Could an Orca Give a TED Talk? | Karen Bakker | TED

117,305 views ใƒป 2023-07-18

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: zeeva livshitz
00:04
So we're in the middle of a fierce debate
0
4334
2419
ืื ื—ื ื• ื‘ืขื™ืฆื•ืžื• ืฉืœ ื•ื™ื›ื•ื— ืขื–
00:06
about how artificial intelligence will change human society.
1
6753
3879
ืขืœ ืื™ืš ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืชืฉื ื” ืืช ื”ื—ื‘ืจื” ื”ืื ื•ืฉื™ืช.
00:10
But have you thought about how AI will transform
2
10674
2627
ืื‘ืœ ื”ืื ื—ืฉื‘ืชื ืขืœ ืื™ืš AI ืชืฉื ื”
00:13
your relationship to the non-human world?
3
13343
3295
ืืช ืžืขืจื›ืช ื”ื™ื—ืกื™ื ืฉืœื›ื ืขื ื”ืขื•ืœื ื”ืœื-ืื ื•ืฉื™
00:17
So these are bioacoustic recorders.
4
17264
2252
ืื– ืืœื” ื”ื ืžืงืœื™ื˜ื™ื ื‘ื™ื•ืืงื•ืกื˜ื™ื™ื.
00:19
And I've spent years studying how scientists use devices like this,
5
19558
4838
ื•ืื ื™ ื‘ื™ืœื™ืชื™ ืฉื ื™ื ื‘ืœืžื™ื“ื” ืื™ืš ืžื“ืขื ื™ื ืžืฉืชืžืฉื™ื ื‘ืžื›ืฉื™ืจื™ื ื›ืืœื”,
00:24
combined with AI,
6
24437
1919
ื‘ืฉื™ืœื•ื‘ ืขื AI,
00:26
to listen to the hidden sounds of nature
7
26398
1918
ืœื”ืงืฉื™ื‘ ืœืงื•ืœื•ืช ื”ื ืกืชืจื™ื ืฉืœ ื”ื˜ื‘ืข
00:28
and decode non-human communication.
8
28358
2920
ื•ืœืคืขื ื— ืชืงืฉื•ืจืช ืœื ืื ื•ืฉื™ืช.
00:31
Hidden sounds,
9
31820
1168
ืฆืœื™ืœื™ื ื ืกืชืจื™ื,
00:33
because much acoustic communication in nature
10
33029
3254
ื›ื™ ื™ืฉ ื”ืจื‘ื” ืชืงืฉื•ืจืช ืืงื•ืกื˜ื™ืช ื‘ื˜ื‘ืข
00:36
occurs in the high ultrasound, above your hearing range,
11
36324
4088
ืฉืžืชืจื—ืฉืช ื‘ืื•ืœื˜ืจืกืื•ื ื“ ื’ื‘ื•ื”, ืžืขืœ ื˜ื•ื•ื— ื”ืฉืžื™ืขื” ืฉืœื›ื,
00:40
or in the deep infrasound, below your hearing range.
12
40453
4380
ืื• ื‘ืื™ื ืคืจืกืื•ื ื“ ื”ืขืžื•ืง, ืžืชื—ืช ืœื˜ื•ื•ื— ื”ืฉืžื™ืขื” ืฉืœื›ื.
00:45
So I'm going to play a sound.
13
45417
1543
ืื– ืื ื™ ื”ื•ืœื›ืช ืœื”ืฉืžื™ืข ืฆืœื™ืœ.
00:47
I want you to listen and try to guess who or what this is.
14
47002
5213
ืื ื™ ืจื•ืฆื” ืฉืชืงืฉื™ื‘ื• ื•ืชื ืกื• ืœื ื—ืฉ ืžื™ ืื• ืžื” ื–ื”.
00:53
(Chirping sound)
15
53216
2961
(ืงื•ืœ ืฆื™ื•ืฅ)
01:01
So that was a bat.
16
61808
1293
ืื– ื–ื” ื”ื™ื” ืขื˜ืœืฃ.
01:03
That was bat ultrasound, recorded above your hearing range,
17
63143
3253
ื–ื” ื”ื™ื” ืื•ืœื˜ืจืกืื•ื ื“ ืขื˜ืœืคื™ื, ืžื•ืงืœื˜ ืžืขืœ ื˜ื•ื•ื— ื”ืฉืžื™ืขื” ืฉืœื›ื,
01:06
but slowed down so you could hear.
18
66396
2377
ืื‘ืœ ืžื•ืื˜ ื›ื“ื™ ืฉืชื•ื›ืœื• ืœืฉืžื•ืข.
01:09
So that was an advertisement call from the peak of the mating season.
19
69274
3462
ืื– ื–ื• ื”ื™ื™ืชื” ืงืจื™ืืช ื”ื›ืจื–ื” ืžืฉื™ื ืขื•ื ืช ื”ื”ื–ื“ื•ื•ื’ื•ืช.
01:12
Scientists can decode these calls,
20
72777
2962
ืžื“ืขื ื™ื ื™ื›ื•ืœื™ื ืœืคืขื ื— ืืช ื”ืฉื™ื—ื•ืช ื”ืืœื”,
01:15
so a sample bat to English translation would be, and I quote,
21
75739
5046
ืื– ื“ื•ื’ืžื” ื‘ืช ืชืจื’ื•ื ืœืื ื’ืœื™ืช ืชื”ื™ื”, ื•ืื ื™ ืžืฆื˜ื˜ืช,
01:20
"Pay attention.
22
80827
1168
โ€œืฉื™ืžื• ืœื‘.
01:22
I'm a Pipistrellus nathusii bat, specifically male.
23
82037
2836
ืื ื™ ืขื˜ืœืคื•ืŸ Pipistrellus nathusii, ื–ื›ืจ ื‘ืžืคื•ืจืฉ.
01:24
My name is X. I am landing here
24
84914
2628
ืฉืžื™ X. ืื ื™ ื ื•ื—ืช ื›ืืŸ
01:27
and we share a common social identity and common communication pool."
25
87542
3754
ื•ืื ื—ื ื• ื—ื•ืœืงื™ื ื–ื”ื•ืช ื—ื‘ืจืชื™ืช ืžืฉื•ืชืคืช ื•ืžืื’ืจ ืชืงืฉื•ืจืช ืžืฉื•ืชืฃโ€œ.
01:31
For a pickup line by a bat, not bad.
26
91755
2544
ืขื‘ื•ืจ ืžืฉืคื˜ ืคืชื™ื—ื” ืฉืœ ืขื˜ืœืฃ, ื–ื” ืœื ืจืข.
01:34
(Laughter)
27
94341
1835
(ืฆื—ื•ืง)
01:36
So scientists have recorded millions of bat vocalizations like this
28
96217
4130
ืื– ืžื“ืขื ื™ื ื”ืงืœื™ื˜ื• ืžื™ืœื™ื•ื ื™ื ืฉืœ ืงื•ืœื•ืช ืขื˜ืœืคื™ื ื›ืืœื”
01:40
and they've decoded many of them using AI.
29
100388
2628
ื•ื”ื ืคืขื ื—ื• ืจื‘ื™ื ืžื”ื ื‘ืืžืฆืขื•ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
01:43
And they've revealed that bats have dialects
30
103058
2919
ื•ื”ื ื’ื™ืœื• ืฉืœืขื˜ืœืคื™ื ื™ืฉ ื“ื™ืืœืงื˜ื™ื
01:45
that they pass down from one generation to the next,
31
105977
2753
ืฉื”ื ืžืขื‘ื™ืจื™ื ืžื“ื•ืจ ืœื“ื•ืจ,
01:48
and that baby bats learn to speak just like you did,
32
108730
3086
ื•ืฉืขื˜ืœืฃ ืชื™ื ื•ืง ืœื•ืžื“ ืœื“ื‘ืจ ื‘ื“ื™ื•ืง ื›ืคื™ ืฉืืชื ืœืžื“ืชื,
01:51
by listening to the adults around them
33
111858
2211
ืขืœ ื™ื“ื™ ื”ืงืฉื‘ื” ืœืžื‘ื•ื’ืจื™ื ืกื‘ื™ื‘ื
01:54
and babbling back until they speak adult bat.
34
114110
3879
ื•ื”ื ืžืงืฉืงืฉื™ื ื‘ื—ื–ืจื” ืขื“ ืฉื”ื ืžื“ื‘ืจื™ื ืขื˜ืœืคื™ืช ืžื‘ื•ื’ืจืช.
01:58
So bats have far more complex communication than we knew,
35
118698
2711
ืื– ืœืขื˜ืœืคื™ื ื™ืฉ ืชืงืฉื•ืจืช ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ืช ืžืžื” ืฉื”ื›ืจื ื•,
02:01
and they're only one of many examples.
36
121409
2294
ื•ื”ื ืจืง ื“ื•ื’ืžื ืื—ืช ืžื™ื ื™ ืจื‘ื•ืช.
02:03
Listen to this.
37
123703
1710
ื”ืงืฉื™ื‘ื• ืœื–ื”.
02:06
(Melodic chirping sounds)
38
126331
3378
(ืฆืœื™ืœื™ ืฆื™ื•ืฅ ืžืœื•ื“ื™ื™ื)
02:14
So those are orcas who live right here in the Salish Sea.
39
134172
3420
ืื– ืืœื” ืื•ืจืงื•ืช ืฉื—ื™ื•ืช ืžืžืฉ ื›ืืŸ ื‘ื™ื ืกืืœื™ืฉ.
02:18
Scientists can decode individual orca calls using AI
40
138009
3170
ืžื“ืขื ื™ื ื™ื›ื•ืœื™ื ืœืคืขื ื— ืงืจื™ืื•ืช ืื•ืจืงื” ื‘ื•ื“ื“ื•ืช ื‘ืืžืฆืขื•ืช AI
02:21
and they've revealed that orcas also pass down their dialects
41
141221
3086
ื•ื”ื ื’ื™ืœื• ืฉืื•ืจืงื•ืช ื’ื ืžืขื‘ื™ืจื•ืช ืืช ื”ื“ื™ืืœืงื˜ื™ื ืฉืœื”ื
02:24
from one generation to the next.
42
144349
1918
ืžื“ื•ืจ ืœื“ื•ืจ.
02:26
So it turns out
43
146768
1168
ืื– ืžืกืชื‘ืจ
02:27
that orcas and bats are not the only creatures that make ultrasound.
44
147936
3879
ืฉืื•ืจืงื•ืช ื•ืขื˜ืœืคื™ื ื”ื ืœื ื”ื™ืฆื•ืจื™ื ื”ื™ื—ื™ื“ื™ื ืฉืขื•ืฉื™ื ืื•ืœื˜ืจืกืื•ื ื“.
02:31
Moths, mice, beetles, rats.
45
151815
3420
ืขืฉ, ืขื›ื‘ืจื™ื, ื—ื™ืคื•ืฉื™ื•ืช, ื—ื•ืœื“ื•ืช.
02:35
Even some of our smaller primate cousins like this tarsier.
46
155235
4337
ืืคื™ืœื• ื›ืžื” ืžื”ืคืจื™ืžื˜ื™ื ื”ืงื˜ื ื™ื ืฉืœื ื• ื‘ื ื™ ื“ื•ื“ื™ื ื›ืžื• ื”ื˜ืจืกื™ื•ืกื™ ื”ื–ื”.
02:39
At the other end, in the deep infrasound,
47
159572
3170
ื‘ืงืฆื” ื”ืฉื ื™, ื‘ืื™ื ืคืจืกืื•ื ื“ ื”ืขืžื•ืง,
02:42
elephants and whales,
48
162742
1585
ืคื™ืœื™ื ื•ืœื•ื•ื™ื™ืชื ื™ื,
02:44
tigers and some birds make sound.
49
164327
3253
ื ืžืจื™ื ื•ื›ืžื” ืฆื™ืคื•ืจื™ื ืžืฉืžื™ืขื™ื ืงื•ืœ.
02:48
So when we first learned about these secret sounds of the world,
50
168456
3128
ืื– ื›ืืฉืจ ืœืžื“ื ื• ืœืจืืฉื•ื ื” ืขืœ ืฆืœื™ืœื™ื ืกื•ื“ื™ื™ื ืืœื” ืฉืœ ื”ืขื•ืœื,
02:51
we're often surprised because humans tend to believe
51
171584
3212
ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืื ื• ืžื•ืคืชืขื™ื ื›ื™ ื‘ื ื™ ืื“ื ื ื•ื˜ื™ื ืœื”ืืžื™ืŸ
02:54
that what we cannot perceive does not exist.
52
174796
3211
ืฉืžื” ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืชืคื•ืก ืœื ืงื™ื™ื.
02:58
And so we miss a lot.
53
178591
1710
ื•ื›ืš ืื ื—ื ื• ืžื—ืžื™ืฆื™ื ื”ืจื‘ื”.
03:00
One of my favorite examples is this peacock.
54
180844
2711
ืื—ืช ื”ื“ื•ื’ืžืื•ืช ื”ืื”ื•ื‘ื•ืช ืขืœื™ ื”ื™ื ื”ื˜ื•ื•ืก ื”ื–ื”.
03:03
So to you, this looks like a visual mating display.
55
183596
2753
ืื– ืœื›ื, ื–ื” ื ืจืื” ื›ืžื• ืชืฆื•ื’ืช ื”ื–ื“ื•ื•ื’ื•ืช ื—ื–ื•ืชื™ืช.
03:06
And it is.
56
186391
1126
ื•ื–ื” ื–ื”.
03:07
But this peacock is also making very loud infrasound with its tail,
57
187851
4379
ืื‘ืœ ื”ื˜ื•ื•ืก ื”ื–ื” ื’ื ืขื•ืฉื” ืื™ื ืคืจืกืื•ื ื“ ื—ื–ืง ืžืื•ื“ ืขื ื”ื–ื ื‘,
03:12
which you cannot hear, but female peahens can.
58
192230
3795
ืฉืืชื ืœื ื™ื›ื•ืœื™ื ืœืฉืžื•ืข, ืื‘ืœ ื ืงื‘ื•ืช ื˜ื•ื•ืกื™ื ื™ื›ื•ืœื•ืช.
03:16
And it is an important factor in their mating decisions.
59
196067
3545
ื•ื–ื” ื’ื•ืจื ื—ืฉื•ื‘ ื‘ื”ื—ืœื˜ื•ืช ื”ื–ื•ื’ื™ื•ืช ืฉืœื”ื.
03:19
So this peacock is giving a rock concert.
60
199612
3003
ืื– ื”ื˜ื•ื•ืก ื”ื–ื” ื ื•ืชืŸ ืงื•ื ืฆืจื˜ ืจื•ืง.
03:22
(Laughter)
61
202615
1168
(ืฆื—ื•ืง)
03:24
Now, we have lived with peacocks for millennia,
62
204159
2419
ื—ื™ื™ื ื• ืขื ื˜ื•ื•ืกื™ื ื‘ืžืฉืš ืืœืคื™ ืฉื ื™ื,
03:26
but we only just figured this out.
63
206619
2378
ืื‘ืœ ืจืง ืขื›ืฉื™ื• ื”ื‘ื ื• ืืช ื–ื”.
03:29
Scientists also used to think that turtles were voiceless
64
209873
3879
ืžื“ืขื ื™ื ื’ื ื ื”ื’ื• ืœื—ืฉื•ื‘ ืฉืฆื‘ื™ื ื”ื™ื• ื—ืกืจื™ ืงื•ืœ
03:33
and mother turtles abandoned their nests after laying their eggs.
65
213793
4421
ื•ืฉืืžื”ื•ืช ืฆื‘ื™ื ื ื˜ืฉื• ืืช ื”ืงื™ื ื™ื ืฉืœื”ืŸ ืœืื—ืจ ื”ื˜ืœืช ื”ื‘ื™ืฆื™ื.
03:38
But we've just discovered that baby Amazonian turtles
66
218256
4087
ืื‘ืœ ื–ื” ืขืชื” ื’ื™ืœื™ื ื• ืฉืชื™ื ื•ืงื•ืช ืฆื‘ื™ ื”ืืžื–ื•ื ืก
03:42
communicate through their shells before they hatch
67
222385
3504
ืžืชืงืฉืจื™ื ื“ืจืš ื”ืงืœื™ืคื•ืช ืฉืœื”ื ืœืคื ื™ ืฉื”ื ื‘ื•ืงืขื™ื
03:45
to coordinate the moment of their birth
68
225930
1961
ื›ื“ื™ ืœืชืื ืืช ืจื’ืข ืœื™ื“ืชื
03:47
and then follow their mother's calls to safety in the water.
69
227891
3670
ื•ืื– ืขื•ืงื‘ื™ื ืื—ืจ ืงืจื™ืื•ืช ืืžื ืœื‘ื˜ื™ื—ื•ืช ื‘ืžื™ื.
03:53
Even creatures without ears are exquisitely sensitive to sound.
70
233605
4045
ืืคื™ืœื• ื™ืฆื•ืจื™ื ื‘ืœื™ ืื•ื–ื ื™ื™ื ืจื’ื™ืฉื™ื ืœื”ืคืœื™ื ืœืฆืœื™ืœ.
03:57
So this is a coral larva.
71
237650
2002
ืื– ื–ื”ื• ื–ื—ืœ ืืœืžื•ื’ื™ื.
04:00
When coral larvae are born, usually at a mass spawning event
72
240111
3170
ื›ืืฉืจ ื–ื—ืœื™ ืืœืžื•ื’ื™ื ื ื•ืœื“ื™ื, ื‘ื“ืจืš ื›ืœืœ ื‘ืื™ืจื•ืข ื”ื˜ืœื” ื”ืžื•ื ื™
04:03
a few days after the full moon, they wash out to sea.
73
243323
3086
ื›ืžื” ื™ืžื™ื ืื—ืจื™ ื”ื™ืจื— ื”ืžืœื, ื”ื ื ืฉื˜ืคื™ื ืœื™ื.
04:07
So scientists used to think that these little larvae,
74
247160
2669
ืื– ืžื“ืขื ื™ื ื ื”ื’ื• ืœื—ืฉื•ื‘ ืฉื”ื–ื—ืœื™ื ื”ืงื˜ื ื™ื ื”ืืœื”,
04:09
these tiny dots that you see here,
75
249871
1752
ื”ื ืงื•ื“ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ,
04:11
were helpless, randomly pushed around by wind and waves and currents.
76
251664
4964
ื”ื™ื• ื—ืกืจื™ ืื•ื ื™ื, ืฉื ื“ื—ืคื™ื ื‘ืืงืจืื™ ืขืœ ื™ื“ื™ ืจื•ื— ื•ื’ืœื™ื ื•ื–ืจืžื™ื.
04:16
But it turns out that coral larvae are acoustically attuned.
77
256669
3587
ืื‘ืœ ืžืกืชื‘ืจ ืฉื–ื—ืœื™ ื”ืืœืžื•ื’ื™ื ืžื›ื•ื•ื ื™ื ืืงื•ืกื˜ื™ืช.
04:20
They can hear the sounds of healthy reefs.
78
260298
2920
ื”ื ื™ื›ื•ืœื™ื ืœืฉืžื•ืข ืืช ื”ืงื•ืœื•ืช ืฉืœ ืฉื•ื ื™ื•ืช ื‘ืจื™ืื•ืช.
04:23
They can hear the sound of their home reef, their mother reef,
79
263259
3337
ื”ื ื™ื›ื•ืœื™ื ืœืฉืžื•ืข ืืช ื”ืฆืœื™ืœ ืฉืœ ื”ืฉื•ื ื™ืช ื”ื‘ื™ืชื™ืช ืฉืœื”ื, ืฉื•ื ื™ืช ื”ืื ืฉืœื”ื,
04:26
and they swim back home across miles of open ocean.
80
266638
3545
ื•ื”ื ืฉื•ื—ื™ื ื—ื–ืจื” ื”ื‘ื™ืชื” ืขืœ ืคื ื™ ืงื™ืœื•ืžื˜ืจื™ื ืฉืœ ืื•ืงื™ื™ื ื•ืก ืคืชื•ื—.
04:30
So these are tiny creatures with no central nervous system.
81
270225
4921
ืื– ืืœื• ื”ื ื™ืฆื•ืจื™ื ื–ืขื™ืจื™ื ืœืœื ืžืขืจื›ืช ืขืฆื‘ื™ื ืžืจื›ื–ื™ืช.
04:35
But we think they do that with these hairs
82
275188
2169
ืื‘ืœ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื ืขื•ืฉื™ื ืืช ื–ื” ืขื ื”ืฉืขืจื•ืช ื”ืืœื”
04:37
that you see on the outside of their bodies.
83
277398
2336
ืฉืืชื ืจื•ืื™ื ื‘ื—ืœืง ื”ื—ื™ืฆื•ื ื™ ืฉืœ ื’ื•ืคื.
04:39
They're a lot like the hairs inside your ears
84
279734
2377
ื”ืŸ ื“ื•ืžื•ืช ืžืื•ื“ ืœืฉืขืจื•ืช ืฉื‘ืชื•ืš ื”ืื•ื–ื ื™ื™ื ืฉืœื›ื
04:42
that are enabling you to listen to me right now,
85
282153
3212
ืฉืžืืคืฉืจื•ืช ืœื›ื ืœื”ืงืฉื™ื‘ ืœื™ ืขื›ืฉื™ื•,
04:45
so you can think of a coral larva a little bit like an inside-out ear,
86
285406
5214
ืื– ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ื–ื—ืœ ืืœืžื•ื’ื™ื ืงืฆืช ื›ืžื• ืขืœ ืื•ื–ืŸ ืžื‘ืคื ื™ื ื”ื—ื•ืฆื”,
04:50
except that its sense of hearing is profoundly more sensitive than your own
87
290662
4421
ืืœื ืฉื—ื•ืฉ ื”ืฉืžื™ืขื” ืฉืœื• ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืจื’ื™ืฉ ืžืฉืœื›ื
04:55
because they hear with their entire bodies.
88
295124
3295
ื›ื™ ื”ื ืฉื•ืžืขื™ื ืขื ื›ืœ ื’ื•ืคื.
04:59
Even our planet makes sound.
89
299462
2628
ืืคื™ืœื• ื”ืคืœื ื˜ื” ืฉืœื ื• ืžืฉืžื™ืขื” ืงื•ืœ.
05:02
Volcanoes, earthquakes sound so low and strong and powerful,
90
302131
4588
ื”ืจื™ ื’ืขืฉ, ืจืขื™ื“ื•ืช ืื“ืžื” ื ืฉืžืขื™ื ื›ืœ ื›ืš ื ืžื•ืš ื•ื—ื–ืง ื•ืขื•ืฆืžืชื™,
05:06
they travel very far,
91
306761
1960
ื”ื ื ืขื™ื ืจื—ื•ืง ืžืื•ื“,
05:08
passing through soil and stone and even solid walls.
92
308721
4004
ืขื•ื‘ืจื™ื ื“ืจืš ืื“ืžื” ื•ืื‘ืŸ ื•ืืคื™ืœื• ืงื™ืจื•ืช ืžื•ืฆืงื™ื.
05:12
Listen to this hydrothermal vent deep under the ocean.
93
312767
4880
ื”ืงืฉื™ื‘ื• ืœื ื‘ื™ืขื” ื”ื™ื“ืจื•ืชืจืžื™ืช ื–ื• ืขืžื•ืง ืžืชื—ืช ืœืื•ืงื™ื™ื ื•ืก.
05:19
(Deep, rhythmic hum)
94
319274
6089
(ื–ืžื–ื•ื ืขืžื•ืง ื•ืงืฆื‘ื™)
05:30
So in nature, sound is everywhere and silence is an illusion.
95
330368
5923
ืื– ื‘ื˜ื‘ืข, ื”ืฆืœื™ืœ ื ืžืฆื ื‘ื›ืœ ืžืงื•ื ื•ื”ืฉืงื˜ ื”ื•ื ืืฉืœื™ื”.
05:37
So scientists are also listening to the vast extent
96
337500
3921
ืื– ื’ื ืžื“ืขื ื™ื ืžืงืฉื™ื‘ื™ื ืœื”ื™ืงืฃ ื”ืขืฆื•ื
05:41
of interspecies communication.
97
341462
2753
ืฉืœ ืชืงืฉื•ืจืช ื‘ื™ืŸ ื”ืžื™ื ื™ื.
05:44
So this bat is using ultrasound to hunt this moth.
98
344674
3879
ืื– ื”ืขื˜ืœืฃ ื”ื–ื” ืžืฉืชืžืฉ ื‘ืื•ืœื˜ืจืกืื•ื ื“ ื›ื“ื™ ืœืฆื•ื“ ืืช ื”ืขืฉ ื”ื–ื”.
05:48
Its echolocation beam is locked onto its prey,
99
348595
3545
ืืœื•ืžืช ื”ื”ื“ ืฉืœื• ื ื ืขืœืช ืขืœ ื”ื˜ืจืฃ ืฉืœื•,
05:52
but the moth is also emitting ultrasound.
100
352181
2628
ืื‘ืœ ื’ื ื”ืขืฉ ืคื•ืœื˜ ืื•ืœื˜ืจืกืื•ื ื“.
05:54
It's jamming the bat sonar in an attempt to escape.
101
354851
4337
ื”ื•ื ืชื•ืงืข ืืช ืกื•ื ืืจ ื”ืขื˜ืœืฃ ื‘ื ื™ืกื™ื•ืŸ ืœื‘ืจื•ื—.
06:00
This plant is also emitting ultrasound, which varies depending on its condition.
102
360189
4964
ื”ืฆืžื— ื”ื–ื” ื’ื ืคื•ืœื˜ ืื•ืœื˜ืจืกืื•ื ื“, ืฉืžืฉืชื ื” ื‘ื”ืชืื ืœืžืฆื‘ื•.
06:05
Scientists have trained an algorithm to listen to this plant.
103
365153
4629
ืžื“ืขื ื™ื ืื™ืžื ื• ืืœื’ื•ืจื™ืชื ืœื”ืงืฉื™ื‘ ืœืฆืžื— ื”ื–ื”.
06:09
Simply by listening
104
369824
1668
ืคืฉื•ื˜ ืขืœ ื™ื“ื™ ื”ืงืฉื‘ื”
06:11
it can detect with about 70 percent accuracy
105
371492
2628
ื–ื” ื™ื›ื•ืœ ืœื–ื”ื•ืช ืขื ื“ื™ื•ืง ืฉืœ ื‘ืขืจืš 70 ืื—ื•ื–
06:14
whether the plant is healthy, dehydrated or injured.
106
374162
3503
ื”ืื ื”ืฆืžื— ื‘ืจื™ื, ืžื™ื•ื‘ืฉ ืื• ืคืฆื•ืข.
06:17
So this is peer-reviewed research, by the way.
107
377665
3170
ืื– ื–ื” ืžื—ืงืจ ื‘ื™ืงื•ืจืช ืขืžื™ืชื™ื ื“ืจืš ืื’ื‘.
06:21
So we cannot hear these sounds, but we think many insects can.
108
381794
4380
ืื– ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืฉืžื•ืข ืืช ื”ืฆืœื™ืœื™ื ื”ืืœื”, ืื‘ืœ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื—ืจืงื™ื ืจื‘ื™ื ื™ื›ื•ืœื™ื.
06:26
Does this mean that humans could use digital tech
109
386966
4338
ื”ืื ื–ื” ืื•ืžืจ ืฉื‘ื ื™ ืื“ื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื“ื™ื’ื™ื˜ืœื™ืช
06:31
to one day communicate with other species?
110
391346
3044
ืœืชืงืฉืจ ื™ื•ื ืื—ื“ ืขื ืžื™ื ื™ื ืื—ืจื™ื?
06:34
Well, some scientists think so
111
394390
1919
ื•ื‘ื›ืŸ, ื›ืžื” ืžื“ืขื ื™ื ื—ื•ืฉื‘ื™ื ื›ืš
06:36
and they're using machine learning to try to decode the acoustics of other species.
112
396351
4337
ื•ื”ื ืžืฉืชืžืฉื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื ืกื•ืช ืœืคืขื ื— ืืช ื”ืืงื•ืกื˜ื™ืงื” ืฉืœ ืžื™ื ื™ื ืื—ืจื™ื.
06:40
So there are teams of computer scientists and linguists and biologists
113
400730
3629
ืื– ื™ืฉ ืฆื•ื•ืชื™ื ืฉืœ ืžื“ืขื ื™ ืžื—ืฉื‘ ื•ื‘ืœืฉื ื™ื ื•ื‘ื™ื•ืœื•ื’ื™ื
06:44
working on decoding sperm whale bioacoustics.
114
404359
3503
ืฉืขื•ื‘ื“ื™ื ืขืœ ืคืขื ื•ื— ื‘ื™ื•ืืงื•ืกื˜ื™ืงื” ืฉืœ ืœื•ื•ื™ื™ืชื ื™ ื–ืจืข.
06:48
They're also building entire dictionaries.
115
408613
2210
ื”ื ื’ื ื‘ื•ื ื™ื ืžื™ืœื•ื ื™ื ืฉืœืžื™ื.
06:50
So there's an elephant dictionary with thousands of sounds.
116
410865
3962
ืื– ื™ืฉ ืžื™ืœื•ืŸ ืฉืคืช ืคื™ืœื™ื ืขื ืืœืคื™ ืฆืœื™ืœื™ื.
06:54
Elephants, for example, have a specific signal for honeybee.
117
414869
3670
ืœืคื™ืœื™ื, ืœืžืฉืœ, ื™ืฉ ืื•ืช ืกืคืฆื™ืคื™ ืœื“ื‘ื•ืจืช ื”ื“ื‘ืฉ.
06:59
So I'd love to share just one of these sounds with you.
118
419040
2711
ืื– ืื ื™ ืืฉืžื— ืœื—ืœื•ืง ืจืง ืื—ื“ ืžื”ืฆืœื™ืœื™ื ื”ืืœื” ืื™ืชื›ื.
07:01
It was recorded at a moment of great joy and celebration,
119
421751
4171
ื–ื” ื”ื•ืงืœื˜ ื‘ืจื’ืข ืฉืœ ืฉืžื—ื” ื•ื—ื’ื™ื’ื” ื’ื“ื•ืœื”,
07:05
the birth of a new baby.
120
425922
2085
ืœื™ื“ืชื• ืฉืœ ืชื™ื ื•ืง ื—ื“ืฉ.
07:09
(Elephant roaring)
121
429634
5172
(ืคื™ืœ ืฉื•ืื’)
07:19
(Applause)
122
439268
5339
(ืžึฐื—ึดื™ืื•ึนืช ื›ึทึผืคึทึผื™ึดื)
07:24
So the further we listen across the tree of life,
123
444649
2294
ืื– ื›ื›ืœ ืฉื ืงืฉื™ื‘ ื™ื•ืชืจ ืœืื•ืจืš ืขืฅ ื”ื—ื™ื™ื,
07:26
the more complex interspecies communication would be.
124
446985
3336
ื”ืชืงืฉื•ืจืช ืชื”ื™ื” ื‘ื™ืŸ ื”ืžื™ื ื™ื ื”ืžื•ืจื›ื‘ื™ื ื™ื•ืชืจ .
07:30
Listen to this honeybee.
125
450363
2085
ืชืงืฉื™ื‘ื• ืœื“ื‘ื•ืจืช ื”ื“ื‘ืฉ ื”ื–ื•.
07:33
(Honeybee buzzing)
126
453116
3920
(ื“ื‘ื•ืจืช ื“ื‘ืฉ ืžื–ืžื–ืžืช)
07:41
Now listen to this honeybee queen.
127
461207
3045
ืขื›ืฉื™ื• ืชืงืฉื™ื‘ื• ืœืžืœื›ืช ื“ื‘ื•ืจื™ ื”ื“ื‘ืฉ ื”ื–ื•.
07:44
(Queen bee tooting)
128
464711
5630
(ืžืœื›ืช ื”ื“ื‘ื•ืจื™ื ืžืฆืคืฆืคืช)
07:51
So you thought you knew what honeybees sounded like. OK.
129
471592
3129
ืื– ื—ืฉื‘ืชื ืฉืืชื ื™ื•ื“ืขื™ื ืื™ืš ื ืฉืžืขื• ื“ื‘ื•ืจื•ืช ื“ื‘ืฉ. ื‘ืกื“ืจ.
07:54
Honeybee communication is incredibly complex.
130
474762
2378
ืชืงืฉื•ืจืช ื“ื‘ื•ืจืช ื“ื‘ืฉ ืžื•ืจื›ื‘ืช ืœื”ืคืœื™ื.
07:57
It's acoustic, positional, spatial, vibrational.
131
477181
3295
ื–ื” ืจื˜ื˜ ืžืจื—ื‘ื™ ืขืžื“ืชื™ ืืงื•ืกื˜ื™ .
08:00
The queen has her own signals.
132
480518
2127
ืœืžืœื›ื” ื™ืฉ ืื•ืชื•ืช ืžืฉืœื”.
08:03
So scientists are encoding these signals into robots.
133
483021
3420
ืื– ืžื“ืขื ื™ื ืžืงื•ื“ื“ื™ื ืืช ื”ืื•ืชื•ืช ื”ืืœื” ืœืชื•ืš ืจื•ื‘ื•ื˜ื™ื.
08:06
This robot is attempting, but not succeeding,
134
486482
2461
ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืžื ืกื”, ืื‘ืœ ืœื ืžืฆืœื™ื—,
08:08
to communicate with the hive.
135
488985
1918
ืœืชืงืฉืจ ืขื ื”ื›ื•ื•ืจืช.
08:10
The bees mostly ignore or attack it.
136
490945
2586
ื”ื“ื‘ื•ืจื™ื ืœืจื•ื‘ ืžืชืขืœืžื•ืช ืื• ืชื•ืงืคื•ืช ืื•ืชื•.
08:13
But one day, we hope,
137
493573
3295
ืื‘ืœ ื™ื•ื ืื—ื“, ืื ื—ื ื• ืžืงื•ื•ื™ื,
08:16
the inventors hope, that this robot will communicate well enough
138
496909
3420
ื”ืžืžืฆื™ืื™ื ืžืงื•ื•ื™ื, ืฉื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื™ืชืงืฉืจ ืžืกืคื™ืง ื˜ื•ื‘
08:20
to allow scientists to monitor the health of the hive.
139
500371
3879
ื›ื“ื™ ืœืืคืฉืจ ืœืžื“ืขื ื™ื ืœืคืงื— ืขืœ ื‘ืจื™ืื•ืช ื”ื›ื•ื•ืจืช.
08:24
Now, would that be a good thing?
140
504792
1835
ืขื›ืฉื™ื•, ื–ื” ื™ื”ื™ื” ื“ื‘ืจ ื˜ื•ื‘?
08:26
Some believe that interspecies communication would help foster respect
141
506961
3712
ื™ืฉ ื”ืžืืžื™ื ื™ื ื›ื™ ืชืงืฉื•ืจืช ื‘ื™ืŸ ื”ืžื™ื ื™ื ืชืขื–ื•ืจ ืœื˜ืคื— ื›ื‘ื•ื“
08:30
and empathy for nature,
142
510715
1418
ื•ืืžืคืชื™ื” ืœื˜ื‘ืข,
08:32
others believe that it is profoundly disrespectful and unethical
143
512175
4462
ืื—ืจื™ื ืžืืžื™ื ื™ื ืฉื–ื” ื—ืกืจ ื›ื‘ื•ื“ ื•ืžืื•ื“ ืœื ืžื•ืกืจื™
08:36
to eavesdrop and engage in this way.
144
516679
2628
ืœืฆื•ืชืช ื•ืœืขืกื•ืง ื‘ื“ืจืš ื–ื•.
08:40
And there could be a really big downside.
145
520349
2795
ื•ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื™ืฉ ืœื–ื” ื—ื™ืกืจื•ืŸ ืžืžืฉ ื’ื“ื•ืœ.
08:43
Listen to this robin.
146
523186
1751
ืชืงืฉื™ื‘ื• ืœืจื•ื‘ื™ืŸ ื”ื–ื”.
08:44
(Bird chirping)
147
524979
4046
(ืฆื™ื•ืฅ ืฆื™ืคื•ืจื™ื)
08:52
So that was not actually a robin.
148
532862
1877
ืื– ื–ื” ืœื ื”ื™ื” ื‘ืขืฆื ืจื•ื‘ื™ืŸ.
08:54
That was a deepfake
149
534781
2711
ื–ื” ื”ื™ื” ื“ื™ืค-ืคื™ื™ืง (ื–ื™ื•ืฃ ืขืžื•ืง)
08:57
created by an artist, Daisy Ginsberg, using AI.
150
537492
3336
ืฉื ื•ืฆืจ ืขืœ ื™ื“ื™ ืืžืŸ, ื“ื™ื™ื–ื™ ื’ื™ื ืกื‘ืจื’, ืฉืžืฉืชืžืฉืช ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
09:00
Clever, beautiful.
151
540828
2253
ื—ื›ื, ื™ืคื”.
09:03
But think of the potential for misuse by hunters or poachers.
152
543081
3837
ืื‘ืœ ื—ื™ืฉื‘ื• ืขืœ ื”ืคื•ื˜ื ืฆื™ืืœ ืœืฉื™ืžื•ืฉ ืœืจืขื” ืขืœ ื™ื“ื™ ืฆื™ื™ื“ื™ื ืื• ืฆื™ื™ื“ื™ื ืœื ื—ื•ืงื™ื™ื
09:07
Interspecies communication needs strong ethical guardrails.
153
547376
3921
ืชืงืฉื•ืจืช ื‘ื™ืŸ ื”ืžื™ื ื™ื ืฆืจื™ื›ื” ืžืขืงื•ืช ื‘ื˜ื™ื—ื•ืช ืืชื™ื™ื ื—ื–ืงื™ื.
09:11
And anyway, maybe it's a bit self-centered to think
154
551339
3253
ื•ื‘ื›ืœ ืžืงืจื”, ืื•ืœื™ ืื ื—ื ื• ืงืฆืช ืžืจื•ื›ื–ื™ื ื‘ืขืฆืžื ื• ืœื—ืฉื•ื‘
09:14
other species would even want to communicate with us.
155
554634
2669
ืฉืžื™ื ื™ื ืื—ืจื™ื ื‘ื›ืœืœ ื™ืจืฆื• ืœืชืงืฉืจ ืื™ืชื ื•.
09:17
(Laughter)
156
557303
1001
(ืฆื—ื•ืง)
09:18
So what if we were to use bioacoustics
157
558346
2753
ืื– ืžื” ืื ื”ื™ื™ื ื• ืžืฉืชืžืฉื™ื ื‘ื‘ื™ื•ืืงื•ืกื˜ื™ืงื”
09:21
for something of immediate practical value,
158
561140
2670
ืœืžืฉื”ื• ื‘ืขืœ ืขืจืš ืžืขืฉื™ ืžื™ื™ื“ื™,
09:23
like doing something about our massive biodiversity crisis?
159
563810
4587
ื›ืžื• ืœืขืฉื•ืช ืžืฉื”ื• ื‘ืขื ื™ื™ืŸ ืžืฉื‘ืจ ื”ืžื’ื•ื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™ ื”ืื“ื™ืจ ืฉืœื ื•?
09:28
Let's go back to the coral reefs.
160
568439
2044
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืฉื•ื ื™ื•ืช ื”ืืœืžื•ื’ื™ื.
09:30
Listen to this healthy reef sound.
161
570483
3295
ื”ืงืฉื™ื‘ื• ืœืฆืœื™ืœ ื”ืฉื•ื ื™ืช ื”ื‘ืจื™ื ื”ื–ื”.
09:34
(Chirping, croaking and sizzling sounds)
162
574612
5255
(ืงื•ืœื•ืช ืฆื™ื•ืฅ, ืงืจืงื•ืจ ื•ืจื—ืฉ)
09:42
Pretty lively, right?
163
582036
1543
ื“ื™ ืชื•ืกืก, ื ื›ื•ืŸ?
09:43
But coral reefs are disappearing.
164
583579
1585
ืื‘ืœ ืฉื•ื ื™ื•ืช ื”ืืœืžื•ื’ื™ื ื ืขืœืžื•ืช.
09:45
If you were to go to most coral reefs today,
165
585206
2336
ืื ื”ื™ื™ืชื ื”ื•ืœื›ื™ื ืœืจื•ื‘ ืฉื•ื ื™ื•ืช ื”ืืœืžื•ื’ื™ื ื›ื™ื•ื,
09:47
you'd hear something like this.
166
587583
2086
ื”ื™ื™ืชื ืฉื•ืžืขื™ื ืžืฉื”ื• ื›ื–ื”.
09:50
(Staticky sound)
167
590795
4296
(ืฆืœื™ืœ ืกื˜ื˜ื™)
09:55
It's like a ghost town of the sea.
168
595967
2419
ื–ื” ื›ืžื• ืขื™ื™ืจืช ืจืคืื™ื ืฉืœ ื”ื™ื.
09:58
When we lose species, we lose voices.
169
598427
2002
ื›ืฉืื ื—ื ื• ืžืื‘ื“ื™ื ืžื™ื ื™ื, ืื ื—ื ื• ืžืื‘ื“ื™ื ืงื•ืœื•ืช.
10:00
When we lose landscapes, we also lose soundscapes.
170
600471
3253
ื›ืฉืื ื—ื ื• ืžืื‘ื“ื™ื ื ื•ืคื™ื, ืื ื—ื ื• ืžืื‘ื“ื™ื ื’ื ื ื•ืคื™ ืกืื•ื ื“.
10:04
There is a ray of hope.
171
604517
1585
ื™ืฉ ืงืจืŸ ืฉืœ ืชืงื•ื•ื”.
10:06
The healthy reef sounds that you just heard
172
606144
2002
ืฆืœื™ืœื™ ื”ืฉื•ื ื™ืช ื”ื‘ืจื™ืื” ืฉื–ื” ืขืชื” ืฉืžืขืชื
10:08
can be used to regenerate coral reefs.
173
608187
2252
ื™ื›ื•ืœื™ื ืœืฉืžืฉ ืœื—ื™ื“ื•ืฉ ืฉื•ื ื™ื•ืช ืืœืžื•ื’ื™ื.
10:10
Scientists are doing this.
174
610481
1251
ืžื“ืขื ื™ื ืขื•ืฉื™ื ื–ืืช.
10:11
It's a bit like music therapy for nature.
175
611774
2294
ื–ื” ืงืฆืช ื›ืžื• ื˜ื™ืคื•ืœ ื‘ืžื•ื–ื™ืงื” ืœื˜ื‘ืข.
10:14
So this is not going to solve all the problems coral reefs face,
176
614110
3003
ืื– ื–ื” ืœื ื”ื•ืœืš ืœืคืชื•ืจ ืืช ื›ืœ ื”ื‘ืขื™ื•ืช ืฉืขื•ืžื“ื•ืช ื‘ืคื ื™ ืฉื•ื ื™ื•ืช ื”ืืœืžื•ื’ื™ื,
10:17
notably climate change.
177
617155
2043
ื‘ืขื™ืงืจ ืฉื™ื ื•ื™ื™ ืืงืœื™ื.
10:19
But if we can address the massive epidemic of noise pollution
178
619699
4880
ืื‘ืœ ืื ื ื•ื›ืœ ืœื˜ืคืœ ื‘ืžื’ื™ืคื” ืžืืกื™ื‘ื™ืช ืฉืœ ื–ื™ื”ื•ื ืจืขืฉ
10:24
that is harming and killing marine creatures,
179
624579
2127
ืฉื”ื™ื ืžื–ื™ืงื” ื•ื”ื•ืจื’ืช ื™ืฆื•ืจื™ื ื™ืžื™ื™ื,
10:26
we could use bioacoustics to restore some biodiversity.
180
626706
3753
ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื‘ื™ื•ืืงื•ืกื˜ื™ืงื” ื›ื“ื™ ืœื”ื—ื–ื™ืจ ืงืฆืช ืืช ื”ืžื’ื•ื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™.
10:31
Bioacoustics could also help protect animals on the move.
181
631878
3753
ื‘ื™ื•ืืงื•ืกื˜ื™ืงื” ื™ื›ื•ืœื” ื’ื ืœืขื–ื•ืจ ืœื”ื’ืŸ ืขืœ ื‘ืขืœื™ ื—ื™ื™ื ื‘ืชื ื•ืขื”.
10:36
So this baby whale was killed by a ship.
182
636048
2670
ืื– ื”ืœื•ื•ื™ืชืŸ ื”ืชื™ื ื•ืง ื”ื–ื” ื ื”ืจื’ ืขืœ ื™ื“ื™ ืกืคื™ื ื”. ืœืžืจื‘ื” ื”ืฆืขืจ,
10:38
Tragically, this is a common cause of death of North Atlantic right whales,
183
638759
4130
ื–ื• ืกื™ื‘ื” ื ืคื•ืฆื” ืฉืœ ืžื•ื•ืช ืฉืœ ืœื•ื•ื™ื™ืชื ื™ื ืžืฆืคื•ืŸ ื”ืื•ืงื™ื™ื ื•ืก ื”ืื˜ืœื ื˜ื™,
10:42
one of the most endangered species in the world.
184
642930
2503
ืื—ื“ ื”ืžืฆื•ื™ื™ื ื‘ืกื›ื ืช ื”ื›ื—ื“ืช ืžื™ื ื™ื ื‘ืขื•ืœื.
10:46
So to address this,
185
646142
1460
ืื– ื›ื“ื™ ืœื”ืชื™ื™ื—ืก ืœื–ื”,
10:47
scientists are now launching a new bioacoustics program
186
647643
3796
ืžื“ืขื ื™ื ืžืฉื™ืงื™ื ื›ืขืช ืชื•ื›ื ื™ืช ื‘ื™ื•ืืงื•ืกื˜ื™ืงื” ื—ื“ืฉื”
10:51
off the east coast of North America
187
651439
1752
ืžื•ืœ ื”ื—ื•ืฃ ื”ืžื–ืจื—ื™ ืฉืœ ืฆืคื•ืŸ ืืžืจื™ืงื”
10:53
to triangulate the locations of whales
188
653191
1918
ืœืฉืœืฉ ืืช ืžื™ืงื•ืžื ืฉืœ ืœื•ื•ื™ื™ืชื ื™ื
10:55
and convey the information to shipsโ€™ captains in real time.
189
655151
4254
ื•ืœื”ืขื‘ื™ืจ ืืช ื”ืžื™ื“ืข ืœืงื‘ืจื ื™ื˜ื™ื ืฉืœ ืกืคื™ื ื•ืช ื‘ื–ืžืŸ ืืžืช.
11:00
The ships then have to slow down, stop, move out of the way.
190
660239
3462
ื”ืกืคื™ื ื•ืช ืฆืจื™ื›ื•ืช ืœื”ืื˜, ืœืขืฆื•ืจ, ืœื”ืชืจื—ืง ืžื”ื“ืจืš.
11:03
Not a single right whale has died of a ship strike in this zone
191
663701
3629
ืืฃ ืœื•ื•ื™ืชืŸ ื”ื‘ืœื ื™ ืœื ืžืช ื‘ืฉืœ ืžื›ืช ืกืคื™ื ื” ื‘ืื–ื•ืจ ื–ื”
11:07
since this program was launched.
192
667371
2002
ืžืื– ืฉื”ืชื•ื›ื ื™ืช ื”ื–ื• ื”ื•ืฉืงื”.
11:10
(Applause)
193
670124
5130
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:15
So this may be the thing that saves this species.
194
675296
2920
ืื– ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื–ื” ื”ืขื ื™ื™ืŸ ืฉืžืฆื™ืœ ืืช ื”ืžื™ืŸ ื”ื–ื”.
11:18
So think about it.
195
678216
1167
ืื– ืชื—ืฉื‘ื• ืขืœ ื–ื”.
11:19
A few decades ago, we were harpooning these whales nearly to extinction.
196
679425
5047
ืœืคื ื™ ื›ืžื” ืขืฉื•ืจื™ื ืฆื“ื ื• ื‘ืขื–ืจืช ืฆึดืœึฐืฆึธืœ ืืช ื”ืœื•ื•ื™ื™ืชื ื™ื ื”ืืœื” ื›ืžืขื˜ ืขื“ ื”ื›ื—ื“ื”.
11:24
Today, we've invented a technology
197
684513
1919
ื”ื™ื•ื, ื”ืžืฆืื ื• ื˜ื›ื ื•ืœื•ื’ื™ื”
11:26
that allows a community of less than 400 whales,
198
686432
2961
ืฉืžืืคืฉืจืช ืงื”ื™ืœื” ืฉืœ ืคื—ื•ืช ืž-400 ืœื•ื•ื™ื™ืชื ื™ื,
11:29
simply by singing,
199
689435
1919
ืคืฉื•ื˜ ืขืœ ื™ื“ื™ ืฉื™ืจื”,
11:31
to guide the movements of tens of thousands of ships
200
691395
2461
ืœื”ื ื—ื•ืช ืืช ื”ืชื ื•ืขื•ืช ืฉืœ ืขืฉืจื•ืช ืืœืคื™ ืกืคื™ื ื•ืช
11:33
in a watershed that's home to tens of millions of people.
201
693898
3378
ื‘ืงื• ืคืจืฉืช ื”ืžื™ื ืฉื–ื” ื”ื‘ื™ืช ืฉืœ ืขืฉืจื•ืช ืžื™ืœื™ื•ื ื™ ืื ืฉื™ื.
11:37
One day, these whale lanes may be everywhere in the oceans.
202
697944
4462
ื™ื•ื ืื—ื“, ื ืชื™ื‘ื™ ื”ืœื•ื•ื™ื™ืชื ื™ื ื”ืืœื” ื™ื•ื›ืœื• ืœื”ื™ื•ืช ื‘ื›ืœ ืžืงื•ื ื‘ืื•ืงื™ื™ื ื•ืกื™ื.
11:42
For the orcas who live here in the Salish Sea,
203
702448
2503
ืขื‘ื•ืจ ื”ืื•ืจืงื•ืช ืฉื—ื™ื•ืช ื›ืืŸ ื‘ื™ื ืกืœื™ืฉ,
11:44
this would be just in time because there are only a few dozen left.
204
704951
5255
ื–ื” ื™ื”ื™ื” ื‘ื“ื™ื•ืง ื‘ื–ืžืŸ ื›ื™ ื ืฉืืจื• ืจืง ื›ืžื” ืขืฉืจื•ืช.
11:51
A final thought.
205
711374
1376
ืžื—ืฉื‘ื” ืื—ืจื•ื ื”.
11:53
About 400 years ago,
206
713960
1710
ืœืคื ื™ ื›-400 ืฉื ื”,
11:55
the inventors of the microscope were astonished to discover
207
715711
2920
ืžืžืฆื™ืื™ ื”ืžื™ืงืจื•ืกืงื•ืค ื ื“ื”ืžื• ืœื’ืœื•ืช
11:58
the microbial world.
208
718631
1585
ืืช ื”ืขื•ืœื ื”ืžื™ืงืจื•ื‘ื™ืืœื™.
12:00
They had no idea their invention would lead to the discovery of DNA
209
720216
3503
ืœื ื”ื™ื” ืœื”ื ืžื•ืฉื’ ืฉื”ื”ืžืฆืื” ืฉืœื”ื ืชื•ื‘ื™ืœ ืœื’ื™ืœื•ื™ ื”-DNA
12:03
and the ability to manipulate the code of life.
210
723719
3212
ื•ืœื™ื›ื•ืœืช ืœืชืžืจืŸ ืืช ืงื•ื“ ื”ื—ื™ื™ื.
12:06
Around the same time,
211
726973
1918
ื‘ืขืจืš ื‘ืื•ืชื• ื–ืžืŸ,
12:08
the inventors of the telescope were gazing up at the stars,
212
728891
3462
ืžืžืฆื™ืื™ ื”ื˜ืœืกืงื•ืค ืฆืคื• ื‘ื›ื•ื›ื‘ื™ื,
12:12
not knowing their invention would allow humanity to look back in time
213
732395
4004
ืžื‘ืœื™ ืœื“ืขืช ืฉื”ื”ืžืฆืื” ืฉืœื”ื ืชืืคืฉืจ ืœืื ื•ืฉื•ืช ืœื”ืกืชื›ืœ ืื—ื•ืจื” ื‘ื–ืžืŸ
12:16
to the origins of the universe.
214
736399
2294
ืœืžืงื•ืจื•ืช ื”ื™ืงื•ื.
12:19
Optics decenters humanity within the solar system,
215
739277
3712
ืื•ืคื˜ื™ืงื” ืžืขืจืขืจืช ืืช ื”ืื ื•ืฉื•ืช ื‘ืชื•ืš ืžืขืจื›ืช ื”ืฉืžืฉ,
12:22
within the cosmos.
216
742989
1960
ื‘ืชื•ืš ื”ืงื•ืกืžื•ืก.
12:24
Bioacoustics decenters humanity within the tree of life.
217
744991
4421
ื‘ื™ื•-ืืงื•ืกื˜ื™ืงื” ืžืขืจืขืจืช ืืช ื”ืื ื•ืฉื•ืช ื‘ืชื•ืš ืขืฅ ื”ื—ื™ื™ื.
12:29
Our commonality is greater than we knew.
218
749954
3628
ื”ืžืฉื•ืชืฃ ืฉืœื ื• ื’ื“ื•ืœ ืžืžื” ืฉื™ื“ืขื ื•.
12:34
Now today we're using bioacoustics to protect species
219
754709
2669
ื”ื™ื•ื ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื‘ื™ื•ืืงื•ืกื˜ื™ืงื” ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ืžื™ื ื™ื
12:37
and decode their communication,
220
757378
1543
ื•ืœืคืขื ื— ืืช ื”ืชืงืฉื•ืจืช ืฉืœื”ื,
12:38
but tomorrow, I believe, we'll be using bioacoustics
221
758921
3212
ืื‘ืœ ืžื—ืจ, ืื ื™ ืžืืžื™ื ื”, ื ืฉืชืžืฉ ื‘ื‘ื™ื•ืืงื•ืกื˜ื™ืงื”
12:42
combined with machine intelligence
222
762174
2378
ื‘ืฉื™ืœื•ื‘ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช
12:44
to explore the frontiers of biological intelligence.
223
764552
4171
ืœื—ืงื•ืจ ืืช ื”ื’ื‘ื•ืœื•ืช ืฉืœ ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ื‘ื™ื•ืœื•ื’ื™ืช.
12:49
Many biological intelligences are very different than our own,
224
769390
2920
ืื™ื ื˜ืœื™ื’ื ืฆื™ื•ืช ื‘ื™ื•ืœื•ื’ื™ื•ืช ืจื‘ื•ืช ืฉื•ื ื•ืช ืžืื•ื“ ืžืฉืœื ื•,
12:52
but they're no less worthy of exploration.
225
772351
2378
ืื‘ืœ ื”ืŸ ืœื ืคื—ื•ืช ืจืื•ื™ื•ืช ืœื—ืงื™ืจื”.
12:55
And maybe one day in a speculative future,
226
775313
3086
ื•ืื•ืœื™ ื™ื•ื ืื—ื“ ื‘ืขืชื™ื“ ืกืคืงื•ืœื˜ื™ื‘ื™,
12:58
instead of a human here on stage,
227
778399
2419
ื‘ืžืงื•ื ื‘ืŸ ืื“ื ื›ืืŸ ืขืœ ื”ื‘ืžื”,
13:00
maybe bioacoustics would enable an orca to give a TED talk.
228
780818
4087
ืื•ืœื™ ื‘ื™ื•-ืืงื•ืกื˜ื™ืงื” ืชืืคืฉืจ ืœืื•ืจืงื” ืœืฉืืช ื”ืจืฆืืช TED.
13:04
(Laughter)
229
784947
1001
(ืฆื—ื•ืง)
13:05
Why not?
230
785948
1168
ืœืžื” ืœื?
13:07
Sharing orca stories about dodging ships
231
787158
2460
ืฉื™ืชื•ืฃ ืกื™ืคื•ืจื™ ืื•ืจืงื” ืขืœ ื”ืชื—ืžืงื•ืช ืžืกืคื™ื ื•ืช
13:09
and seismic blasts and human hunters,
232
789618
3462
ื•ืคื™ืฆื•ืฆื™ื ืกื™ื™ืกืžื™ื™ื ื•ืฆื™ื™ื“ื™ื ืื ื•ืฉื™ื™ื,
13:13
stories about desperately seeking the last remaining salmon,
233
793122
3170
ืกื™ืคื•ืจื™ื ืขืœ ื—ื™ืคื•ืฉ ื ื•ืืฉ ืื—ืจ ื”ืกืœืžื•ืŸ ื”ืื—ืจื•ืŸ ืฉื ื•ืชืจ,
13:16
stories about trying to survive on this beautiful planet
234
796334
4337
ืกื™ืคื•ืจื™ื ืขืœ ื ื™ืกื™ื•ืŸ ืœืฉืจื•ื“ ืขืœ ื”ืคืœื ื˜ื” ื”ื™ืคื” ื”ื–ื•
13:20
in this crazy moment
235
800671
1919
ื‘ืจื’ืข ื”ืžื˜ื•ืจืฃ ื”ื–ื”
13:22
in our era of untethered human creativity
236
802631
3546
ื‘ืขื™ื“ืŸ ืฉืœื ื• ืฉืœ ื™ืฆื™ืจืชื™ื•ืช ืื ื•ืฉื™ืช ื‘ืœืชื™ ื›ื‘ื•ืœื”
13:26
and unprecedented environmental emergency.
237
806218
3254
ื•ืžืฆื‘ ื—ืจื•ื ืกื‘ื™ื‘ืชื™ ื—ืกืจ ืชืงื“ื™ื.
13:29
Now those would be ideas worth spreading.
238
809805
3587
ืขื›ืฉื™ื•, ืืœื” ื™ื”ื™ื• ืจืขื™ื•ื ื•ืช ืฉื›ื“ืื™ ืœื”ืคื™ืฅ.
13:33
(Chirping sounds)
239
813392
2586
(ืฆืœื™ืœื™ ืฆื™ื•ืฅ)
13:35
(Applause)
240
815978
3379
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7