How AI Could Empower Any Business | Andrew Ng | TED

1,148,206 views ・ 2022-10-13

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Grace Man
00:04
When I think about the rise of AI,
0
4376
3086
当我想到 AI (人工智能)的崛起之时,
00:07
I'm reminded by the rise of literacy.
1
7504
3170
我联想了读写能力的崛起。
00:10
A few hundred years ago,
2
10715
1210
几百年前,
00:11
many people in society thought
3
11967
1543
社会上的很多人觉得
00:13
that maybe not everyone needed to be able to read and write.
4
13552
3920
也许不是每个人都得会读会写。
00:17
Back then, many people were tending fields or herding sheep,
5
17514
2919
那时候, 很多人从事农业或者牧羊,
00:20
so maybe there was less need for written communication.
6
20433
2670
对书面交流的需求没有那么多。
00:23
And all that was needed
7
23144
1168
只有主教和僧侣
00:24
was for the high priests and priestesses and monks
8
24354
2377
00:26
to be able to read the Holy Book,
9
26773
1585
需要读得懂《圣经》和最高经典,
00:28
and the rest of us could just go to the temple or church
10
28358
2920
其他人只要去寺庙、教堂
00:31
or the holy building
11
31319
1126
或者圣所
00:32
and sit and listen to the high priest and priestesses read to us.
12
32487
3378
坐等主教读给我们听就行了。
00:35
Fortunately, it was since figured out that we can build a much richer society
13
35907
3629
幸运的是,人们后来发现 如果很多人能读能写,
00:39
if lots of people can read and write.
14
39536
2502
我们的社会会富裕得多。
00:42
Today, AI is in the hands of the high priests and priestesses.
15
42080
4630
如今,AI 被掌握在 “主教”手中。
00:46
These are the highly skilled AI engineers,
16
46710
2043
这些主教就是 那些技术高超的 AI 工程师,
00:48
many of whom work in the big tech companies.
17
48753
2503
其中很多就职于科技巨头公司。
00:51
And most people have access only to the AI that they build for them.
18
51590
3795
很多人只能接触到 为他们设计的 AI。
00:55
I think that we can build a much richer society
19
55885
2586
我认为,如果我们能让 每个人参与谱写未来,
00:58
if we can enable everyone to help to write the future.
20
58513
4421
我们就能创造一个更富裕的社会。
01:03
But why is AI largely concentrated in the big tech companies?
21
63977
4421
但是为什么大部分 AI 技术 都集中在科技巨头手中呢?
01:08
Because many of these AI projects have been expensive to build.
22
68398
2961
因为开发这些 AI 项目太贵了。
01:11
They may require dozens of highly skilled engineers,
23
71401
2878
这些项目需要一大群 技术高超的工程师,
01:14
and they may cost millions or tens of millions of dollars
24
74321
2711
要开发一个 AI 系统 可能要花上几百万几千万美元。
01:17
to build an AI system.
25
77032
1668
01:19
And the large tech companies,
26
79034
1543
这些大型科技公司,
01:20
particularly the ones with hundreds of millions
27
80619
2335
尤其是手握几亿 几十亿用户的公司,
01:22
or even billions of users,
28
82996
1460
01:24
have been better than anyone else at making these investments pay off
29
84497
4380
最擅长套回这些投入,
01:28
because, for them, a one-size-fits-all AI system,
30
88877
4296
因为对于它们来说, 一个普适的 AI 系统,
01:33
such as one that improves web search
31
93173
2127
比如优化搜索引擎
01:35
or that recommends better products for online shopping,
32
95300
3003
或者为网购推荐更佳商品的系统,
01:38
can be applied to [these] very large numbers of users
33
98345
3086
可以直接适用于庞大的用户群体,
01:41
to generate a massive amount of revenue.
34
101473
2252
产生巨额收益。
01:44
But this recipe for AI does not work
35
104517
3379
但是一旦你走出科技互联网行业,
01:47
once you go outside the tech and internet sectors to other places
36
107937
4255
去向别的领域, 这个 AI 的秘方可能就不会奏效,
01:52
where, for the most part,
37
112233
1252
因为在大多数情况下,
01:53
there are hardly any projects that apply to 100 million people
38
113526
3963
几乎没有一个项目 可以覆盖一亿人,
01:57
or that generate comparable economics.
39
117530
2795
或产生相当的经济效益。
02:00
Let me illustrate an example.
40
120950
1961
我来举一个例子。
02:03
Many weekends, I drive a few minutes from my house to a local pizza store
41
123578
5798
我总会在周末从家里开车去 当地一家披萨店
02:09
to buy a slice of Hawaiian pizza
42
129417
1835
向店主买一块夏威夷披萨。
02:11
from the gentleman that owns this pizza store.
43
131294
2878
02:14
And his pizza is great,
44
134214
1501
他的披萨很不错,
02:15
but he always has a lot of cold pizzas sitting around,
45
135715
3337
但是总是有一大堆披萨滞销到冷掉,
02:19
and every weekend some different flavor of pizza is out of stock.
46
139094
3336
每个周末都会 有几个口味的披萨缺货。
02:23
But when I watch him operate his store,
47
143139
2670
但是当我看着他 运营他的小店的时候,
02:25
I get excited,
48
145809
1334
我激动万分,
02:27
because by selling pizza,
49
147143
2211
因为在他卖披萨的过程中,
02:29
he is generating data.
50
149396
2419
也产生了数据。
02:31
And this is data that he can take advantage of
51
151856
2753
如果他能用上 AI, 就可以从这些数据中获益。
02:34
if he had access to AI.
52
154651
2419
02:37
AI systems are good at spotting patterns when given access to the right data,
53
157946
5172
如果输入了合适的数据, AI 系统就会很善于识别规律,
02:43
and perhaps an AI system could spot if Mediterranean pizzas sell really well
54
163159
4630
也许能有一个 AI 系统识别出 周五晚上地中海披萨
02:47
on a Friday night,
55
167789
1168
卖得特别好,
02:48
maybe it could suggest to him to make more of it on a Friday afternoon.
56
168957
3712
也许这就能告诉他 周五下午多做一点地中海披萨。
02:53
Now you might say to me, "Hey, Andrew, this is a small pizza store.
57
173294
3170
你有可能想这么对我说: “嘿,安德鲁(Andrew),
这只是个小披萨店。
02:56
What's the big deal?"
58
176464
1543
有什么了不起的?”
02:58
And I say, to the gentleman that owns this pizza store,
59
178007
3337
而我想说,对于店主来说,
03:01
something that could help him improve his revenues
60
181386
2336
如果有什么可以帮他每年
03:03
by a few thousand dollars a year, that will be a huge deal to him.
61
183763
3170
多赚几千美元, 那就很了不起了。
03:08
I know that there is a lot of hype about AI's need for massive data sets,
62
188768
5506
我知道,人们普遍认为 AI 需要大量数据集,
03:14
and having more data does help.
63
194315
1919
有了更多数据确实会有帮助。
03:17
But contrary to the hype,
64
197110
2127
但是如果没有大量数据,
03:19
AI can often work just fine
65
199279
1710
AI 通常也可以在
03:21
even on modest amounts of data,
66
201030
2086
只有少量数据的情况下正常运作,
03:23
such as the data generated by a single pizza store.
67
203158
2877
比如一家披萨店产生的数据。
03:26
So the real problem is not
68
206661
1668
真正的问题不是
03:28
that there isn’t enough data from the pizza store.
69
208329
2420
披萨店没有足够的数据。
03:30
The real problem is that the small pizza store
70
210790
2419
真正的问题是 这小小的披萨店
03:33
could never serve enough customers
71
213209
1627
没有足够的客源
03:34
to justify the cost of hiring an AI team.
72
214878
3336
平衡雇佣一组 AI 人员的支出。
03:39
I know that in the United States
73
219340
2586
我知道美国
03:41
there are about half a million independent restaurants.
74
221926
2628
有大约 50 万家独立餐厅。
03:44
And collectively, these restaurants do serve tens of millions of customers.
75
224554
3837
这些餐厅总计服务了几亿顾客。
03:48
But every restaurant is different with a different menu,
76
228433
2669
但是每一家餐厅都是不同的, 有着不同的菜单,
03:51
different customers, different ways of recording sales
77
231144
2544
不同的顾客, 不同的记账方式,
03:53
that no one-size-fits-all AI would work for all of them.
78
233730
3503
没有一个通用的 AI 系统 可以适用于全部的餐厅。
03:58
What would it be like if we could enable small businesses
79
238359
3587
如果我们可以让小型企业
04:01
and especially local businesses to use AI?
80
241988
2878
尤其是本土企业都能用上 AI, 会怎么样呢?
04:05
Let's take a look at what it might look like
81
245325
2085
我们来看看 AI 应用于一家
04:07
at a company that makes and sells T-shirts.
82
247410
2795
制造、销售 T 恤的公司 会是什么样的情形。
04:10
I would love if an accountant working for the T-shirt company
83
250705
3587
如果这家 T 恤公司的会计
04:14
can use AI for demand forecasting.
84
254292
2252
可以用 AI 预测需求, 那就会很不错。
04:16
Say, figure out what funny memes to prints on T-shirts
85
256586
2836
比如,通过研究 社交媒体上的潮流,
04:19
that would drive sales,
86
259464
1168
锁定一些印在 T 恤上增加销量的
04:20
by looking at what's trending on social media.
87
260632
2460
好玩表情包。
04:23
Or for product placement,
88
263092
2086
就上架策略而言,
04:25
why can’t a front-of-store manager take pictures of what the store looks like
89
265220
4129
门店经理可以拍下店铺情况,
04:29
and show it to an AI
90
269390
1210
提交给 AI,
04:30
and have an AI recommend where to place products to improve sales?
91
270642
4045
让 AI 推荐商品的摆放位置, 提高销量。
04:34
Supply chain.
92
274729
1168
供应链。
04:35
Can an AI recommend to a buyer whether or not they should pay 20 dollars
93
275939
3712
AI 是不是可以推荐 买家是否应该
04:39
per yard for a piece of fabric now,
94
279692
2253
以 20 美元一码的 价格购入一块布料,
04:41
or if they should keep looking
95
281986
1460
还是应该货比三家,
04:43
because they might be able to find it cheaper elsewhere?
96
283446
2628
因为别家的价格 有可能会更低廉呢?
04:46
Or quality control.
97
286074
1585
质量管理。
04:47
A quality inspector should be able to use AI
98
287700
2837
一名质检员 应该能够使用 AI
04:50
to automatically scan pictures of the fabric they use to make T-shirts
99
290537
4713
自动扫描 T 恤的面料照片,
04:55
to check if there are any tears or discolorations in the cloth.
100
295291
3212
检查布料是否有裂缝或褪色。
04:59
Today, large tech companies routinely use AI to solve problems like these
101
299170
5255
如今,AI 已经成为大型科技公司 处理此类问题的常规手段,
05:04
and to great effect.
102
304467
1418
成果显著。
05:06
But a typical T-shirt company or a typical auto mechanic
103
306636
4880
但是现在没有一家普通的 T 恤公司、普通的汽修店、
05:11
or retailer or school or local farm
104
311558
3545
零售店、学校、本地农场
05:15
will be using AI for exactly zero of these applications today.
105
315103
3754
会用 AI 运营。
05:19
Every T-shirt maker is sufficiently different from every other T-shirt maker
106
319816
4254
每一家 T 恤制造商的情况 都是截然不同的,
05:24
that there is no one-size-fits-all AI that will work for all of them.
107
324112
3503
没有一个通用的 AI 系统 可以适用于全部商家。
05:28
And in fact, once you go outside the internet and tech sectors
108
328157
4922
其实,如果不看互联网和科技领域,
05:33
in other industries, even large companies
109
333079
2544
去看一些别的领域, 就算是一些大公司,
05:35
such as the pharmaceutical companies,
110
335665
1919
比如医药公司、
05:37
the car makers, the hospitals,
111
337625
1961
汽车制造商、医院,
05:39
also struggle with this.
112
339586
1710
都会饱受这个问题的困扰。
05:42
This is the long-tail problem of AI.
113
342463
3129
这就是 AI 的长尾效应。
05:46
If you were to take all current and potential AI projects
114
346342
4547
你可以把所有 已有和潜在的 AI 项目
05:50
and sort them in decreasing order of value and plot them,
115
350930
4213
以价值降序排列后作图,
05:55
you get a graph that looks like this.
116
355184
1836
就会得到这样一张图。
05:57
Maybe the single most valuable AI system
117
357061
2086
也许最有价值的 AI 系统
05:59
is something that decides what ads to show people on the internet.
118
359188
3295
决定了在网上 给人们展示什么广告。
06:02
Maybe the second most valuable is a web search engine,
119
362483
2545
也许第二有价值的系统 是网络搜索引擎,
06:05
maybe the third most valuable is an online shopping product recommendation system.
120
365069
3921
第三有价值的系统是 网购商品推荐系统。
06:09
But when you go to the right of this curve,
121
369407
2753
但是如果你看向曲线的右侧,
06:12
you then get projects like T-shirt product placement
122
372201
3212
就会看到像 T 恤商品陈列、
06:15
or T-shirt demand forecasting or pizzeria demand forecasting.
123
375455
4171
T 恤需求预测和披萨店需求预测 这样的项目。
06:20
And each of these is a unique project that needs to be custom-built.
124
380043
4379
每一个这样的项目 都需要定制。
06:24
Even T-shirt demand forecasting,
125
384839
1835
就算是 T 恤需求预测,
06:26
if it depends on trending memes on social media,
126
386674
3170
如果它由社交媒体上的 流行表情包决定,
06:29
is a very different project than pizzeria demand forecasting,
127
389844
4505
也与披萨店需求预测 是两种泾渭分明的项目,
06:34
if that depends on the pizzeria sales data.
128
394390
2253
披萨店的预测由销售数据决定。
06:37
So today there are millions of projects
129
397310
2502
如今成千上万的项目
06:39
sitting on the tail of this distribution that no one is working on,
130
399812
3504
就处于这个无人问津的分布长尾上,
06:43
but whose aggregate value is massive.
131
403358
2460
但是它们的合计价值是不可小觑的。
06:46
So how can we enable small businesses and individuals
132
406486
3086
我们该如何让小型企业和个人
06:49
to build AI systems that matter to them?
133
409572
2795
有能力搭建对他们 十分重要的 AI 系统呢?
06:52
For most of the last few decades,
134
412951
1793
在过去的几十年中,
06:54
if you wanted to build an AI system, this is what you have to do.
135
414786
3587
如果你想搭建一个 AI 系统, 你需要做这些事。
06:58
You have to write pages and pages of code.
136
418414
2211
你需要写长篇累牍的代码。
07:00
And while I would love for everyone to learn to code,
137
420959
2752
虽然我觉得人人都该学写代码,
07:03
and in fact, online education and also offline education
138
423753
3170
线上和线下教育也确实
07:06
are helping more people than ever learn to code,
139
426965
2794
让学习编程的人数达到了高峰,
07:09
unfortunately, not everyone has the time to do this.
140
429801
3336
不幸的是, 不是人人都有时间学习编程。
07:13
But there is an emerging new way
141
433721
2253
但是,我们现在 有了一个全新的方式,
07:16
to build AI systems that will let more people participate.
142
436015
3379
创造 AI 系统, 让更多人参与编程。
07:20
Just as pen and paper,
143
440019
2544
就像纸笔
07:22
which are a vastly superior technology to stone tablet and chisel,
144
442563
4338
是比石板和凿子 先进得多的科技,
07:26
were instrumental to widespread literacy,
145
446943
2669
在普及读写的过程中功不可没,
07:29
there are emerging new AI development platforms
146
449654
3003
现在也有一些 新的 AI 开发平台
07:32
that shift the focus from asking you to write lots of code
147
452699
3211
不再让你写一大堆代码,
07:35
to asking you to focus on providing data.
148
455952
3128
而是只让你提供数据。
07:39
And this turns out to be much easier for a lot of people to do.
149
459122
3211
这对大规模人群来说更容易实现。
07:43
Today, there are multiple companies working on platforms like these.
150
463126
4546
现在有很多公司在做这样的平台。
07:47
Let me illustrate a few of the concepts using one that my team has been building.
151
467714
4254
我的团队也在做这类平台, 我来给大家介绍其中一个。
07:51
Take the example of an inspector
152
471968
2502
举个例子,检测员
07:54
wanting AI to help detect defects in fabric.
153
474470
3420
需要 AI 的帮助 检测布料瑕疵。
07:58
An inspector can take pictures of the fabric
154
478349
2086
检测员可以拍下布料的照片,
08:00
and upload it to a platform like this,
155
480435
2836
上传到这样的平台上,
08:03
and they can go in to show the AI what tears in the fabric look like
156
483312
3921
然后他们可以用矩形做标记,
08:07
by drawing rectangles.
157
487275
1793
告诉 AI 布料裂缝长什么样。
08:09
And they can also go in to show the AI
158
489110
2419
他们也可以通过标记矩形,
08:11
what discoloration on the fabric looks like
159
491571
2419
告诉 AI 布料褪色长什么样。
08:14
by drawing rectangles.
160
494032
1501
08:16
So these pictures,
161
496034
1334
这些图片
08:17
together with the green and pink rectangles
162
497368
2586
与检测员标记的绿色和粉色矩形框
08:19
that the inspector's drawn,
163
499954
1293
08:21
are data created by the inspector
164
501289
2586
就是检测员创建的数据,
08:23
to explain to AI how to find tears and discoloration.
165
503916
3587
告诉 AI 如何检测裂缝和褪色。
08:28
After the AI examines this data,
166
508337
2002
AI 检查了数据之后,
08:30
we may find that it has seen enough pictures of tears,
167
510381
2544
我们会发现, AI 已经读取了足够的裂缝图片,
08:32
but not yet enough pictures of discolorations.
168
512967
2377
但是没有足够的褪色图片。
08:35
This is akin to if a junior inspector had learned to reliably spot tears,
169
515386
4380
这就类似于一个初级检测员 已经学会了如何准确地识别裂缝,
08:39
but still needs to further hone their judgment about discolorations.
170
519807
3671
但是还得再磨练一下对褪色的判断。
08:43
So the inspector can go back and take more pictures of discolorations
171
523519
3629
这个检测员可以回去 再拍几张褪色的照片,
08:47
to show to the AI,
172
527148
1168
提交给 AI,
08:48
to help it deepen this understanding.
173
528357
2211
加深它对褪色的理解。
08:50
By adjusting the data you give to the AI,
174
530568
2544
通过调整输入 AI 的数据,
08:53
you can help the AI get smarter.
175
533154
2252
你可以让 AI 变得更聪明。
08:56
So an inspector using an accessible platform like this
176
536282
3837
检测员使用这样容易操作的平台,
09:00
can, in a few hours to a few days,
177
540161
2878
在几小时至几天内,
09:03
and with purchasing a suitable camera set up,
178
543081
3920
再采购一套合适的摄影设备,
09:07
be able to build a custom AI system to detect defects,
179
547043
4588
就能在搭建起一个 定制化 AI 系统,
检测工厂中所有 T 恤面料上的 瑕疵、裂缝和褪色情况。
09:11
tears and discolorations in all the fabric
180
551672
2253
09:13
being used to make T-shirts throughout the factory.
181
553925
2544
09:16
And once again, you may say,
182
556511
2586
你可能又想说:
09:19
"Hey, Andrew, this is one factory.
183
559138
3045
“嘿,安德鲁,这就是一家工厂,
09:22
Why is this a big deal?"
184
562225
1376
有什么了不起的?”
09:23
And I say to you,
185
563976
1168
我想告诉你,
09:25
this is a big deal to that inspector whose life this makes easier
186
565186
3086
对那个减负的检测员来说, 这很了不起,
09:28
and equally, this type of technology can empower a baker to use AI
187
568272
4630
同样,这项技术可以让 一名烘焙师使用 AI
09:32
to check for the quality of the cakes they're making,
188
572902
2502
检查手中蛋糕的质量,
09:35
or an organic farmer to check the quality of the vegetables,
189
575404
3838
让一名有机农场主 检查蔬菜的质量,
09:39
or a furniture maker to check the quality of the wood they're using.
190
579283
4046
让一个家具制造商 检查木材原料的质量。
09:44
Platforms like these will probably still need a few more years
191
584789
2961
这类平台也许还需要一些时间
09:47
before they're easy enough to use for every pizzeria owner.
192
587792
3920
将操作难易度调节至 适用于每一个披萨店店主。
09:51
But many of these platforms are coming along,
193
591754
2127
但是很多平台都在进步,
09:53
and some of them are getting to be quite useful
194
593881
2211
有些平台只需要少量培训,
09:56
to someone that is tech savvy today,
195
596134
2419
就已经对如今懂技术的人来说 非常有帮助了。
09:58
with just a bit of training.
196
598553
2043
10:00
But what this means is that,
197
600638
1460
这也就意味着,
10:02
rather than relying on the high priests and priestesses
198
602098
2711
我们不需要再依赖于主教
10:04
to write AI systems for everyone else,
199
604851
2752
为所有人编写 AI 系统,
10:07
we can start to empower every accountant,
200
607645
2419
我们的每位会计、
10:10
every store manager,
201
610106
1293
每位门店经理、
10:11
every buyer and every quality inspector to build their own AI systems.
202
611440
4964
每位买家、每位质检员都有能力 搭建自己的 AI 系统。
10:17
I hope that the pizzeria owner
203
617363
2419
我希望披萨店店主
10:19
and many other small business owners like him
204
619824
2502
和其他像他这样的小型企业主
10:22
will also take advantage of this technology
205
622368
2503
都可以用上这项技术,
10:24
because AI is creating tremendous wealth
206
624912
3420
因为 AI 创造着巨大财富,
10:28
and will continue to create tremendous wealth.
207
628374
2336
也将在未来持续创造巨大财富。
10:30
And it's only by democratizing access to AI
208
630751
2920
只有让人人都有机会用上 AI,
10:33
that we can ensure that this wealth is spread far and wide across society.
209
633713
4421
我们才能将这样的财富 播撒到社会的每个角落。
10:39
Hundreds of years ago.
210
639635
1335
几百年前。
10:41
I think hardly anyone understood the impact
211
641012
3920
我觉得几乎没有人懂得
10:44
that widespread literacy will have.
212
644974
2544
普及读写的重要性。
10:47
Today, I think hardly anyone understands
213
647518
2961
我认为现在几乎没有人懂得
10:50
the impact that democratizing access to AI will have.
214
650521
3587
让每个人有机会 用上 AI 的重要性。
10:54
Building AI systems has been out of reach for most people,
215
654984
3795
大多数人没有机会 搭建 AI 系统,
10:58
but that does not have to be the case.
216
658821
2002
但是未来不一定会是如此。
11:01
In the coming era for AI,
217
661199
1960
在接下来的 AI 时代中,
11:03
we’ll empower everyone to build AI systems for themselves,
218
663201
3712
我们会让每一个人有能力 为自己搭建 AI 系统,
11:06
and I think that will be incredibly exciting future.
219
666954
3045
我觉得这就是我们 振奋人心的未来。
11:10
Thank you very much.
220
670041
1168
谢谢。
11:11
(Applause)
221
671250
4964
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog