What is entropy? - Jeff Phillips

4,544,924 views ・ 2017-05-09

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Qichun Dai 校对人员: Yolanda Zhang
00:06
There's a concept that's crucial to chemistry and physics.
0
6875
3578
在化学和物理领域里 有一个非常重要的概念。
00:10
It helps explain why physical processes go one way and not the other:
1
10453
4840
这个概念可以解释为什么物理过程 会这样发生,而不是另一种结果:
00:15
why ice melts,
2
15293
1556
为什么冰会融化,
00:16
why cream spreads in coffee,
3
16849
2430
为什么奶油会在咖啡中扩散,
00:19
why air leaks out of a punctured tire.
4
19279
3250
为什么空气会从穿孔的轮胎中泄露。
00:22
It's entropy, and it's notoriously difficult to wrap our heads around.
5
22529
4510
这个概念就是熵,这是一个 让人很难理解的概念。
00:27
Entropy is often described as a measurement of disorder.
6
27039
4840
熵通常被描述为不规则运动的量度。
00:31
That's a convenient image, but it's unfortunately misleading.
7
31879
3860
这是一个很方便让人理解的解释, 但却很容易产生误解。
00:35
For example, which is more disordered -
8
35739
2772
比如说,以下哪种情形 更加的无规则呢?
00:38
a cup of crushed ice or a glass of room temperature water?
9
38511
4958
是一杯碎冰块,还是一杯室温的水?
00:43
Most people would say the ice,
10
43469
1904
大多数人会说冰块会更无规则,
00:45
but that actually has lower entropy.
11
45373
3696
但是实际上冰块比水有更低的熵值。
00:49
So here's another way of thinking about it through probability.
12
49069
3829
这儿有另一种理解熵的方法, 那就是通过概率。
00:52
This may be trickier to understand, but take the time to internalize it
13
52898
4392
这个方法或许更难理解, 但一旦消化这个概念,
00:57
and you'll have a much better understanding of entropy.
14
57290
3970
你就会对熵有一个更深刻的理解。
01:01
Consider two small solids
15
61260
2401
想象两个小块的固体,
01:03
which are comprised of six atomic bonds each.
16
63661
3880
这两个固体都有六个化学键。
01:07
In this model, the energy in each solid is stored in the bonds.
17
67541
5240
在这个模型中, 固体的能量都存在化学键中。
01:12
Those can be thought of as simple containers,
18
72781
2511
这些化学键可以被理解为 一个简单的容器,
01:15
which can hold indivisible units of energy known as quanta.
19
75292
4778
可以用来储存不可分割的 最小单位的能量,量子。
一个固体的能量越高,温度就也越高。
01:20
The more energy a solid has, the hotter it is.
20
80070
4531
01:24
It turns out that there are numerous ways that the energy can be distributed
21
84601
4441
能量在这两个固体中分布的方式
01:29
in the two solids
22
89042
1510
有无数种,
01:30
and still have the same total energy in each.
23
90552
4040
并且这些分布方式都保证 两个固体加起来所拥有的总能量相等。
01:34
Each of these options is called a microstate.
24
94592
3910
每个分布方式都称作一种微态。
01:38
For six quanta of energy in Solid A and two in Solid B,
25
98502
4839
比如说分布六个量子的能量在固体A中, 两个量子的能量在固体B中,
01:43
there are 9,702 microstates.
26
103341
4491
这就有9702种微态。
01:47
Of course, there are other ways our eight quanta of energy can be arranged.
27
107832
5029
当然,这八个量子在两个固体中 还有其他的分布方式。
01:52
For example, all of the energy could be in Solid A and none in B,
28
112861
4972
比如说,所有的量子可以全都 分布在固体A中,而B中没有量子,
01:57
or half in A and half in B.
29
117833
3039
还可以A,B固体各分一半量子。
02:00
If we assume that each microstate is equally likely,
30
120872
3282
如果我们假设每种微态 发生的概率相等,
02:04
we can see that some of the energy configurations
31
124154
2640
我们可以发现有些能量分布
02:06
have a higher probability of occurring than others.
32
126794
3749
发生的概率会高于其他。
02:10
That's due to their greater number of microstates.
33
130543
3641
这是因为这样的能量分布 包含更多数量的微态。
02:14
Entropy is a direct measure of each energy configuration's probability.
34
134184
5959
熵是每种能量分布状态的概率衡量。
02:20
What we see is that the energy configuration
35
140143
3050
我们所观察到的是,
02:23
in which the energy is most spread out between the solids
36
143193
3650
能量在固体间最分散,
02:26
has the highest entropy.
37
146843
2081
熵值就最高。
02:28
So in a general sense,
38
148924
1550
所以总体而言,
02:30
entropy can be thought of as a measurement of this energy spread.
39
150474
4379
熵可以被想成 能量分散的一种衡量指标。
02:34
Low entropy means the energy is concentrated.
40
154853
3040
低的熵值表明能量是集中的。
02:37
High entropy means it's spread out.
41
157893
3730
高的熵值则代表能量是分散的。
02:41
To see why entropy is useful for explaining spontaneous processes,
42
161623
4142
为了理解为什么熵的概念 可以解释自然发生的过程,
02:45
like hot objects cooling down,
43
165765
2310
比如说热的物体会冷却,
02:48
we need to look at a dynamic system where the energy moves.
44
168075
4359
我们需要理解能量流动的动态系统。
02:52
In reality, energy doesn't stay put.
45
172434
2501
实际上,能量不会静止不动。
02:54
It continuously moves between neighboring bonds.
46
174935
3130
而是会不停地在相邻的化学键中移动。
02:58
As the energy moves,
47
178065
2141
随着能量的移动,
03:00
the energy configuration can change.
48
180206
2749
能量的分布也会随之改变。
03:02
Because of the distribution of microstates,
49
182955
2130
由于微态的分布,
03:05
there's a 21% chance that the system will later be in the configuration
50
185085
4751
能量极大程度分散的
03:09
in which the energy is maximally spread out,
51
189836
3759
分布概率有21% ,
03:13
there's a 13% chance that it will return to its starting point,
52
193595
3762
13%的概率能量分布 会回到最初的状态,
03:17
and an 8% chance that A will actually gain energy.
53
197357
5500
固体A能量增加的概率是8%。
03:22
Again, we see that because there are more ways to have dispersed energy
54
202857
4078
别忘了,我们看到这种现象 是因为分散能量的分布方式更多,
03:26
and high entropy than concentrated energy,
55
206935
3091
所以我们更有可能观察到高熵值, 而不是能量集中的低熵值状态,
03:30
the energy tends to spread out.
56
210026
2532
能量更倾向于分散。
03:32
That's why if you put a hot object next to a cold one,
57
212558
2951
这就是为什么如果你把一个 热的物体放在一个冷的物体旁,
03:35
the cold one will warm up and the hot one will cool down.
58
215509
4911
冷的物体会变热,而热的物体会冷却。
03:40
But even in that example,
59
220420
1447
但即使是在刚刚的例子里,
03:41
there is an 8% chance that the hot object would get hotter.
60
221867
5249
还是有8%的概率热的物体会变得更热,
03:47
Why doesn't this ever happen in real life?
61
227116
4311
那为什么这种事情从来都 没有在现实生活中发生过呢?
03:51
It's all about the size of the system.
62
231427
2750
这是因为系统的尺寸。
03:54
Our hypothetical solids only had six bonds each.
63
234177
3880
我们假设的两个固体 每个只有六个化学键。
03:58
Let's scale the solids up to 6,000 bonds and 8,000 units of energy,
64
238057
5881
如果我们假设每个固体有6000化学键, 需要分配的总能量为8000量子,
04:03
and again start the system with three-quarters of the energy in A
65
243938
3589
我们再次将四分之三的能量分配给A,
04:07
and one-quarter in B.
66
247527
2600
四分之一的能量分配给B。
04:10
Now we find that chance of A spontaneously acquiring more energy
67
250127
4210
现在我们可以发现,A物体 能够自发获得更多能量的概率
04:14
is this tiny number.
68
254337
2910
是这样一个微小的数字。
04:17
Familiar, everyday objects have many, many times more particles than this.
69
257247
5061
同理,日常物体中会 包含比这多得多的小物体。
04:22
The chance of a hot object in the real world getting hotter
70
262308
3612
在现实世界里,一个物体会变热的概率
04:25
is so absurdly small,
71
265920
2091
是一个异常小的数字,
04:28
it just never happens.
72
268011
2398
小到根本不会发生。
04:30
Ice melts,
73
270409
1119
冰块融化,
04:31
cream mixes in,
74
271528
1390
奶油溶解,
04:32
and tires deflate
75
272918
1758
轮胎泄气,
04:34
because these states have more dispersed energy than the originals.
76
274676
5266
都是因为这些状态比 原有的状态有更加分散的能量。
04:39
There's no mysterious force nudging the system towards higher entropy.
77
279942
3688
没有任何神秘的力量 推着系统去往一个更高的熵值。
04:43
It's just that higher entropy is always statistically more likely.
78
283630
5298
只是因为高熵值总是 在统计上更加可能发生。
04:48
That's why entropy has been called time's arrow.
79
288928
3552
这就是为什么熵又被成为时间向导。
04:52
If energy has the opportunity to spread out, it will.
80
292480
4259
如果能量有机会分散,它就会发生。

Original video on YouTube.com
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7