What is entropy? - Jeff Phillips

4,659,924 views ・ 2017-05-09

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Qichun Dai 校对人员: Yolanda Zhang
00:06
There's a concept that's crucial to chemistry and physics.
0
6875
3578
在化学和物理领域里 有一个非常重要的概念。
00:10
It helps explain why physical processes go one way and not the other:
1
10453
4840
这个概念可以解释为什么物理过程 会这样发生,而不是另一种结果:
00:15
why ice melts,
2
15293
1556
为什么冰会融化,
00:16
why cream spreads in coffee,
3
16849
2430
为什么奶油会在咖啡中扩散,
00:19
why air leaks out of a punctured tire.
4
19279
3250
为什么空气会从穿孔的轮胎中泄露。
00:22
It's entropy, and it's notoriously difficult to wrap our heads around.
5
22529
4510
这个概念就是熵,这是一个 让人很难理解的概念。
00:27
Entropy is often described as a measurement of disorder.
6
27039
4840
熵通常被描述为不规则运动的量度。
00:31
That's a convenient image, but it's unfortunately misleading.
7
31879
3860
这是一个很方便让人理解的解释, 但却很容易产生误解。
00:35
For example, which is more disordered -
8
35739
2772
比如说,以下哪种情形 更加的无规则呢?
00:38
a cup of crushed ice or a glass of room temperature water?
9
38511
4958
是一杯碎冰块,还是一杯室温的水?
00:43
Most people would say the ice,
10
43469
1904
大多数人会说冰块会更无规则,
00:45
but that actually has lower entropy.
11
45373
3696
但是实际上冰块比水有更低的熵值。
00:49
So here's another way of thinking about it through probability.
12
49069
3829
这儿有另一种理解熵的方法, 那就是通过概率。
00:52
This may be trickier to understand, but take the time to internalize it
13
52898
4392
这个方法或许更难理解, 但一旦消化这个概念,
00:57
and you'll have a much better understanding of entropy.
14
57290
3970
你就会对熵有一个更深刻的理解。
01:01
Consider two small solids
15
61260
2401
想象两个小块的固体,
01:03
which are comprised of six atomic bonds each.
16
63661
3880
这两个固体都有六个化学键。
01:07
In this model, the energy in each solid is stored in the bonds.
17
67541
5240
在这个模型中, 固体的能量都存在化学键中。
01:12
Those can be thought of as simple containers,
18
72781
2511
这些化学键可以被理解为 一个简单的容器,
01:15
which can hold indivisible units of energy known as quanta.
19
75292
4778
可以用来储存不可分割的 最小单位的能量,量子。
一个固体的能量越高,温度就也越高。
01:20
The more energy a solid has, the hotter it is.
20
80070
4531
01:24
It turns out that there are numerous ways that the energy can be distributed
21
84601
4441
能量在这两个固体中分布的方式
01:29
in the two solids
22
89042
1510
有无数种,
01:30
and still have the same total energy in each.
23
90552
4040
并且这些分布方式都保证 两个固体加起来所拥有的总能量相等。
01:34
Each of these options is called a microstate.
24
94592
3910
每个分布方式都称作一种微态。
01:38
For six quanta of energy in Solid A and two in Solid B,
25
98502
4839
比如说分布六个量子的能量在固体A中, 两个量子的能量在固体B中,
01:43
there are 9,702 microstates.
26
103341
4491
这就有9702种微态。
01:47
Of course, there are other ways our eight quanta of energy can be arranged.
27
107832
5029
当然,这八个量子在两个固体中 还有其他的分布方式。
01:52
For example, all of the energy could be in Solid A and none in B,
28
112861
4972
比如说,所有的量子可以全都 分布在固体A中,而B中没有量子,
01:57
or half in A and half in B.
29
117833
3039
还可以A,B固体各分一半量子。
02:00
If we assume that each microstate is equally likely,
30
120872
3282
如果我们假设每种微态 发生的概率相等,
02:04
we can see that some of the energy configurations
31
124154
2640
我们可以发现有些能量分布
02:06
have a higher probability of occurring than others.
32
126794
3749
发生的概率会高于其他。
02:10
That's due to their greater number of microstates.
33
130543
3641
这是因为这样的能量分布 包含更多数量的微态。
02:14
Entropy is a direct measure of each energy configuration's probability.
34
134184
5959
熵是每种能量分布状态的概率衡量。
02:20
What we see is that the energy configuration
35
140143
3050
我们所观察到的是,
02:23
in which the energy is most spread out between the solids
36
143193
3650
能量在固体间最分散,
02:26
has the highest entropy.
37
146843
2081
熵值就最高。
02:28
So in a general sense,
38
148924
1550
所以总体而言,
02:30
entropy can be thought of as a measurement of this energy spread.
39
150474
4379
熵可以被想成 能量分散的一种衡量指标。
02:34
Low entropy means the energy is concentrated.
40
154853
3040
低的熵值表明能量是集中的。
02:37
High entropy means it's spread out.
41
157893
3730
高的熵值则代表能量是分散的。
02:41
To see why entropy is useful for explaining spontaneous processes,
42
161623
4142
为了理解为什么熵的概念 可以解释自然发生的过程,
02:45
like hot objects cooling down,
43
165765
2310
比如说热的物体会冷却,
02:48
we need to look at a dynamic system where the energy moves.
44
168075
4359
我们需要理解能量流动的动态系统。
02:52
In reality, energy doesn't stay put.
45
172434
2501
实际上,能量不会静止不动。
02:54
It continuously moves between neighboring bonds.
46
174935
3130
而是会不停地在相邻的化学键中移动。
02:58
As the energy moves,
47
178065
2141
随着能量的移动,
03:00
the energy configuration can change.
48
180206
2749
能量的分布也会随之改变。
03:02
Because of the distribution of microstates,
49
182955
2130
由于微态的分布,
03:05
there's a 21% chance that the system will later be in the configuration
50
185085
4751
能量极大程度分散的
03:09
in which the energy is maximally spread out,
51
189836
3759
分布概率有21% ,
03:13
there's a 13% chance that it will return to its starting point,
52
193595
3762
13%的概率能量分布 会回到最初的状态,
03:17
and an 8% chance that A will actually gain energy.
53
197357
5500
固体A能量增加的概率是8%。
03:22
Again, we see that because there are more ways to have dispersed energy
54
202857
4078
别忘了,我们看到这种现象 是因为分散能量的分布方式更多,
03:26
and high entropy than concentrated energy,
55
206935
3091
所以我们更有可能观察到高熵值, 而不是能量集中的低熵值状态,
03:30
the energy tends to spread out.
56
210026
2532
能量更倾向于分散。
03:32
That's why if you put a hot object next to a cold one,
57
212558
2951
这就是为什么如果你把一个 热的物体放在一个冷的物体旁,
03:35
the cold one will warm up and the hot one will cool down.
58
215509
4911
冷的物体会变热,而热的物体会冷却。
03:40
But even in that example,
59
220420
1447
但即使是在刚刚的例子里,
03:41
there is an 8% chance that the hot object would get hotter.
60
221867
5249
还是有8%的概率热的物体会变得更热,
03:47
Why doesn't this ever happen in real life?
61
227116
4311
那为什么这种事情从来都 没有在现实生活中发生过呢?
03:51
It's all about the size of the system.
62
231427
2750
这是因为系统的尺寸。
03:54
Our hypothetical solids only had six bonds each.
63
234177
3880
我们假设的两个固体 每个只有六个化学键。
03:58
Let's scale the solids up to 6,000 bonds and 8,000 units of energy,
64
238057
5881
如果我们假设每个固体有6000化学键, 需要分配的总能量为8000量子,
04:03
and again start the system with three-quarters of the energy in A
65
243938
3589
我们再次将四分之三的能量分配给A,
04:07
and one-quarter in B.
66
247527
2600
四分之一的能量分配给B。
04:10
Now we find that chance of A spontaneously acquiring more energy
67
250127
4210
现在我们可以发现,A物体 能够自发获得更多能量的概率
04:14
is this tiny number.
68
254337
2910
是这样一个微小的数字。
04:17
Familiar, everyday objects have many, many times more particles than this.
69
257247
5061
同理,日常物体中会 包含比这多得多的小物体。
04:22
The chance of a hot object in the real world getting hotter
70
262308
3612
在现实世界里,一个物体会变热的概率
04:25
is so absurdly small,
71
265920
2091
是一个异常小的数字,
04:28
it just never happens.
72
268011
2398
小到根本不会发生。
04:30
Ice melts,
73
270409
1119
冰块融化,
04:31
cream mixes in,
74
271528
1390
奶油溶解,
04:32
and tires deflate
75
272918
1758
轮胎泄气,
04:34
because these states have more dispersed energy than the originals.
76
274676
5266
都是因为这些状态比 原有的状态有更加分散的能量。
04:39
There's no mysterious force nudging the system towards higher entropy.
77
279942
3688
没有任何神秘的力量 推着系统去往一个更高的熵值。
04:43
It's just that higher entropy is always statistically more likely.
78
283630
5298
只是因为高熵值总是 在统计上更加可能发生。
04:48
That's why entropy has been called time's arrow.
79
288928
3552
这就是为什么熵又被成为时间向导。
04:52
If energy has the opportunity to spread out, it will.
80
292480
4259
如果能量有机会分散,它就会发生。

Original video on YouTube.com
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog