืจื™ื” ืฉืœื›ื ื ื›ื•ื ื”,
10:23
then your view won't change --
182
623825
1897
ื“ืขืชื›ื ืœื ืชืฉืชื ื” --
10:25
regardless of what data you see.
183
625746
2466
ื•ืœื ืžืฉื ื” ืื™ื–ื” ืžื™ื“ืข ื™ื•ืฆื’ ื‘ืคื ื™ื›ื.
10:28
Only if you are truly open to the possibility of being wrong
184
628641
4391
ืจืง ืื ืืชื ื‘ืืžืช ืคืชื•ื—ื™ื ืœืืคืฉืจื•ืช ืฉืืชื ื˜ื•ืขื™ื
10:33
can you ever learn.
185
633056
1267
ืชื•ื›ืœื• ืœืœืžื•ื“.
10:35
As Leo Tolstoy wrote,
186
635580
2095
ื›ืžื• ืฉื›ืชื‘ ืœื‘ ื˜ื•ืœืกื˜ื•ื™,
10:37
"The most difficult subjects
187
637699
2182
"ื ื™ืชืŸ ืœืœืžื“ ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืžืกื•ื‘ื›ื™ื ื‘ื™ื•ืชืจ
10:39
can be explained to the most slow-witted man
188
639905
3135
ืœืื™ืฉ ืงืฉื”-ื”ืชืคื™ืกื” ื‘ื™ื•ืชืจ
10:43
if he has not formed any idea of them already.
189
643064
2753
ื›ืœ ืขื•ื“ ื”ื•ื ืœื ื’ื™ื‘ืฉ ื“ืขื” ืขืœื™ื”ื.
10:46
But the simplest thing
190
646365
1873
ืืš ื”ืคืฉื•ื˜ื™ื ืฉื‘ืจืขื™ื•ื ื•ืช
10:48
cannot be made clear to the most intelligent man
191
648262
3071
ืœื ื™ื•ื›ืœื• ืœื”ื™ื•ืช ื ื”ื™ืจื™ื ืืฃ ืœืื“ื ื”ื—ื›ื ื‘ื™ื•ืชืจ
10:51
if he is firmly persuaded that he knows already."
192
651357
3334
ืื ื”ื•ื ืžืฉื•ื›ื ืข ื‘ื“ืขืชื• ืฉื”ื•ื ื›ื‘ืจ ื™ื•ื“ืข."
10:56
Tip number two is "listen to experts."
193
656500
3743
ืขืฆืชื™ ื”ืฉื ื™ื™ื” ื”ื™ื ืœื”ืงืฉื™ื‘ ืœืžื•ืžื—ื™ื.
11:01
Now, that's perhaps the most unpopular advice that I could give you.
194
661040
3492
ื–ื• ื›ื ืจืื” ื”ืขืฆื” ื”ื›ื™ ืคื—ื•ืช ืคื•ืคื•ืœืจื™ืช ืฉื™ื›ื•ืœืชื™ ืœืชืช ืœื›ื.
11:04
(Laughter)
195
664556
1220
(ืฆื—ื•ืง)
11:05
British politician Michael Gove famously said that people in this country
196
665800
4738
ื”ืคื•ืœื™ื˜ื™ืงืื™ ื”ื‘ืจื™ื˜ื™ ืžื™ื™ืงืœ ื’ื•ื‘ ืžืคื•ืจืกื ื‘ืืžื™ืจืชื•
ืฉืœืื ืฉื™ื ื‘ืžื“ื™ื ื” ื”ื–ื• ื ืžืืก ืžืžื•ืžื—ื™ื.
11:10
have had enough of experts.
197
670562
2276
11:13
A recent poll showed that more people would trust their hairdresser --
198
673696
3508
ืกืงืจ ืฉื ืขืจืš ืœืื—ืจื•ื ื” ื”ืจืื” ืฉื™ื•ืชืจ ืื ืฉื™ื ื™ืืžื™ื ื• ืœืกืคืจ ืฉืœื”ื --
11:17
(Laughter)
199
677228
2285
(ืฆื—ื•ืง)
11:19
or the man on the street
200
679537
1833
ืื• ืœืื“ื ืืงืจืื™ ื‘ืจื—ื•ื‘
11:21
than they would leaders of businesses, the health service and even charities.
201
681394
4305
ืžืืฉืจ ืœืžื•ื‘ื™ืœื™ื ื‘ืชื—ื•ืžื™ ื”ืขืกืงื™ื, ื”ื‘ืจื™ืื•ืช ื•ืืคื™ืœื• ืœืจืืฉื™ ืืจื’ื•ื ื™ ืฆื“ืงื”.
11:26
So we respect a teeth-whitening formula discovered by a mom,
202
686227
3977
ืื– ืื ื—ื ื• ื ื•ืชื ื™ื ื›ื‘ื•ื“ ืœื ื•ืกื—ืช ื”ืœื‘ื ืช ืฉื™ื ื™ื™ื ืฉื”ืชื’ืœืชื” ืขืœ ื™ื“ื™ ืืžื,
11:30
or we listen to an actress's view on vaccination.
203
690228
3198
ื•ืžืงืฉื™ื‘ื™ื ืœื“ืขืชื” ืฉืœ ืฉื—ืงื ื™ืช ืขืœ ื—ื™ืกื•ื ื™ื.
11:33
We like people who tell it like it is, who go with their gut,
204
693450
2865
ืื ื—ื ื• ืื•ื”ื‘ื™ื ืื ืฉื™ื ืฉืื•ืžืจื™ื ืืช ื”ืืžืช ื‘ืคืจืฆื•ืฃ, ืฉืกื•ืžื›ื™ื ืขืœ ืชื—ื•ืฉืช ื”ื‘ื˜ืŸ ืฉืœื”ื,
11:36
and we call them authentic.
205
696339
1800
ื•ืื ื—ื ื• ืื•ืžืจื™ื ืฉื”ื ืืžื™ืชื™ื™ื, ื›ื ื™ื.
11:38
But gut feel can only get you so far.
206
698847
3214
ืื‘ืœ ืขื ืื™ื ื˜ื•ืื™ืฆื™ื” ืœื ืชื’ื™ืขื• ืจื—ื•ืง.
11:42
Gut feel would tell you never to give water to a baby with diarrhea,
207
702736
4436
ืื™ื ื˜ื•ืื™ืฆื™ื” ืชื’ื™ื“ ืœื›ื ืœื ืœืชืช ืžื™ื ืœืชื™ื ื•ืง ืžืฉืœืฉืœ,
11:47
because it would just flow out the other end.
208
707196
2318
ื›ื™ ื”ื ื™ืฆืื• ื™ืฉืจ ืžื”ืฆื“ ื”ืฉื ื™.
11:49
Expertise tells you otherwise.
209
709538
2578
ื”ืžื•ืžื—ื™ื ื™ื’ื™ื“ื• ื”ื”ืคืš.
11:53
You'd never trust your surgery to the man on the street.
210
713149
3428
ืœื ืชื‘ื˜ื—ื• ื‘ืื“ื ืžื”ืจื—ื•ื‘ ืฉื™ื ืชื— ืืชื›ื.
11:56
You'd want an expert who spent years doing surgery
211
716887
3587
ื‘ื•ื•ื“ืื™ ืชืจืฆื• ืžื•ืžื—ื”, ืžื ืชื— ื‘ืขืœ ื ื™ืกื™ื•ืŸ ืฉืœ ืฉื ื™ื
12:00
and knows the best techniques.
212
720498
2000
ืฉืžื›ื™ืจ ืืช ื”ื˜ื›ื ื™ืงื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ.
12:03
But that should apply to every major decision.
213
723514
3133
ืื‘ืœ ื”ื›ืœืœ ื”ื–ื” ืฆืจื™ืš ืœื”ื™ื•ืช ืชืงืฃ ืœื›ืœ ื”ื—ืœื˜ื” ืžืฉืžืขื•ืชื™ืช ืฉืืชื ืขื•ืฉื™ื.
12:07
Politics, business, health advice
214
727255
4556
ื‘ืคื•ืœื™ื˜ื™ืงื”, ื‘ืขืกืงื™ื, ื‘ื‘ืจื™ืื•ืช
12:11
require expertise, just like surgery.
215
731835
2896
ื™ืฉ ืฆื•ืจืš ื‘ืžื•ืžื—ื™ื, ื‘ื“ื™ื•ืง ื›ืžื• ื‘ื—ื“ืจ ื”ื ื™ืชื•ื—.
12:16
So then, why are experts so mistrusted?
216
736474
3539
ืื–, ืœืžื” ืื ืฉื™ื ืœื ื‘ื•ื˜ื—ื™ื ื‘ืžื•ืžื—ื™ื?
12:20
Well, one reason is they're seen as out of touch.
217
740981
3239
ืกื™ื‘ื” ืื—ืช ื”ื™ื ืฉื”ื ื ืจืื™ื ืžื ื•ืชืงื™ื.
12:24
A millionaire CEO couldn't possibly speak for the man on the street.
218
744244
4090
ืžื ื›"ืœ ืฉืžืจื•ื•ื™ื— ืžื™ืœื™ื•ื ื™ื ืœื ื™ื›ื•ืœ ืœื“ื‘ืจ ื‘ืฉื ื”ืื“ื ื”ืคืฉื•ื˜ ื‘ืจื—ื•ื‘.
12:29
But true expertise is found on evidence.
219
749455
3559
ืื‘ืœ ื”ืžื•ืžื—ื™ื•ืช ื”ืืžื™ืชื™ืช ื ืžื“ื“ืช ืขืœ ื™ื“ื™ ืจืื™ื•ืช.
12:33
And evidence stands up for the man on the street
220
753447
2905
ื•ื”ืจืื™ื•ืช ื ื™ืฆื‘ื•ืช ืœืฆื“ ื”ืื“ื ื”ืคืฉื•ื˜
12:36
and against the elites.
221
756376
1533
ืœื ืœืฆื“ ื”ืืœื™ื˜ื•ืช.
12:38
Because evidence forces you to prove it.
222
758456
2667
ื›ื™ ืจืื™ื•ืช ืžื›ืจื™ื—ื•ืช ืื•ืชืš ืœื”ื•ื›ื™ื—.
12:41
Evidence prevents the elites from imposing their own view
223
761774
4421
ื”ืจืื™ื•ืช ืžื•ื ืขื•ืช ืžื”ืืœื™ื˜ื•ืช ืœื›ืคื•ืช ืขืœื™ืš ืืช ื“ืขืชืŸ
12:46
without proof.
224
766219
1150
ื‘ืœื™ ื”ื•ื›ื—ื”.
12:49
A second reason why experts are not trusted
225
769006
2071
ืกื™ื‘ื” ื ื•ืกืคืช ืœื›ืš ืฉืื™ื ื ื• ื‘ื•ื˜ื—ื™ื ื‘ืžื•ืžื—ื™ื
12:51
is that different experts say different things.
226
771101
3087
ื”ื™ื ืฉืžื•ืžื—ื™ื ืฉื•ื ื™ื ืื•ืžืจื™ื ื“ื‘ืจื™ื ืฉื•ื ื™ื.
12:54
For every expert who claimed that leaving the EU would be bad for Britain,
227
774212
4476
ืขืœ ื›ืœ ืžื•ืžื—ื” ืฉื˜ื•ืขืŸ ืฉืขื–ื™ื‘ืช ื”ืื™ื—ื•ื“ ื”ืื™ืจื•ืคื™ ืชื–ื™ืง ืœื‘ืจื™ื˜ื ื™ื”,
12:58
another expert claimed it would be good.
228
778712
2429
ื™ืฉ ืžื•ืžื—ื” ืื—ืจ ืฉื˜ื•ืขืŸ ืฉื”ืžื”ืœืš ื™ื•ืขื™ืœ ืœื‘ืจื™ื˜ื ื™ื”.
13:01
Half of these so-called experts will be wrong.
229
781165
3767
ื—ืฆื™ ืžื”ืžื•ืžื—ื™ื ื”ื•ืœื›ื™ื ืœื˜ืขื•ืช.
13:05
And I have to admit that most papers written by experts are wrong.
230
785774
4243
ื•ืื ื™ ื—ื™ื™ื‘ ืœื”ื•ื“ื•ืช ืฉืจื•ื‘ ื”ืžืืžืจื™ื ืฉื ื›ืชื‘ื™ื ืขืœ ื™ื“ื™ ืžื•ืžื—ื™ื ื”ื ืฉื’ื•ื™ื™ื.
13:10
Or at best, make claims that the evidence doesn't actually support.
231
790520
3505
ืื• ืœื›ืœ ื”ืคื—ื•ืช, ืžืกื™ืงื™ื ืžืกืงื ื•ืช ืฉืื™ื ืŸ ื ืชืžื›ื•ืช ืขืœ ื™ื“ื™ ื”ืจืื™ื•ืช ื”ืžื•ืฆื’ื•ืช.
13:14
So we can't just take an expert's word for it.
232
794990
3133
ืื– ืื™ ืืคืฉืจ ืœื”ืืžื™ืŸ ืœืžื•ืžื—ื™ื ืจืง ื›ื™ ื”ื ืžื•ืžื—ื™ื.
13:18
In November 2016, a study on executive pay hit national headlines.
233
798776
6034
ื‘ื ื•ื‘ืžื‘ืจ 2016 ืžื—ืงืจ ืขืœ ืฉื›ืจ ื”ืžื ื›"ืœื™ื ืขืฉื” ื›ื•ืชืจื•ืช ื‘ื›ืœ ื”ืืจืฅ.
13:25
Even though none of the newspapers who covered the study
234
805240
2890
ืืคื™ืœื• ืฉืืฃ ืื—ื“ ืžื”ืขื™ืชื•ื ื™ื ืฉืกื™ืงืจื• ืืช ื”ืžื—ืงืจ
13:28
had even seen the study.
235
808154
1600
ืœื ืงืจืื• ืื•ืชื•.
13:30
It wasn't even out yet.
236
810685
1533
ื”ื•ื ืขื•ื“ ืœื ืคื•ืจืกื ืืคื™ืœื•.
13:32
They just took the author's word for it,
237
812708
2204
ื”ื ืคืฉื•ื˜ ืกืžื›ื• ืขืœ ืžื” ืฉื”ืžื—ื‘ืจ ืกื™ืคืจ ืœื”ื,
13:35
just like with Belle.
238
815768
1400
ื‘ื“ื™ื•ืง ื›ืžื• ืžื” ืฉืงืจื” ืขื ื‘ืœ.
13:38
Nor does it mean that we can just handpick any study
239
818093
2436
ื–ื” ืœื ืื•ืžืจ ืฉืืคืฉืจ ืคืฉื•ื˜ ืœื‘ื—ื•ืจ ืื™ื–ื” ืžื—ืงืจ ืฉื ืจืฆื”
13:40
that happens to support our viewpoint --
240
820553
2111
ืฉื‘ืžืงืจื” ืชื•ืžืš ื‘ื“ืขืชื ื• --
13:42
that would, again, be confirmation bias.
241
822688
2103
ื–ื”, ืฉื•ื‘, ื—ืœืง ืžื”ื˜ื™ื™ืช ื”ืื™ืฉื•ืจ.
13:44
Nor does it mean that if seven studies show A
242
824815
2555
ื–ื” ื’ื ืœื ืื•ืžืจ ืฉืื ืฉื‘ืขื” ืžื—ืงืจื™ื ืื•ืžืจื™ื ื'
13:47
and three show B,
243
827394
1668
ื•ืฉืœื•ืฉื” ืื•ืžืจื™ื ื‘',
13:49
that A must be true.
244
829086
1483
ืื– ื' ื ื›ื•ืŸ.
13:51
What matters is the quality,
245
831109
2659
ืžื” ืฉืžืฉื ื” ื”ื•ื ื”ืื™ื›ื•ืช,
13:53
and not the quantity of expertise.
246
833792
2817
ื•ืœื ื›ืžื•ืช ื”ืžื•ืžื—ื™ื.
13:57
So we should do two things.
247
837879
1800
ืื– ืขืœื™ื ื• ืœืขืฉื•ืช ืฉื ื™ ื“ื‘ืจื™ื.
14:00
First, we should critically examine the credentials of the authors.
248
840434
4578
ืจืืฉื™ืช, ืขืœื™ื ื• ืœื‘ื—ื•ืŸ ื‘ืขื™ืŸ ื‘ื™ืงื•ืจืชื™ืช ืืช ืžื™ื“ืช ื”ืกืžื›ื•ืช ื•ื”ืžืงืฆื•ืขื™ื•ืช ืฉืœ ื”ื›ื•ืชื‘ื™ื.
14:05
Just like you'd critically examine the credentials of a potential surgeon.
249
845807
4143
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืชื‘ื“ืงื• ื‘ื“ืงื“ืงื ื•ืช ืืช ื”ืžืงืฆื•ืขื™ื•ืช ืฉืœ ืžื ืชื—ื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื,
14:10
Are they truly experts in the matter,
250
850347
3206
ื”ืื ื”ื ื‘ืืžืช ืžื•ืžื—ื™ื ื‘ืชื—ื•ื,
14:13
or do they have a vested interest?
251
853577
2267
ืื• ืฉื™ืฉ ืœื”ื ืื™ื ื˜ืจืก ืฉืžื•ื ืข ืžื”ื ืœื”ื™ื•ืช ืื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื™ื
14:16
Second, we should pay particular attention
252
856768
2523
ืฉื ื™ืช, ืขืœื™ื ื• ืœืชืช ืชืฉื•ืžืช ืœื‘ ืžื™ื•ื—ื“ืช
14:19
to papers published in the top academic journals.
253
859315
3889
ืœืžืืžืจื™ื ืฉืคื•ืจืกืžื• ื‘ื›ืชื‘ื™ ืขืช ืืงื“ืžื™ื™ื ืžื•ื‘ื™ืœื™ื.
14:24
Now, academics are often accused of being detached from the real world.
254
864038
3861
ืื ืฉื™ ืืงื“ืžื™ื” ืžื•ืืฉืžื™ื ืœืจื•ื‘ ื‘ื”ื™ื•ืชื ืžื ื•ืชืงื™ื ืžื”ืขื•ืœื ื”ืืžื™ืชื™.
14:28
But this detachment gives you years to spend on a study.
255
868585
3730
ืื‘ืœ ื”ื ื™ืชื•ืง ื”ื–ื” ืžืืคืฉืจ ืœื”ื ืœื‘ื–ื‘ื– ืฉื ื™ื ื‘ืขืจื™ื›ืช ืžื—ืงืจ ืื—ื“.
14:32
To really nail down a result,
256
872339
1905
ืœื‘ื—ื•ืŸ ืœืขื•ืžืง ืืช ื”ืชื•ืฆืื•ืช,
14:34
to rule out those rival theories,
257
874268
2015
ืœื”ืคืจื™ืš ื‘ื™ืกื•ื“ื™ื•ืช ืชื™ืื•ืจื™ื•ืช ืžืชื—ืจื•ืช,
14:36
and to distinguish correlation from causation.
258
876307
3134
ื•ืœื”ื‘ื“ื™ืœ ื‘ื™ืŸ ืžืชืื ืœืกื™ื‘ื”.
14:40
And academic journals involve peer review,
259
880172
3477
ื‘ื ื•ืกืฃ, ื‘ื›ืชื‘ื™ ืขืช ืืงื“ืžื™ื™ื ื ืขืจื›ืช ื‘ื™ืงื•ืจืช ืขืžื™ืชื™ื,
14:43
where a paper is rigorously scrutinized
260
883673
2294
ื‘ื” ื”ืžืืžืจ ื ื‘ื“ืง ื‘ื“ืงื“ืงื ื•ืช ื•ื‘ื˜ืจื—ื ื•ืช
14:45
(Laughter)
261
885991
1419
(ืฆื—ื•ืง)
14:47
by the world's leading minds.
262
887434
1934
ืขืœ ื™ื“ื™ ื”ืžื•ื—ื•ืช ื”ืžื•ื‘ื™ืœื™ื ื‘ืขื•ืœื.
14:50
The better the journal, the higher the standard.
263
890434
2556
ื›ื›ืœ ืฉื›ืชื‘ ื”ืขืช ื˜ื•ื‘ ื™ื•ืชืจ, ื”ืกื˜ื ื“ืจื˜ื™ื ืฉื”ื•ื ืžืฆื™ื‘ ื’ื‘ื•ื”ื™ื ื™ื•ืชืจ.
14:53
The most elite journals reject 95 percent of papers.
264
893014
5148
ื›ืชื‘ื™ ื”ืขืช ื”ื ื—ืฉื‘ื™ื ื‘ื™ื•ืชืจ ื“ื•ื—ื™ื 95% ืžื”ืžืืžืจื™ื ืฉื ืฉืœื—ื™ื ืืœื™ื”ื.
14:59
Now, academic evidence is not everything.
265
899434
3333
ื”ื•ื›ื—ื•ืช ืืงื“ืžื™ื•ืช ืื™ื ืŸ ื”ื›ืœ.
15:03
Real-world experience is critical, also.
266
903109
2667
ื™ื“ืข ืžื”ืขื•ืœื ื”ืืžื™ืชื™ ื—ืฉื•ื‘ ื’ื ื”ื•ื.
15:06
And peer review is not perfect, mistakes are made.
267
906465
3400
ื•ื‘ื™ืงื•ืจืช ืขืžื™ืชื™ื ืื™ื ื” ืžื•ืฉืœืžืช, ื˜ืขื•ื™ื•ืช ืงื•ืจื•ืช.
15:10
But it's better to go with something checked
268
910530
2063
ืื‘ืœ ืขื“ื™ืฃ ืœืกืžื•ืš ืขืœ ืžืฉื”ื• ืฉื ื‘ื“ืง
15:12
than something unchecked.
269
912617
1667
ืžืืฉืจ ืขืœ ืžืฉื”ื• ืฉืœื.
15:14
If we latch onto a study because we like the findings,
270
914696
3199
ืื ื ืื—ื– ื‘ืžื—ืงืจ ื‘ื’ืœืœ ืฉืื ื—ื ื• ืื•ื”ื‘ื™ื ืืช ื”ืžืกืงื ื•ืช,
15:17
without considering who it's by or whether it's even been vetted,
271
917919
3888
ื‘ืœื™ ืœื‘ื“ื•ืง ืžื™ ื”ื›ื•ืชื‘ ื•ื”ืื ื”ืžื™ื“ืข ื‘ื›ืœืœ ืื•ืžืช,
15:21
there is a massive chance that that study is misleading.
272
921831
3627
ื™ืฉ ืกื™ื›ื•ื™ ื’ื“ื•ืœ ืฉื”ืžื—ืงืจ ืžื˜ืขื”.
15:26
And those of us who claim to be experts
273
926894
2580
ื•ืืœื• ืžืื™ืชื ื• ื”ืžืชื™ื™ืžืจื™ื ืœื”ื™ื•ืช ืžื•ืžื—ื™ื
15:29
should recognize the limitations of our analysis.
274
929498
3253
ืฆืจื™ื›ื™ื ืœื”ื›ื™ืจ ื‘ืžื’ื‘ืœื•ืช ืฉืœ ื™ื›ื•ืœืช ื”ื ื™ืชื•ื— ืฉืœื ื•.
15:33
Very rarely is it possible to prove or predict something with certainty,
275
933244
4563
ืœืขื™ืชื™ื ื ื“ื™ืจื•ืช ื‘ื™ื•ืชืจ ืืคืฉืจ ืœื”ื•ื›ื™ื— ืื• ืœื ื‘ื ืžืฉื”ื• ื‘ื•ื•ื“ืื•ืช.
15:38
yet it's so tempting to make a sweeping, unqualified statement.
276
938292
4369
ืื‘ืœ ื–ื” ื›ืœ ื›ืš ืžืคืชื” ืœืฆืืช ื‘ื”ื›ืจื–ื” ืกื•ื—ืคืช ืฉืื™ื ื” ืžื‘ื•ืกืกืช ื›ืจืื•ื™.
15:43
It's easier to turn into a headline or to be tweeted in 140 characters.
277
943069
4344
ืงืœ ื™ื•ืชืจ ืœื›ืชื•ื‘ ื–ืืช ื‘ื›ื•ืชืจืช, ืื• ื‘ืฆื™ื•ืฅ ื‘ืŸ 140 ืชื•ื•ื™ื.
15:48
But even evidence may not be proof.
278
948417
3142
ืื‘ืœ ืืคื™ืœื• ืจืื™ื•ืช ื”ืŸ ืœื ืชืžื™ื“ ื”ื•ื›ื—ื”.
15:52
It may not be universal, it may not apply in every setting.
279
952481
4210
ื”ืŸ ืขืœื•ืœื•ืช ืœื ืœื”ื™ื•ืช ื›ืœืœื™ื•ืช ืžืกืคื™ืง, ืื•ืœื™ ืื™ ืืคืฉืจ ืœื”ื—ื™ืœ ืื•ืชืŸ ืœื›ืœ ืžืฆื‘.
15:57
So don't say, "Red wine causes longer life,"
280
957252
4920
ืื– ืืœ ืชื’ื™ื“ื•, "ื™ื™ืŸ ืื“ื•ื ืžืืจื™ืš ืืช ื”ื—ื™ื™ื,"
16:02
when the evidence is only that red wine is correlated with longer life.
281
962196
4682
ื›ืฉื”ืจืื™ื•ืช ืื•ืžืจื•ืช ืจืง ืฉื™ืฉ ืžืชืื ื‘ื™ืŸ ืฉืชื™ื™ืช ื™ื™ืŸ ืื“ื•ื ืœืชื•ื—ืœืช ื—ื™ื™ื ืืจื•ื›ื”.
16:07
And only then in people who exercise as well.
282
967379
2770
ื•ืจืง ืืฆืœ ืื ืฉื™ื ืฉืžืงืคื™ื“ื™ื ืขืœ ื”ืชืขืžืœื•ืช.
16:11
Tip number three is "pause before sharing anything."
283
971868
3966
ืขืฆื” ืžืก' ืฉืœื•ืฉ, ื”ื™ื "ืขืฆืจื• ืœืคื ื™ ืฉืืชื ืžืฉืชืคื™ื."
16:16
The Hippocratic oath says, "First, do no harm."
284
976907
3464
ืฉื‘ื•ืขืช ื”ื™ืคื•ืงืจื˜ืก ืื•ืžืจืช, "ืจืืฉื™ืช, ืืœ ืชื–ื™ืง,"
16:21
What we share is potentially contagious,
285
981046
3134
ืžื” ืฉืื ื—ื ื• ืžืฉืชืคื™ื ืขืœื•ืœ ืœื”ื™ื•ืช ืžื™ื“ื‘ืง,
16:24
so be very careful about what we spread.
286
984204
3683
ืื– ื”ื™ื• ื–ื”ื™ืจื™ื ื‘ืžื™ื“ืข ืฉืืชื ืžืคื™ืฆื™ื.
16:28
Our goal should not be to get likes or retweets.
287
988632
2953
ืžื˜ืจืชื ื• ืœื ืฆืจื™ื›ื” ืœื”ื™ื•ืช ืœืงื‘ืœ ืœื™ื™ืงื™ื ืื• ืฉื™ืชื•ืคื™ื.
16:31
Otherwise, we only share the consensus; we don't challenge anyone's thinking.
288
991609
3985
ืื—ืจืช, ื ืฉืชืฃ ืจืง ืืช ืžื” ืฉื›ื•ืœื ื• ืžืกื›ื™ืžื™ื ืขืœื™ื•, ืœื ื ืืชื’ืจ ืืช ื”ื—ืฉื™ื‘ื” ืฉืœ ืื—ืจื™ื.
16:36
Otherwise, we only share what sounds good,
289
996085
2905
ืื—ืจืช, ื ืฉืชืฃ ืจืง ืืช ืžื” ืฉื ืฉืžืข ื˜ื•ื‘,
16:39
regardless of whether it's evidence.
290
999014
2400
ื‘ืœื™ ืœื‘ื“ื•ืง ื‘ืžื” ืชื•ืžื›ื•ืช ื”ืจืื™ื•ืช.
16:42
Instead, we should ask the following:
291
1002188
2466
ื‘ืžืงื•ื ื–ืืช, ืขืœื™ื ื• ืœืฉืื•ืœ ืืช ืขืฆืžื ื•:
16:45
If it's a story, is it true?
292
1005572
2135
ืื ื–ื” ืกื™ืคื•ืจ, ื”ืื ื”ื•ื ืืžืช?
16:47
If it's true, is it backed up by large-scale evidence?
293
1007731
2865
ืื ื–ื• ืืžืช, ื”ืื ื”ื™ื ืžื’ื•ื‘ื” ื‘ื›ืžื•ืช ืžืกืคืงืช ืฉืœ ืจืื™ื•ืช?
16:50
If it is, who is it by, what are their credentials?
294
1010620
2595
ืื ื™ืฉ ืžืกืคื™ืง ืจืื™ื•ืช, ืžื™ ื”ื›ื•ืชื‘, ืžื” ื”ื”ืกืžื›ื” ืฉืœื•?
16:53
Is it published, how rigorous is the journal?
295
1013239
2756
ื”ืื ื–ื” ืคื•ืจืกื, ืขื“ ื›ืžื” ื›ืชื‘ ื”ืขืช ื“ืงื“ืงืŸ?
16:56
And ask yourself the million-dollar question:
296
1016733
2317
ื•ืฉืืœื• ืืช ืขืฆืžื›ื ืืช ืฉืืœืช ืžื™ืœื™ื•ืŸ ื”ื“ื•ืœืจ:
16:59
If the same study was written by the same authors with the same credentials
297
1019980
4023
ืื ืื•ืชื• ืžืืžืจ ื”ื™ื” ื ื›ืชื‘ ืขืœ ื™ื“ื™ ืื•ืชื• ื›ื•ืชื‘, ืขื ืื•ืชื” ื”ืกืžื›ื”
17:05
but found the opposite results,
298
1025130
1587
ืื‘ืœ ื”ื™ื” ืžื•ืฆื ืชื•ืฆืื•ืช ื”ืคื•ื›ื•ืช,
17:07
would you still be willing to believe it and to share it?
299
1027608
3694
ื”ืื ืขื“ื™ื™ืŸ ื”ื™ื™ืชื ืžื•ื›ื ื™ื ืœื”ืืžื™ืŸ ืœืชื•ืฆืื•ืช ื•ืœืฉืชืฃ ืื•ืชืŸ?
17:13
Treating any problem --
300
1033442
2246
ืœื’ืฉืช ืœื›ืœ ื‘ืขื™ื” --
17:15
a nation's economic problem or an individual's health problem,
301
1035712
3792
ื‘ืขื™ื” ื›ืœื›ืœื™ืช ืฉืœ ืื•ืžื” ืฉืœืžื” ืื• ื‘ืขื™ื” ื‘ืจื™ืื•ืชื™ืช ืฉืœ ืื“ื ืื—ื“,
17:19
is difficult.
302
1039528
1150
ื–ื• ืžืฉื™ืžื” ืงืฉื”.
17:21
So we must ensure that we have the very best evidence to guide us.
303
1041242
4383
ืื– ืขืœื™ื ื• ืœื•ื•ื“ื ืฉืื ื—ื ื• ืžื•ื ื—ื™ื ืขืœ ื™ื“ื™ ื”ืจืื™ื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ.
17:26
Only if it's true can it be fact.
304
1046188
2681
ืจืง ืื ื–ื• ืืžืช ื–ื• ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืขื•ื‘ื“ื”.
17:29
Only if it's representative can it be data.
305
1049601
2781
ืจืง ืื ื–ื” ืžื™ื™ืฆื’, ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื™ื“ืข.
17:33
Only if it's supportive can it be evidence.
306
1053128
3165
ืจืง ืื ื–ื” ืชื•ืžืš ื‘ืชื™ืื•ืจื™ื” ื–ื” ื™ื›ื•ืœ ืœื”ื•ื•ืช ืจืื™ื”.
17:36
And only with evidence can we move from a post-truth world
307
1056317
5167
ื•ืจืง ื‘ืขื–ืจืช ืจืื™ื•ืช, ื ื•ื›ืœ ืœืขื‘ื•ืจ ืžืขื•ืœื ืฉืœ ืคื•ืกื˜-ืืžืช
17:41
to a pro-truth world.
308
1061508
1583
ืœืขื•ืœื ืฉืชื•ืžืš ื‘ืืžืช.
17:44
Thank you very much.
309
1064183
1334
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
17:45
(Applause)
310
1065541
1150
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7