Skylar Tibbits: Can we make things that make themselves?

75,815 views ใƒป 2011-09-01

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:15
Today I'd like to show you
0
15260
2000
ื”ื™ื•ื ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื
00:17
the future of the way we make things.
1
17260
2000
ืืช ื”ืขืชื™ื“ ืฉืœ ื™ืฆื•ืจ ื“ื‘ืจื™ื.
00:19
I believe that soon our buildings and machines
2
19260
2000
ืื ื™ ืžืืžื™ืŸ ืฉื‘ืงืจื•ื‘ ื”ื‘ื ื™ื™ื ื™ื ื•ื”ืžื›ื•ื ื•ืช
00:21
will be self-assembling,
3
21260
2000
ื™ืจื›ื™ื‘ื• ืืช ืขืฆืžื,
00:23
replicating and repairing themselves.
4
23260
2000
ื™ืฉื›ืคืœื• ื•ื™ืชืงื ื• ืืช ืขืฆืžืŸ.
00:25
So I'm going to show you
5
25260
2000
ืื– ืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื
00:27
what I believe is the current state of manufacturing,
6
27260
2000
ืžื” ืฉืื ื™ ืžืืžื™ืŸ ืฉื”ื•ื ื”ืžืฆื‘ ื”ื ื•ื›ื—ื™ ืฉืœ ื”ื™ืฆื•ืจ,
00:29
and then compare that to some natural systems.
7
29260
3000
ื•ืื– ืืฉื•ื•ื” ืื•ืชื• ืœื›ืžื” ืžืขืจื›ื•ืช ื˜ื‘ืขื™ื•ืช.
00:32
So in the current state of manufacturing, we have skyscrapers --
8
32260
3000
ืื– ื‘ืžืฆื‘ ื”ื ื•ื›ื—ื™ ืฉืœ ื”ื™ืฆื•ืจ, ื™ืฉ ืœื ื• ื’ื•ืจื“ื™ ืฉื—ืงื™ื --
00:35
two and a half years [of assembly time],
9
35260
2000
ืฉื ืชื™ื™ื ื•ื—ืฆื™,
00:37
500,000 to a million parts,
10
37260
2000
500,000 ืขื“ ืžื™ืœื™ื•ืŸ ื—ืœืงื™ื,
00:39
fairly complex,
11
39260
2000
ื“ื™ ืžืกื•ื‘ืš,
00:41
new, exciting technologies in steel, concrete, glass.
12
41260
3000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช ื•ืžืœื”ื™ื‘ื•ืช ื‘ืคืœื“ื”, ื‘ื˜ื•ืŸ, ื–ื›ื•ื›ื™ืช.
00:44
We have exciting machines
13
44260
2000
ื™ืฉ ืœื ื• ืžื›ื•ื ื•ืช ืžืœื”ื™ื‘ื•ืช
00:46
that can take us into space --
14
46260
2000
ืฉื™ื›ื•ืœื•ืช ืœืงื—ืช ืื•ืชื ื• ืœื—ืœืœ --
00:48
five years [of assembly time], 2.5 million parts.
15
48260
3000
ื—ืžืฉ ืฉื ื™ื, 2.5 ืžื™ืœื™ื•ืŸ ื—ืœืงื™ื.
00:51
But on the other side, if you look at the natural systems,
16
51260
3000
ืื‘ืœ ืžืฆื“ ืฉื ื™, ืื ืชื‘ื™ื˜ื• ื‘ืžืขืจื›ื•ืช ื˜ื‘ืขื™ื•ืช,
00:54
we have proteins
17
54260
2000
ื™ืฉ ืœื ื• ื—ืœื‘ื•ื ื™ื
00:56
that have two million types,
18
56260
2000
ืฉื™ืฉ ืœื”ื ืฉื ื™ ืžื™ืœื™ื•ืŸ ืกื•ื’ื™ื,
00:58
can fold in 10,000 nanoseconds,
19
58260
2000
ื™ื›ื•ืœื™ื ืœื”ืชืงืคืœ ื‘ 10,000 ื ื ื•ืฉื ื™ื•ืช,
01:00
or DNA with three billion base pairs
20
60260
2000
ืื• DNA ืขื ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“ ื–ื•ื’ื•ืช ื‘ืกื™ืก
01:02
we can replicate in roughly an hour.
21
62260
3000
ืื•ืชื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉื›ืคืœ ื‘ืขืจืš ื‘ืฉืขื”.
01:05
So there's all of this complexity
22
65260
2000
ืื– ื™ืฉ ืืช ื›ืœ ื”ืžื•ืจื›ื‘ื•ืช ื”ื–ื•
01:07
in our natural systems,
23
67260
2000
ื‘ืžืขืจื›ื•ืช ื”ื˜ื‘ืขื™ื•ืช ืฉืœื ื•,
01:09
but they're extremely efficient,
24
69260
2000
ืื‘ืœ ื”ืŸ ืžืื•ื“ ื™ืขื™ืœื•ืช,
01:11
far more efficient than anything we can build,
25
71260
2000
ื”ืจื‘ื” ื™ื•ืชืจ ื™ืขื™ืœ ืžื›ืœ ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช,
01:13
far more complex than anything we can build.
26
73260
2000
ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ื™ื ืžื›ืœ ืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช.
01:15
They're far more efficient in terms of energy.
27
75260
2000
ื”ื ื”ืจื‘ื” ื™ื•ืชืจ ื™ืขื™ืœื™ื ื‘ืžื•ื ื—ื™ื ืื ืจื’ื˜ื™ื™ื.
01:17
They hardly ever make mistakes.
28
77260
3000
ื”ื ื›ืžืขื˜ ืœืขื•ืœื ืœื ื˜ื•ืขื™ื.
01:20
And they can repair themselves for longevity.
29
80260
2000
ื•ื”ื ื™ื›ื•ืœื™ื ืœืชืงืŸ ืืช ืขืฆืžื ื‘ืžืฉืš ื—ื™ื™ื”ื.
01:22
So there's something super interesting about natural systems.
30
82260
3000
ืื– ื™ืฉ ืžืฉื”ื• ืกื•ืคืจ ืžืขื ื™ื™ืŸ ื‘ืžืขืจื›ื•ืช ื”ื˜ื‘ืขื™ื•ืช.
01:25
And if we can translate that
31
85260
2000
ื•ืื ื ื•ื›ืœ ืœืชืจื’ื ืืช ื–ื”
01:27
into our built environment,
32
87260
2000
ืœืกื‘ื™ื‘ืช ื”ื™ืฆื•ืจ ืฉืœื ื•,
01:29
then there's some exciting potential for the way that we build things.
33
89260
2000
ืื– ื™ืฉ ืคื•ื˜ื ืฆื™ืืœ ืžืจื’ืฉ ืœื“ืจืš ื‘ื” ืื ื—ื ื• ื‘ื•ื ื™ื ื“ื‘ืจื™ื.
01:31
And I think the key to that is self-assembly.
34
91260
3000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื”ืžืคืชื— ืœื–ื” ื”ื•ื ื”ืจื›ื‘ื” ืขืฆืžื™ืช.
01:34
So if we want to utilize self-assembly in our physical environment,
35
94260
3000
ืื– ืื ืื ื—ื ื• ืจื•ืฆื™ื ืœื ืฆืœ ื”ืจื›ื‘ื” ืขืฆืžื™ืช ื‘ืกื‘ื™ื‘ื” ื”ืคื™ืกื™ืช ืฉืœื ื•,
01:37
I think there's four key factors.
36
97260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ืืจื‘ืขื” ื’ื•ืจืžื™ื ืขื™ืงืจื™ื™ื.
01:39
The first is that we need to decode
37
99260
2000
ื”ืจืืฉื•ืŸ ื”ื•ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืคืขื ื—
01:41
all of the complexity of what we want to build --
38
101260
2000
ืืช ื›ืœ ื”ืžื•ืจื›ื‘ื•ืช ืฉืœ ืžื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœื‘ื ื•ืช --
01:43
so our buildings and machines.
39
103260
2000
ืืœื” ื”ื‘ื ื™ื™ื ื™ื ื•ื”ืžื›ื•ื ื•ืช ืฉืœื ื•.
01:45
And we need to decode that into simple sequences --
40
105260
2000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืคืขื ื— ืืช ื–ื” ืœืจืฆืคื™ื ืคืฉื•ื˜ื™ื --
01:47
basically the DNA of how our buildings work.
41
107260
2000
ื‘ืขื™ืงืจื•ืŸ ื”DNA ืฉืœ ืื™ืš ื”ื‘ื ื™ื™ื ื™ื ืฉืœื ื• ืขื•ื‘ื“ื™ื.
01:49
Then we need programmable parts
42
109260
2000
ืื– ืื ื—ื ื• ืฆืจื™ื›ื™ื ื—ืœืงื™ื ื ื™ืชื ื™ื ืœืชื›ื ื•ืช
01:51
that can take that sequence
43
111260
2000
ืฉื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื”ืจืฆืฃ ื”ื–ื”
01:53
and use that to fold up, or reconfigure.
44
113260
3000
ื•ืœื”ืฉืชืžืฉ ื‘ื–ื” ื›ื“ื™ ืœื”ืชืงืคืœ, ืื• ืœื”ืฉืชื ื•ืช.
01:56
We need some energy that's going to allow that to activate,
45
116260
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืกื•ื’ ืฉืœ ืื ืจื’ื™ื” ืฉืชืืคืฉืจ ืœื–ื” ืœืคืขื•ืœ,
01:59
allow our parts to be able to fold up from the program.
46
119260
3000
ืœืืคืฉืจ ืœื—ืœืงื™ื ืฉืœื ื• ืืช ื”ื™ื›ื•ืœืช ืœื”ืชืงืคืœ ืœืคื™ ื”ืชื•ื›ื ื™ืช.
02:02
And we need some type of error correction redundancy
47
122260
2000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืกื•ื’ ื›ืœืฉื”ื• ืฉืœ ื™ืชื™ืจื•ืช ื‘ืชื™ืงื•ืŸ ืฉื’ื™ืื•ืช
02:04
to guarantee that we have successfully built what we want.
48
124260
3000
ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื‘ื ื™ื ื• ื‘ื”ืฆืœื—ื” ืืช ืžื” ืฉืจืฆื™ื ื•.
02:07
So I'm going to show you a number of projects
49
127260
2000
ืื– ืื ื™ ืืจืื” ืœื›ื ื›ืžื” ืคืจื•ื™ื™ืงื˜ื™ื
02:09
that my colleagues and I at MIT are working on
50
129260
2000
ืฉืขืžื™ืชื™ื™ ื•ืื ื™ ื‘MIT ืขื•ื‘ื“ื™ื ืขืœื™ื”ื
02:11
to achieve this self-assembling future.
51
131260
2000
ื›ื“ื™ ืœื”ืฉื™ื’ ืืช ืขืชื™ื“ ื”ื”ืจื›ื‘ื” ื”ืขืฆืžื™ืช.
02:13
The first two are the MacroBot and DeciBot.
52
133260
3000
ื”ืฉื ื™ื™ื ื”ืจืืฉื•ื ื™ื ื”ื ื”ืžืืงืจื•ื‘ื•ื˜ ื•ื”ื“ืฆื™ื‘ื•ื˜.
02:16
So these projects are large-scale reconfigurable robots --
53
136260
4000
ืื– ื”ืคืจื•ื™ื™ืงื˜ื™ื ื”ืืœื” ื”ื ืจื•ื‘ื•ื˜ื™ื ื ื™ืชื ื™ื ืœืฉื™ื ื•ื™ ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ --
02:20
8 ft., 12 ft. long proteins.
54
140260
3000
ื—ืœื‘ื•ื ื™ื ื‘ืื•ืจืš 2.5 ืžื˜ืจ ื•3.5 ืžื˜ืจ.
02:23
They're embedded with mechanical electrical devices, sensors.
55
143260
3000
ืžื•ื˜ืžืขื™ื ื‘ื”ื ื—ืœืงื™ื ืžื›ืื ื™ื™ื ืืœืงื˜ืจื•ื ื™ื™ื, ืกื ืกื•ืจื™ื.
02:26
You decode what you want to fold up into,
56
146260
2000
ืืชื ืžืงื•ื“ื“ื™ื ืื™ืš ืืชื ืจื•ืฆื™ื ืฉื”ื ื™ืชืงืคืœื•,
02:28
into a sequence of angles --
57
148260
2000
ืœืชื•ืš ืจืฆืฃ ื–ื•ื™ื•ืช --
02:30
so negative 120, negative 120, 0, 0,
58
150260
2000
ืื– ืžื™ื ื•ืก 120, ืžื™ื ื•ืก 120, 0, 0,
02:32
120, negative 120 -- something like that;
59
152260
3000
120, ืžื™ื ื•ืก 120 -- ืžืฉื”ื• ื›ื–ื”;
02:35
so a sequence of angles, or turns,
60
155260
2000
ืื– ืจืฆืฃ ื–ื•ื™ื•ืช, ืื• ืคื™ืชื•ืœื™ื,
02:37
and you send that sequence through the string.
61
157260
3000
ื•ืืชื ืฉื•ืœื—ื™ื ืืช ื”ืจืฆืฃ ื”ื–ื” ื“ืจืš ืžื—ืจื•ื–ืช.
02:40
Each unit takes its message -- so negative 120 --
62
160260
3000
ื›ืœ ื™ื—ื™ื“ื” ืœื•ืงื—ืช ืืช ื”ืžืกืจ ืฉืœื” -- ืื– ืžื™ื ื•ืก 120.
02:43
it rotates to that, checks if it got there
63
163260
2000
ื”ื™ื ืžืกืชื•ื‘ื‘ืช ืœื–ื”, ื‘ื•ื“ืงืช ืื ื”ื™ื ื”ื’ื™ืขื” ืœืฉื
02:45
and then passes it to its neighbor.
64
165260
3000
ื•ืื– ืžืขื‘ื™ืจื” ืื•ืชื” ืœืฉื›ื ื” ืฉืœื”.
02:48
So these are the brilliant scientists,
65
168260
2000
ืื– ืืœื” ื”ืžื“ืขื ื™ื ื”ืžื‘ืจื™ืงื™ื,
02:50
engineers, designers that worked on this project.
66
170260
2000
ืžื”ื ื“ืกื™ื, ืžืขืฆื‘ื™ื ืฉืขื‘ื“ื• ืขืœ ื”ืคืจื•ื™ื™ืงื˜ ื”ื–ื”.
02:52
And I think it really brings to light:
67
172260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื‘ืืžืช ืžืขืœื” ืืช ื”ืฉืืœื”:
02:54
Is this really scalable?
68
174260
2000
ื”ืื ื–ื” ื‘ืืžืช ื ื™ืชืŸ ืœื”ืชืืžื” ืœืคื™ ืงื ื” ืžื™ื“ื”?
02:56
I mean, thousands of dollars, lots of man hours
69
176260
2000
ืื ื™ ืžืชื›ื•ื•ืŸ, ืืœืคื™ ื“ื•ืœืจื™ื, ื”ืžื•ืŸ ืฉืขื•ืช ืื“ื
02:58
made to make this eight-foot robot.
70
178260
3000
ื ืขืฉื• ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ืจื•ื‘ื•ื˜ ื”ื–ื”.
03:01
Can we really scale this up? Can we really embed robotics into every part?
71
181260
3000
ื”ืื ื‘ืืžืช ื ื•ื›ืœ ืœืขืœื•ืช ื‘ืงื ื” ื”ืžื™ื“ื” ื›ืœ ื›ืš ื”ืจื‘ื”? ื”ืื ื‘ืืžืช ื ื•ื›ืœ ืœื”ื˜ืžื™ืข ืจื•ื‘ื•ื˜ื™ืงื” ืœืชื•ืš ื›ืœ ื—ืœืง?
03:04
The next one questions that
72
184260
2000
ื”ืฉื ื™ ื‘ื•ื“ืง ืืช ื–ื”
03:06
and looks at passive nature,
73
186260
2000
ื•ืžื‘ื™ื˜ ื‘ื˜ื‘ืข ื”ืคืกื™ื‘ื™,
03:08
or passively trying to have reconfiguration programmability.
74
188260
3000
ืื• ื”ื ื™ืกื™ื•ืŸ ื”ืคืกื™ื‘ื™ ืœื”ื™ื•ืช ื‘ืขืœ ืชื›ื ื•ืŸ ืžื—ื“ืฉ ืชื™ื›ื ื•ืชื™.
03:11
But it goes a step further,
75
191260
2000
ืื‘ืœ ื–ื” ืžืžืฉื™ืš ืฆืขื“ ืื—ื“ ืงื“ื™ืžื”,
03:13
and it tries to have actual computation.
76
193260
2000
ื•ืžื ืกื” ืœื”ื™ื•ืช ื‘ืขืœ ื™ื›ื•ืœืช ื—ื™ืฉื•ื‘ื™ืช ืžืžืฉื™ืช.
03:15
It basically embeds the most fundamental building block of computing,
77
195260
2000
ื”ื•ื ื‘ืขืงืจื•ืŸ ืžื˜ืžื™ืข ืืช ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ื”ื‘ืกื™ืกื™ื•ืช ืฉืœ ืžื—ืฉื•ื‘,
03:17
the digital logic gate,
78
197260
2000
ื”ืฉืขืจ ื”ืœื•ื’ื™ ื”ื“ื™ื’ื™ื˜ืœื™,
03:19
directly into your parts.
79
199260
2000
ื™ืฉืจ ืœืชื•ืš ื”ื—ืœืงื™ื ืฉืœื›ื.
03:21
So this is a NAND gate.
80
201260
2000
ืื– ื–ื” ืฉืขืจ NAND.
03:23
You have one tetrahedron which is the gate
81
203260
2000
ื™ืฉ ืœื›ื ื˜ื˜ืจื”ื“ืจื•ืŸ ืื—ื“ ืฉื”ื•ื ื”ืฉืขืจ
03:25
that's going to do your computing,
82
205260
2000
ื–ื” ื™ืขืฉื” ืืช ื”ื—ื™ืฉื•ื‘ื™ื ืฉืœื›ื,
03:27
and you have two input tetrahedrons.
83
207260
2000
ื•ื™ืฉ ืœื›ื ืฉื ื™ ื˜ื˜ืจื”ื“ืจื•ื ื™ื ืœืงืœื˜.
03:29
One of them is the input from the user, as you're building your bricks.
84
209260
3000
ืื—ื“ ืžื”ื ื”ื•ื ืœืงืœื˜ ืžื”ืžืฉืชืžืฉ, ื›ืฉืืชื ื‘ื•ื ื™ื ืืช ื”ืœื‘ื ื™ื ืฉืœื›ื.
03:32
The other one is from the previous brick that was placed.
85
212260
3000
ื”ืฉื ื™ ื”ื•ื ืžื”ืœื‘ื ื” ื”ืงื•ื“ืžืช ืฉื”ื•ื ื—ื”.
03:35
And then it gives you an output in 3D space.
86
215260
3000
ื•ืื– ื”ื•ื ื ื•ืชืŸ ืœื›ื ืคืœื˜ ื‘ื—ืœืœ ื”ืชืœืช ืžื™ืžื“ื™.
03:38
So what this means
87
218260
2000
ื•ืžื” ืฉื–ื” ืื•ืžืจ
03:40
is that the user can start plugging in what they want the bricks to do.
88
220260
3000
ื–ื” ืฉื”ืžืฉืชืžืฉ ื™ื›ื•ืœ ืœื”ืชื—ื™ืœ ืœื—ื‘ืจ ื›ืœ ืžื” ืฉื™ืจืฆื• ืฉื”ืœื‘ื ื™ื ื™ืขืฉื•.
03:43
It computes on what it was doing before
89
223260
2000
ื–ื” ืžื—ืฉื‘ ืขืœ ืžื” ืฉื”ื•ื ืขืฉื” ืžืงื•ื“ื
03:45
and what you said you wanted it to do.
90
225260
2000
ื•ืžื” ืฉืืžืจืชื ืฉืืชื ืจื•ืฆื™ื ืฉื”ื•ื ื™ืขืฉื”.
03:47
And now it starts moving in three-dimensional space --
91
227260
2000
ื•ืขื›ืฉื™ื• ื”ื•ื ืžืชื—ื™ืœ ืœื–ื•ื– ื‘ื—ืœืœ ื”ืชืœืช ืžื™ืžื“ื™ --
03:49
so up or down.
92
229260
2000
ืื– ืœืžืขืœื” ืื• ืœืžื˜ื”.
03:51
So on the left-hand side, [1,1] input equals 0 output, which goes down.
93
231260
3000
ืื– ืžืฉืžืืœ,ืงืœื˜ ืฉืœ [1,1] ืฉื•ื•ื” ืœื™ืฆื™ืื” 0, ืฉื™ื•ืจื“ ืœืžื˜ื”.
03:54
On the right-hand side,
94
234260
2000
ืžื™ืžื™ืŸ,
03:56
[0,0] input is a 1 output, which goes up.
95
236260
3000
ืงืœื˜ ืฉืœ [0,0] ื–ื• ื™ืฆื™ืื” 1, ืฉืขื•ืœื” ืœืžืขืœื”.
03:59
And so what that really means
96
239260
2000
ืื– ืžื” ืฉื–ื” ื‘ืืžืช ืื•ืžืจ
04:01
is that our structures now contain the blueprints
97
241260
2000
ื–ื” ืฉื”ืžื‘ื ื” ืฉืœื ื• ืขื›ืฉื™ื• ืžื›ื™ืœ ืืช ื”ืชื•ื›ื ื™ื•ืช
04:03
of what we want to build.
98
243260
2000
ืฉืœ ืžื” ืฉื”ื•ื ืืžื•ืจ ืœื‘ื ื•ืช.
04:05
So they have all of the information embedded in them of what was constructed.
99
245260
3000
ืื– ื™ืฉ ืœื”ื ืืช ื›ืœ ื”ืžื™ื“ืข ืžื•ื˜ืžืข ื‘ื”ื ืฉืœ ืžื” ื ื‘ื ื”.
04:08
So that means that we can have some form of self-replication.
100
248260
3000
ื•ื–ื” ืื•ืžืจ ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืœื ื• ืกื•ื’ ืฉืœ ืฉื™ื›ืคื•ืœ ืขืฆืžื™.
04:11
In this case I call it self-guided replication,
101
251260
3000
ื‘ืžืงืจื” ื”ื–ื” ืื ื™ ืงื•ืจื” ืœื–ื” ืฉื™ื›ืคื•ืœ ืžื•ื ื—ื”-ืขืฆืžื™,
04:14
because your structure contains the exact blueprints.
102
254260
2000
ืžืคื ื™ ืฉื”ืžื‘ื ื” ืฉืœื›ื ื›ื•ืœืœ ืืช ื”ืชื•ื›ื ื™ื•ืช ื”ืžื“ื•ื™ื™ืงื•ืช.
04:16
If you have errors, you can replace a part.
103
256260
2000
ืื ื™ืฉ ืœื›ื ืฉื’ื™ืื•ืช, ืืชื ื™ื›ื•ืœื™ื ืœื”ื—ืœื™ืฃ ื—ืœืง.
04:18
All the local information is embedded to tell you how to fix it.
104
258260
3000
ื›ืœ ื”ืžื™ื“ืข ื”ืžืงื•ืžื™ ืžื•ื˜ืžืข ื›ื“ื™ ืœื”ื’ื™ื“ ืื™ืš ืœืชืงืŸ ืื•ืชื•.
04:21
So you could have something that climbs along and reads it
105
261260
2000
ืื– ื™ื›ื•ืœ ืœื”ื™ื•ืช ืœื›ื ืžืฉื”ื• ืฉืžื˜ืคืก ื•ืงื•ืจื ืืช ื–ื”
04:23
and can output at one to one.
106
263260
2000
ื•ื™ื›ื•ืœ ืœื‘ืฆืข ืื—ื“ ืœืื—ื“.
04:25
It's directly embedded; there's no external instructions.
107
265260
2000
ื–ื” ืžื•ื˜ืžืข ื™ืฉื™ืจื•ืช; ืื™ืŸ ืคืงื•ื“ื•ืช ื—ื™ืฆื•ื ื™ื•ืช.
04:27
So the last project I'll show is called Biased Chains,
108
267260
3000
ืื– ื”ืคืจื•ื™ื™ืงื˜ ื”ืื—ืจื•ืŸ ืฉืื ื™ ืืจืื” ืœื›ื ื ืงืจื ืฉืจืฉืจืื•ืช ืžื•ื˜ื•ืช,
04:30
and it's probably the most exciting example that we have right now
109
270260
3000
ื•ื–ื” ื›ื ืจืื” ื”ื“ื•ื’ืžื” ื”ื›ื™ ืžืจื’ืฉืช ืฉื™ืฉ ืœื ื• ื›ืจื’ืข
04:33
of passive self-assembly systems.
110
273260
2000
ืฉืœ ืžืขืจื›ื•ืช ื”ืจื›ื‘ื” ืขืฆืžื™ืช ืคืืกื™ื‘ื™ืช.
04:35
So it takes the reconfigurability
111
275260
2000
ืื– ื–ื” ืœื•ืงื— ืืช ื™ื›ื•ืœืช ื”ืกื™ื“ื•ืจ ืžื—ื“ืฉ
04:37
and programmability
112
277260
2000
ื•ื”ืชื™ื›ื ื•ืช
04:39
and makes it a completely passive system.
113
279260
3000
ื•ื”ื•ืคืš ืืช ื–ื” ืœืžืขืจื›ืช ืคืืกื™ื‘ื™ืช ืœื’ืžืจื™.
04:43
So basically you have a chain of elements.
114
283260
2000
ืื– ื‘ืขื™ืงืจื•ืŸ ื™ืฉ ืœื›ื ืฉืจืฉืจืช ืืœืžื ื˜ื™ื.
04:45
Each element is completely identical,
115
285260
2000
ื›ืœ ืืœืžื ื˜ ื–ื”ื” ืœื—ืœื•ื˜ื™ืŸ ืœืื—ืจื™ื,
04:47
and they're biased.
116
287260
2000
ื•ื”ื ืžื•ื˜ื™ื.
04:49
So each chain, or each element, wants to turn right or left.
117
289260
3000
ื›ืš ืฉื›ืœ ืฉืจืฉืจืช, ืื• ื›ืœ ืืœืžื ื˜, ืจื•ืฆื” ืœื”ืกืชื•ื‘ื‘ ื™ืžื™ื ื” ืื• ืฉืžืืœื”.
04:52
So as you assemble the chain, you're basically programming it.
118
292260
3000
ืื– ื›ืฉืืชื ืžืจื›ื™ื‘ื™ื ืืช ื”ืฉืจืฉืจืช, ืืชื ื‘ืขืฆื ืžืชื›ื ืชื™ื ืื•ืชื”.
04:55
You're telling each unit if it should turn right or left.
119
295260
3000
ืืชื ืื•ืžืจื™ื ืœื›ืœ ื™ื—ื™ื“ื” ืื ื”ื™ื ืฆืจื™ื›ื” ืœื”ืกืชื•ื‘ื‘ ื™ืžื™ื ื” ืื• ืฉืžืืœื”.
04:58
So when you shake the chain,
120
298260
3000
ื›ืš ืฉื›ืฉืืชื ืžื ืขืจื™ื ืืช ื”ืฉืจืฉืจืช,
05:01
it then folds up
121
301260
2000
ื”ื™ื ืžืชืงืคืœืช
05:03
into any configuration that you've programmed in --
122
303260
3000
ืœืฆื•ืจื” ืฉืชื›ื ืชื ืื•ืชื” ืืœื™ื” --
05:06
so in this case, a spiral,
123
306260
2000
ืื– ื‘ืžืงืจื” ื–ื”, ืกืคื™ืจืœื”,
05:08
or in this case,
124
308260
3000
ืื• ื‘ืžืงืจื” ื–ื”,
05:11
two cubes next to each other.
125
311260
3000
ืฉืชื™ ืงื•ื‘ื™ื•ืช ืื—ืช ืœื™ื“ ื”ืฉื ื™ื”.
05:14
So you can basically program
126
314260
2000
ืื– ืืชืื‘ืขืฆื ื™ื›ื•ืœื™ื ืœืชื›ื ืช
05:16
any three-dimensional shape --
127
316260
2000
ื›ืœ ืฆื•ืจื” ืชืœืช ืžื™ืžื“ื™ืช --
05:18
or one-dimensional, two-dimensional -- up into this chain completely passively.
128
318260
3000
ืื• ื—ื“ ืžื™ืžื“ื™ืช, ื“ื• ืžื™ืžื“ื™ืช -- ืœืชื•ืš ื”ืฉืจืฉืจืช ื‘ืฆื•ืจื” ืคืืกื™ื‘ื™ืช ืœื’ืžืจื™.
05:21
So what does this tell us about the future?
129
321260
2000
ืื– ืžื” ื–ื” ืื•ืžืจ ืœื ื• ืขืœ ื”ืขืชื™ื“?
05:23
I think that it's telling us
130
323260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืื•ืžืจ ืœื ื•
05:25
that there's new possibilities for self-assembly, replication, repair
131
325260
3000
ืฉื™ืฉ ืืคืฉืจื•ื™ื•ืช ื—ื“ืฉื•ืช ืœื”ืจื›ื‘ื” ืขืฆืžื™ืช, ืฉื™ื›ืคื•ืœ, ืชื™ืงื•ืŸ
05:28
in our physical structures, our buildings, machines.
132
328260
3000
ื‘ืžื‘ื ื” ื”ืคื™ืกื™ ืฉืœื ื•, ื‘ื‘ื ื™ื™ื ื™ื ืฉืœื ื•, ื‘ืžื›ื•ื ื•ืช.
05:31
There's new programmability in these parts.
133
331260
2000
ื™ืฉ ื™ื›ื•ืœืช ืชื™ื›ื ื•ืช ื‘ื—ืœืงื™ื ื”ืืœื”.
05:33
And from that you have new possibilities for computing.
134
333260
2000
ื•ืžื–ื” ื™ืฉ ืœื›ื ืืคืฉืจื•ื™ื•ืช ื—ื“ืฉื•ืช ืœื—ื™ืฉื•ื‘.
05:35
We'll have spatial computing.
135
335260
2000
ื™ื”ื™ื” ืœื ื• ื—ื™ืฉื•ื‘ ืžื™ืžื“ื™.
05:37
Imagine if our buildings, our bridges, machines,
136
337260
2000
ื“ืžื™ื™ื ื• ืื ื”ื‘ื ื™ื™ื ื™ื ืฉืœื ื•, ื”ื’ืฉืจื™ื ืฉืœื ื•, ื”ืžื›ื•ื ื•ืช,
05:39
all of our bricks could actually compute.
137
339260
2000
ื›ืœ ื”ืœื‘ื ื™ื ืฉืœื ื• ื™ื•ื›ืœื• ืœื—ืฉื‘.
05:41
That's amazing parallel and distributed computing power,
138
341260
2000
ื–ื” ื›ื•ื— ื—ื™ืฉื•ื‘ ืžืงื‘ื™ืœื™ ื•ืžื‘ื•ื–ืจ ืžื“ื”ื™ื,
05:43
new design possibilities.
139
343260
2000
ืืคืฉืจื•ื™ื•ืช ืขื™ืฆื•ื‘ ื—ื“ืฉื•ืช.
05:45
So it's exciting potential for this.
140
345260
2000
ืื– ื™ืฉ ืœื–ื” ืคื•ื˜ื ืฆื™ืืœ ืžืจื’ืฉ.
05:47
So I think these projects I've showed here
141
347260
2000
ืื– ืื ื™ ื—ื•ืฉื‘ ืฉื”ืคืจื•ื™ื™ืงื˜ื™ื ืฉื”ืจืืชื™ ืœื›ื
05:49
are just a tiny step towards this future,
142
349260
2000
ื”ื ืจืง ืฆืขื“ ืงื˜ื ื˜ืŸ ืœื›ื™ื•ื•ืŸ ื”ืขืชื™ื“ ื”ื–ื”,
05:51
if we implement these new technologies
143
351260
2000
ืื ื ื™ื™ืฉื ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ื—ื“ืฉื•ืช ื”ืืœื•
05:53
for a new self-assembling world.
144
353260
2000
ืœืขื•ืœื ื—ื“ืฉ ืฉืžืจื›ื™ื‘ ืืช ืขืฆืžื•.
05:55
Thank you.
145
355260
2000
ืชื•ื“ื” ืœื›ื.
05:57
(Applause)
146
357260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7