How AI Could Empower Any Business | Andrew Ng | TED

1,040,648 views ・ 2022-10-13

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Grace Man
00:04
When I think about the rise of AI,
0
4376
3086
当我想到 AI (人工智能)的崛起之时,
00:07
I'm reminded by the rise of literacy.
1
7504
3170
我联想了读写能力的崛起。
00:10
A few hundred years ago,
2
10715
1210
几百年前,
00:11
many people in society thought
3
11967
1543
社会上的很多人觉得
00:13
that maybe not everyone needed to be able to read and write.
4
13552
3920
也许不是每个人都得会读会写。
00:17
Back then, many people were tending fields or herding sheep,
5
17514
2919
那时候, 很多人从事农业或者牧羊,
00:20
so maybe there was less need for written communication.
6
20433
2670
对书面交流的需求没有那么多。
00:23
And all that was needed
7
23144
1168
只有主教和僧侣
00:24
was for the high priests and priestesses and monks
8
24354
2377
00:26
to be able to read the Holy Book,
9
26773
1585
需要读得懂《圣经》和最高经典,
00:28
and the rest of us could just go to the temple or church
10
28358
2920
其他人只要去寺庙、教堂
00:31
or the holy building
11
31319
1126
或者圣所
00:32
and sit and listen to the high priest and priestesses read to us.
12
32487
3378
坐等主教读给我们听就行了。
00:35
Fortunately, it was since figured out that we can build a much richer society
13
35907
3629
幸运的是,人们后来发现 如果很多人能读能写,
00:39
if lots of people can read and write.
14
39536
2502
我们的社会会富裕得多。
00:42
Today, AI is in the hands of the high priests and priestesses.
15
42080
4630
如今,AI 被掌握在 “主教”手中。
00:46
These are the highly skilled AI engineers,
16
46710
2043
这些主教就是 那些技术高超的 AI 工程师,
00:48
many of whom work in the big tech companies.
17
48753
2503
其中很多就职于科技巨头公司。
00:51
And most people have access only to the AI that they build for them.
18
51590
3795
很多人只能接触到 为他们设计的 AI。
00:55
I think that we can build a much richer society
19
55885
2586
我认为,如果我们能让 每个人参与谱写未来,
00:58
if we can enable everyone to help to write the future.
20
58513
4421
我们就能创造一个更富裕的社会。
01:03
But why is AI largely concentrated in the big tech companies?
21
63977
4421
但是为什么大部分 AI 技术 都集中在科技巨头手中呢?
01:08
Because many of these AI projects have been expensive to build.
22
68398
2961
因为开发这些 AI 项目太贵了。
01:11
They may require dozens of highly skilled engineers,
23
71401
2878
这些项目需要一大群 技术高超的工程师,
01:14
and they may cost millions or tens of millions of dollars
24
74321
2711
要开发一个 AI 系统 可能要花上几百万几千万美元。
01:17
to build an AI system.
25
77032
1668
01:19
And the large tech companies,
26
79034
1543
这些大型科技公司,
01:20
particularly the ones with hundreds of millions
27
80619
2335
尤其是手握几亿 几十亿用户的公司,
01:22
or even billions of users,
28
82996
1460
01:24
have been better than anyone else at making these investments pay off
29
84497
4380
最擅长套回这些投入,
01:28
because, for them, a one-size-fits-all AI system,
30
88877
4296
因为对于它们来说, 一个普适的 AI 系统,
01:33
such as one that improves web search
31
93173
2127
比如优化搜索引擎
01:35
or that recommends better products for online shopping,
32
95300
3003
或者为网购推荐更佳商品的系统,
01:38
can be applied to [these] very large numbers of users
33
98345
3086
可以直接适用于庞大的用户群体,
01:41
to generate a massive amount of revenue.
34
101473
2252
产生巨额收益。
01:44
But this recipe for AI does not work
35
104517
3379
但是一旦你走出科技互联网行业,
01:47
once you go outside the tech and internet sectors to other places
36
107937
4255
去向别的领域, 这个 AI 的秘方可能就不会奏效,
01:52
where, for the most part,
37
112233
1252
因为在大多数情况下,
01:53
there are hardly any projects that apply to 100 million people
38
113526
3963
几乎没有一个项目 可以覆盖一亿人,
01:57
or that generate comparable economics.
39
117530
2795
或产生相当的经济效益。
02:00
Let me illustrate an example.
40
120950
1961
我来举一个例子。
02:03
Many weekends, I drive a few minutes from my house to a local pizza store
41
123578
5798
我总会在周末从家里开车去 当地一家披萨店
02:09
to buy a slice of Hawaiian pizza
42
129417
1835
向店主买一块夏威夷披萨。
02:11
from the gentleman that owns this pizza store.
43
131294
2878
02:14
And his pizza is great,
44
134214
1501
他的披萨很不错,
02:15
but he always has a lot of cold pizzas sitting around,
45
135715
3337
但是总是有一大堆披萨滞销到冷掉,
02:19
and every weekend some different flavor of pizza is out of stock.
46
139094
3336
每个周末都会 有几个口味的披萨缺货。
02:23
But when I watch him operate his store,
47
143139
2670
但是当我看着他 运营他的小店的时候,
02:25
I get excited,
48
145809
1334
我激动万分,
02:27
because by selling pizza,
49
147143
2211
因为在他卖披萨的过程中,
02:29
he is generating data.
50
149396
2419
也产生了数据。
02:31
And this is data that he can take advantage of
51
151856
2753
如果他能用上 AI, 就可以从这些数据中获益。
02:34
if he had access to AI.
52
154651
2419
02:37
AI systems are good at spotting patterns when given access to the right data,
53
157946
5172
如果输入了合适的数据, AI 系统就会很善于识别规律,
02:43
and perhaps an AI system could spot if Mediterranean pizzas sell really well
54
163159
4630
也许能有一个 AI 系统识别出 周五晚上地中海披萨
02:47
on a Friday night,
55
167789
1168
卖得特别好,
02:48
maybe it could suggest to him to make more of it on a Friday afternoon.
56
168957
3712
也许这就能告诉他 周五下午多做一点地中海披萨。
02:53
Now you might say to me, "Hey, Andrew, this is a small pizza store.
57
173294
3170
你有可能想这么对我说: “嘿,安德鲁(Andrew),
这只是个小披萨店。
02:56
What's the big deal?"
58
176464
1543
有什么了不起的?”
02:58
And I say, to the gentleman that owns this pizza store,
59
178007
3337
而我想说,对于店主来说,
03:01
something that could help him improve his revenues
60
181386
2336
如果有什么可以帮他每年
03:03
by a few thousand dollars a year, that will be a huge deal to him.
61
183763
3170
多赚几千美元, 那就很了不起了。
03:08
I know that there is a lot of hype about AI's need for massive data sets,
62
188768
5506
我知道,人们普遍认为 AI 需要大量数据集,
03:14
and having more data does help.
63
194315
1919
有了更多数据确实会有帮助。
03:17
But contrary to the hype,
64
197110
2127
但是如果没有大量数据,
03:19
AI can often work just fine
65
199279
1710
AI 通常也可以在
03:21
even on modest amounts of data,
66
201030
2086
只有少量数据的情况下正常运作,
03:23
such as the data generated by a single pizza store.
67
203158
2877
比如一家披萨店产生的数据。
03:26
So the real problem is not
68
206661
1668
真正的问题不是
03:28
that there isn’t enough data from the pizza store.
69
208329
2420
披萨店没有足够的数据。
03:30
The real problem is that the small pizza store
70
210790
2419
真正的问题是 这小小的披萨店
03:33
could never serve enough customers
71
213209
1627
没有足够的客源
03:34
to justify the cost of hiring an AI team.
72
214878
3336
平衡雇佣一组 AI 人员的支出。
03:39
I know that in the United States
73
219340
2586
我知道美国
03:41
there are about half a million independent restaurants.
74
221926
2628
有大约 50 万家独立餐厅。
03:44
And collectively, these restaurants do serve tens of millions of customers.
75
224554
3837
这些餐厅总计服务了几亿顾客。
03:48
But every restaurant is different with a different menu,
76
228433
2669
但是每一家餐厅都是不同的, 有着不同的菜单,
03:51
different customers, different ways of recording sales
77
231144
2544
不同的顾客, 不同的记账方式,
03:53
that no one-size-fits-all AI would work for all of them.
78
233730
3503
没有一个通用的 AI 系统 可以适用于全部的餐厅。
03:58
What would it be like if we could enable small businesses
79
238359
3587
如果我们可以让小型企业
04:01
and especially local businesses to use AI?
80
241988
2878
尤其是本土企业都能用上 AI, 会怎么样呢?
04:05
Let's take a look at what it might look like
81
245325
2085
我们来看看 AI 应用于一家
04:07
at a company that makes and sells T-shirts.
82
247410
2795
制造、销售 T 恤的公司 会是什么样的情形。
04:10
I would love if an accountant working for the T-shirt company
83
250705
3587
如果这家 T 恤公司的会计
04:14
can use AI for demand forecasting.
84
254292
2252
可以用 AI 预测需求, 那就会很不错。
04:16
Say, figure out what funny memes to prints on T-shirts
85
256586
2836
比如,通过研究 社交媒体上的潮流,
04:19
that would drive sales,
86
259464
1168
锁定一些印在 T 恤上增加销量的
04:20
by looking at what's trending on social media.
87
260632
2460
好玩表情包。
04:23
Or for product placement,
88
263092
2086
就上架策略而言,
04:25
why can’t a front-of-store manager take pictures of what the store looks like
89
265220
4129
门店经理可以拍下店铺情况,
04:29
and show it to an AI
90
269390
1210
提交给 AI,
04:30
and have an AI recommend where to place products to improve sales?
91
270642
4045
让 AI 推荐商品的摆放位置, 提高销量。
04:34
Supply chain.
92
274729
1168
供应链。
04:35
Can an AI recommend to a buyer whether or not they should pay 20 dollars
93
275939
3712
AI 是不是可以推荐 买家是否应该
04:39
per yard for a piece of fabric now,
94
279692
2253
以 20 美元一码的 价格购入一块布料,
04:41
or if they should keep looking
95
281986
1460
还是应该货比三家,
04:43
because they might be able to find it cheaper elsewhere?
96
283446
2628
因为别家的价格 有可能会更低廉呢?
04:46
Or quality control.
97
286074
1585
质量管理。
04:47
A quality inspector should be able to use AI
98
287700
2837
一名质检员 应该能够使用 AI
04:50
to automatically scan pictures of the fabric they use to make T-shirts
99
290537
4713
自动扫描 T 恤的面料照片,
04:55
to check if there are any tears or discolorations in the cloth.
100
295291
3212
检查布料是否有裂缝或褪色。
04:59
Today, large tech companies routinely use AI to solve problems like these
101
299170
5255
如今,AI 已经成为大型科技公司 处理此类问题的常规手段,
05:04
and to great effect.
102
304467
1418
成果显著。
05:06
But a typical T-shirt company or a typical auto mechanic
103
306636
4880
但是现在没有一家普通的 T 恤公司、普通的汽修店、
05:11
or retailer or school or local farm
104
311558
3545
零售店、学校、本地农场
05:15
will be using AI for exactly zero of these applications today.
105
315103
3754
会用 AI 运营。
05:19
Every T-shirt maker is sufficiently different from every other T-shirt maker
106
319816
4254
每一家 T 恤制造商的情况 都是截然不同的,
05:24
that there is no one-size-fits-all AI that will work for all of them.
107
324112
3503
没有一个通用的 AI 系统 可以适用于全部商家。
05:28
And in fact, once you go outside the internet and tech sectors
108
328157
4922
其实,如果不看互联网和科技领域,
05:33
in other industries, even large companies
109
333079
2544
去看一些别的领域, 就算是一些大公司,
05:35
such as the pharmaceutical companies,
110
335665
1919
比如医药公司、
05:37
the car makers, the hospitals,
111
337625
1961
汽车制造商、医院,
05:39
also struggle with this.
112
339586
1710
都会饱受这个问题的困扰。
05:42
This is the long-tail problem of AI.
113
342463
3129
这就是 AI 的长尾效应。
05:46
If you were to take all current and potential AI projects
114
346342
4547
你可以把所有 已有和潜在的 AI 项目
05:50
and sort them in decreasing order of value and plot them,
115
350930
4213
以价值降序排列后作图,
05:55
you get a graph that looks like this.
116
355184
1836
就会得到这样一张图。
05:57
Maybe the single most valuable AI system
117
357061
2086
也许最有价值的 AI 系统
05:59
is something that decides what ads to show people on the internet.
118
359188
3295
决定了在网上 给人们展示什么广告。
06:02
Maybe the second most valuable is a web search engine,
119
362483
2545
也许第二有价值的系统 是网络搜索引擎,
06:05
maybe the third most valuable is an online shopping product recommendation system.
120
365069
3921
第三有价值的系统是 网购商品推荐系统。
06:09
But when you go to the right of this curve,
121
369407
2753
但是如果你看向曲线的右侧,
06:12
you then get projects like T-shirt product placement
122
372201
3212
就会看到像 T 恤商品陈列、
06:15
or T-shirt demand forecasting or pizzeria demand forecasting.
123
375455
4171
T 恤需求预测和披萨店需求预测 这样的项目。
06:20
And each of these is a unique project that needs to be custom-built.
124
380043
4379
每一个这样的项目 都需要定制。
06:24
Even T-shirt demand forecasting,
125
384839
1835
就算是 T 恤需求预测,
06:26
if it depends on trending memes on social media,
126
386674
3170
如果它由社交媒体上的 流行表情包决定,
06:29
is a very different project than pizzeria demand forecasting,
127
389844
4505
也与披萨店需求预测 是两种泾渭分明的项目,
06:34
if that depends on the pizzeria sales data.
128
394390
2253
披萨店的预测由销售数据决定。
06:37
So today there are millions of projects
129
397310
2502
如今成千上万的项目
06:39
sitting on the tail of this distribution that no one is working on,
130
399812
3504
就处于这个无人问津的分布长尾上,
06:43
but whose aggregate value is massive.
131
403358
2460
但是它们的合计价值是不可小觑的。
06:46
So how can we enable small businesses and individuals
132
406486
3086
我们该如何让小型企业和个人
06:49
to build AI systems that matter to them?
133
409572
2795
有能力搭建对他们 十分重要的 AI 系统呢?
06:52
For most of the last few decades,
134
412951
1793
在过去的几十年中,
06:54
if you wanted to build an AI system, this is what you have to do.
135
414786
3587
如果你想搭建一个 AI 系统, 你需要做这些事。
06:58
You have to write pages and pages of code.
136
418414
2211
你需要写长篇累牍的代码。
07:00
And while I would love for everyone to learn to code,
137
420959
2752
虽然我觉得人人都该学写代码,
07:03
and in fact, online education and also offline education
138
423753
3170
线上和线下教育也确实
07:06
are helping more people than ever learn to code,
139
426965
2794
让学习编程的人数达到了高峰,
07:09
unfortunately, not everyone has the time to do this.
140
429801
3336
不幸的是, 不是人人都有时间学习编程。
07:13
But there is an emerging new way
141
433721
2253
但是,我们现在 有了一个全新的方式,
07:16
to build AI systems that will let more people participate.
142
436015
3379
创造 AI 系统, 让更多人参与编程。
07:20
Just as pen and paper,
143
440019
2544
就像纸笔
07:22
which are a vastly superior technology to stone tablet and chisel,
144
442563
4338
是比石板和凿子 先进得多的科技,
07:26
were instrumental to widespread literacy,
145
446943
2669
在普及读写的过程中功不可没,
07:29
there are emerging new AI development platforms
146
449654
3003
现在也有一些 新的 AI 开发平台
07:32
that shift the focus from asking you to write lots of code
147
452699
3211
不再让你写一大堆代码,
07:35
to asking you to focus on providing data.
148
455952
3128
而是只让你提供数据。
07:39
And this turns out to be much easier for a lot of people to do.
149
459122
3211
这对大规模人群来说更容易实现。
07:43
Today, there are multiple companies working on platforms like these.
150
463126
4546
现在有很多公司在做这样的平台。
07:47
Let me illustrate a few of the concepts using one that my team has been building.
151
467714
4254
我的团队也在做这类平台, 我来给大家介绍其中一个。
07:51
Take the example of an inspector
152
471968
2502
举个例子,检测员
07:54
wanting AI to help detect defects in fabric.
153
474470
3420
需要 AI 的帮助 检测布料瑕疵。
07:58
An inspector can take pictures of the fabric
154
478349
2086
检测员可以拍下布料的照片,
08:00
and upload it to a platform like this,
155
480435
2836
上传到这样的平台上,
08:03
and they can go in to show the AI what tears in the fabric look like
156
483312
3921
然后他们可以用矩形做标记,
08:07
by drawing rectangles.
157
487275
1793
告诉 AI 布料裂缝长什么样。
08:09
And they can also go in to show the AI
158
489110
2419
他们也可以通过标记矩形,
08:11
what discoloration on the fabric looks like
159
491571
2419
告诉 AI 布料褪色长什么样。
08:14
by drawing rectangles.
160
494032
1501
08:16
So these pictures,
161
496034
1334
这些图片
08:17
together with the green and pink rectangles
162
497368
2586
与检测员标记的绿色和粉色矩形框
08:19
that the inspector's drawn,
163
499954
1293
08:21
are data created by the inspector
164
501289
2586
就是检测员创建的数据,
08:23
to explain to AI how to find tears and discoloration.
165
503916
3587
告诉 AI 如何检测裂缝和褪色。
08:28
After the AI examines this data,
166
508337
2002
AI 检查了数据之后,
08:30
we may find that it has seen enough pictures of tears,
167
510381
2544
我们会发现, AI 已经读取了足够的裂缝图片,
08:32
but not yet enough pictures of discolorations.
168
512967
2377
但是没有足够的褪色图片。
08:35
This is akin to if a junior inspector had learned to reliably spot tears,
169
515386
4380
这就类似于一个初级检测员 已经学会了如何准确地识别裂缝,
08:39
but still needs to further hone their judgment about discolorations.
170
519807
3671
但是还得再磨练一下对褪色的判断。
08:43
So the inspector can go back and take more pictures of discolorations
171
523519
3629
这个检测员可以回去 再拍几张褪色的照片,
08:47
to show to the AI,
172
527148
1168
提交给 AI,
08:48
to help it deepen this understanding.
173
528357
2211
加深它对褪色的理解。
08:50
By adjusting the data you give to the AI,
174
530568
2544
通过调整输入 AI 的数据,
08:53
you can help the AI get smarter.
175
533154
2252
你可以让 AI 变得更聪明。
08:56
So an inspector using an accessible platform like this
176
536282
3837
检测员使用这样容易操作的平台,
09:00
can, in a few hours to a few days,
177
540161
2878
在几小时至几天内,
09:03
and with purchasing a suitable camera set up,
178
543081
3920
再采购一套合适的摄影设备,
09:07
be able to build a custom AI system to detect defects,
179
547043
4588
就能在搭建起一个 定制化 AI 系统,
检测工厂中所有 T 恤面料上的 瑕疵、裂缝和褪色情况。
09:11
tears and discolorations in all the fabric
180
551672
2253
09:13
being used to make T-shirts throughout the factory.
181
553925
2544
09:16
And once again, you may say,
182
556511
2586
你可能又想说:
09:19
"Hey, Andrew, this is one factory.
183
559138
3045
“嘿,安德鲁,这就是一家工厂,
09:22
Why is this a big deal?"
184
562225
1376
有什么了不起的?”
09:23
And I say to you,
185
563976
1168
我想告诉你,
09:25
this is a big deal to that inspector whose life this makes easier
186
565186
3086
对那个减负的检测员来说, 这很了不起,
09:28
and equally, this type of technology can empower a baker to use AI
187
568272
4630
同样,这项技术可以让 一名烘焙师使用 AI
09:32
to check for the quality of the cakes they're making,
188
572902
2502
检查手中蛋糕的质量,
09:35
or an organic farmer to check the quality of the vegetables,
189
575404
3838
让一名有机农场主 检查蔬菜的质量,
09:39
or a furniture maker to check the quality of the wood they're using.
190
579283
4046
让一个家具制造商 检查木材原料的质量。
09:44
Platforms like these will probably still need a few more years
191
584789
2961
这类平台也许还需要一些时间
09:47
before they're easy enough to use for every pizzeria owner.
192
587792
3920
将操作难易度调节至 适用于每一个披萨店店主。
09:51
But many of these platforms are coming along,
193
591754
2127
但是很多平台都在进步,
09:53
and some of them are getting to be quite useful
194
593881
2211
有些平台只需要少量培训,
09:56
to someone that is tech savvy today,
195
596134
2419
就已经对如今懂技术的人来说 非常有帮助了。
09:58
with just a bit of training.
196
598553
2043
10:00
But what this means is that,
197
600638
1460
这也就意味着,
10:02
rather than relying on the high priests and priestesses
198
602098
2711
我们不需要再依赖于主教
10:04
to write AI systems for everyone else,
199
604851
2752
为所有人编写 AI 系统,
10:07
we can start to empower every accountant,
200
607645
2419
我们的每位会计、
10:10
every store manager,
201
610106
1293
每位门店经理、
10:11
every buyer and every quality inspector to build their own AI systems.
202
611440
4964
每位买家、每位质检员都有能力 搭建自己的 AI 系统。
10:17
I hope that the pizzeria owner
203
617363
2419
我希望披萨店店主
10:19
and many other small business owners like him
204
619824
2502
和其他像他这样的小型企业主
10:22
will also take advantage of this technology
205
622368
2503
都可以用上这项技术,
10:24
because AI is creating tremendous wealth
206
624912
3420
因为 AI 创造着巨大财富,
10:28
and will continue to create tremendous wealth.
207
628374
2336
也将在未来持续创造巨大财富。
10:30
And it's only by democratizing access to AI
208
630751
2920
只有让人人都有机会用上 AI,
10:33
that we can ensure that this wealth is spread far and wide across society.
209
633713
4421
我们才能将这样的财富 播撒到社会的每个角落。
10:39
Hundreds of years ago.
210
639635
1335
几百年前。
10:41
I think hardly anyone understood the impact
211
641012
3920
我觉得几乎没有人懂得
10:44
that widespread literacy will have.
212
644974
2544
普及读写的重要性。
10:47
Today, I think hardly anyone understands
213
647518
2961
我认为现在几乎没有人懂得
10:50
the impact that democratizing access to AI will have.
214
650521
3587
让每个人有机会 用上 AI 的重要性。
10:54
Building AI systems has been out of reach for most people,
215
654984
3795
大多数人没有机会 搭建 AI 系统,
10:58
but that does not have to be the case.
216
658821
2002
但是未来不一定会是如此。
11:01
In the coming era for AI,
217
661199
1960
在接下来的 AI 时代中,
11:03
we’ll empower everyone to build AI systems for themselves,
218
663201
3712
我们会让每一个人有能力 为自己搭建 AI 系统,
11:06
and I think that will be incredibly exciting future.
219
666954
3045
我觉得这就是我们 振奋人心的未来。
11:10
Thank you very much.
220
670041
1168
谢谢。
11:11
(Applause)
221
671250
4964
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7