How to squeeze electricity out of crystals - Ashwini Bharathula

684,086 views ・ 2017-06-20

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Lipeng Chen 校对人员: Jack Zhang
00:08
This is a crystal of sugar.
0
8046
2650
这是糖的结晶体。
00:10
If you press on it, it will actually generate its own electricity.
1
10696
3790
你在按压它时,它实际上会产生电荷。
00:14
How can this simple crystal act like a tiny power source?
2
14486
3310
这个简单的晶体是怎样 扮演一个小发电站的角色呢?
00:17
Because sugar is piezoelectric.
3
17796
2590
因为糖是压电体。
00:20
Piezoelectric materials turn mechanical stress,
4
20386
2761
压电材料会把机械应力,
00:23
like pressure,
5
23147
1180
如压力、
00:24
sound waves,
6
24327
863
声波、
00:25
and other vibrations
7
25190
1057
还有其他振动
00:26
into electricity and vice versa.
8
26247
2499
转化为电力,反之亦然。
00:28
This odd phenomenon was first discovered
9
28746
1901
这种奇特现象
是在1880年被物理学家 Pierre Curie 和他的弟弟 Jacques 首次发现的。
00:30
by the physicist Pierre Curie and his brother Jacques in 1880.
10
30647
4319
00:34
They discovered that if they compressed thin slices of certain crystals,
11
34966
3451
他们发现如果他们压缩一些细小的晶体片,
00:38
positive and negative charges would appear on opposite faces.
12
38417
4601
正电荷和负电荷会出现在相反两面。
00:43
This difference in charge, or voltage,
13
43018
2138
电荷或者说电压的不同,
00:45
meant that the compressed crystal could drive current through a circuit,
14
45156
3771
意味着被压缩的晶体可以通过电路驱动电流,
00:48
like a battery.
15
48927
1560
像是电池一样。
00:50
And it worked the other way around, too.
16
50487
2231
它也可以朝着另一方向运行。
00:52
Running electricity through these crystals made them change shape.
17
52718
4159
通过这些晶体运作电力会使晶体的形状发生变化。
00:56
Both of these results,
18
56877
1101
这里有两种结果,
00:57
turning mechanical energy into electrical,
19
57978
2791
一种是将机械能转化为电能,
01:00
and electrical energy into mechanical,
20
60769
2388
另一种则是将电能转化为机械能,
01:03
were remarkable.
21
63157
1542
两者都是意义非凡的。
01:04
But the discovery went uncelebrated for several decades.
22
64699
3447
但这项发现在几十年间都没有受到人们的关注。
01:08
The first practical application was in sonar instruments
23
68146
3002
第一次实际应用是被使用到声呐仪器中,
01:11
used to detect German submarines during World War I.
24
71148
3500
这种声呐仪器在第一次 世界大战时被用于探测德国潜艇。
01:14
Piezoelectric quartz crystals in the sonar's transmitter
25
74648
2812
声呐发射机中的压电石英晶体
01:17
vibrated when they were subjected to alternating voltage.
26
77460
3999
在受到交变电压影响时会产生振动。
01:21
That sent ultrasound waves through the water.
27
81459
2490
从而在水中发送超声波。
01:23
Measuring how long it took these waves to bounce back from an object
28
83949
3230
通过测量这些超声波触碰到 一个物体反弹回来所花费的时间
01:27
revealed how far away it was.
29
87179
2671
可以知道与物体相隔的距离。
01:29
For the opposite transformation,
30
89850
1678
如果是另一种转化,
01:31
converting mechanical energy to electrical,
31
91528
2481
将机械能转化为电能,
01:34
consider the lights that turn on when you clap.
32
94009
2820
可以想想那些当你鼓掌时就会亮起来的灯。
01:36
Clapping your hands send sound vibrations through the air
33
96829
2710
你在鼓掌的同时会在空气中产生声音振动,
01:39
and causes the piezo element to bend back and forth.
34
99539
3649
这会让压电元件来回弯曲。
01:43
This creates a voltage that can drive enough current to light up the LEDs,
35
103188
3692
由此产生的电压会驱使足够的电流让LED灯发亮,
01:46
though it's conventional sources of electricity that keep them on.
36
106880
3540
不过这已经算是让灯亮起来的传统电力来源了。
01:50
So what makes a material piezoelectric?
37
110420
3209
那么是什么让材料带有压电性呢?
01:53
The answer depends on two factors:
38
113629
2121
这取决于两个因素:
01:55
the materials atomic structure,
39
115750
1840
材料的原子结构,
01:57
and how electric charge is distributed within it.
40
117590
3380
还有电荷在其内部的分布。
02:00
Many materials are crystalline,
41
120970
1720
很多材料都是晶体状的,
02:02
meaning they're made of atoms or ions
42
122690
1809
意味着它们是由原子或者离子组成的,
02:04
arranged in an orderly three-dimensional pattern.
43
124499
3131
它们排列成一个有序的三维模型。
02:07
That pattern has a building block called a unit cell
44
127630
2640
这个模型的基础构件叫晶胞,
02:10
that repeats over and over.
45
130270
2460
材料中会有一个又一个重复的晶胞。
02:12
In most non-piezoelectric crystalline materials,
46
132730
2831
在绝大多数非压电性晶体材料中,
02:15
the atoms in their unit cells are distributed symmetrically
47
135561
3050
晶胞里面的原子是对称分布在
02:18
around a central point.
48
138611
1863
一个中心点周围的。
02:20
But some crystalline materials don't possess a center of symmetry
49
140474
3479
但一些晶体材料并没有对称中心,
02:23
making them candidates for piezoelectricity.
50
143953
3149
这使它们得以带有压电性。
02:27
Let's look at quartz,
51
147102
1413
我们来看看石英,
02:28
a piezoelectric material made of silicon and oxygen.
52
148515
3467
这是一种由硅和氧组成的压电材料。
02:31
The oxygens have a slight negative charge and silicons have a slight positive,
53
151982
4739
氧带有轻微的负电荷, 而硅则带有轻微的正电荷,
02:36
creating a separation of charge,
54
156721
1531
这创造出电荷分离,
02:38
or a dipole along each bond.
55
158252
2890
或者说是每个键上的偶极。
02:41
Normally, these dipoles cancel each other out,
56
161142
2430
一般情况下,这些偶极会相互抵消,
02:43
so there's no net separation of charge in the unit cell.
57
163572
3021
所以在胞晶里没有电荷的净余分离。
02:46
But if a quartz crystal is squeezed along a certain direction,
58
166593
2981
但如果石英晶体受到某一特定方向的挤压,
02:49
the atoms shift.
59
169574
1809
原子就会发生转移。
02:51
Because of the resulting asymmetry in charge distribution,
60
171383
2751
因为电荷分布的非对称性,
02:54
the dipoles no longer cancel each other out.
61
174134
2492
偶极不再相互抵消。
02:56
The stretched cell ends up with a net negative charge on one side
62
176626
3831
这个受到拉伸的晶胞一边带有负电荷,
03:00
and a net positive on the other.
63
180457
2676
而另一边则带有正电荷。
03:03
This charge imbalance is repeated all the way through the material,
64
183133
3150
这种电荷不平衡的情况会在材料中重复出现,
03:06
and opposite charges collect on opposite faces of the crystal.
65
186283
3654
极性相反的电荷会在晶体的相反面上累积。
03:09
This results in a voltage that can drive electricity through a circuit.
66
189937
3937
这促使电压的产生,电压能够通过电路驱动电力。
03:13
Piezoelectric materials can have different structures.
67
193874
3040
压电材料可以有不同的结构。
03:16
But what they all have in common is unit cells which lack a center of symmetry.
68
196914
4603
但它们有一个共同点就是 它们的晶胞中都没有对称中心。
03:21
And the stronger the compression on piezoelectric materials,
69
201517
2837
而且施加给压电材料的力越强,
03:24
the larger the voltage generated.
70
204354
2390
产生的电压就越大。
03:26
Stretch the crystal, instead, and the voltage will switch,
71
206744
3220
拉伸晶体,电压就会发生改变,
03:29
making current flow the other way.
72
209964
2280
导致电流反向流动。
03:32
More materials are piezoelectric than you might think.
73
212244
3481
压电材料或许比你想象中的还要多。
03:35
DNA,
74
215725
939
DNA、
03:36
bone,
75
216664
731
骨骼、
03:37
and silk
76
217395
879
还有丝绸,
03:38
all have this ability to turn mechanical energy into electrical.
77
218274
4152
它们都可以将机械能转化为电能。
03:42
Scientists have created a variety of synthetic piezoelectric materials
78
222426
3470
科学家已经创造出各种各样的合成压电材料,
03:45
and found applications for them in everything from medical imaging
79
225896
3438
并且将它们广泛应用在从医学影像
03:49
to ink jet printers.
80
229334
2202
到喷墨打印机的领域中。
03:51
Piezoelectricity is responsible for the rhythmic oscillations
81
231536
3309
压电性还会产生有节奏的振动,
03:54
of the quartz crystals that keep watches running on time,
82
234845
3140
这是石英晶体得以让钟表准时运作的原因,
03:57
the speakers of musical birthday cards,
83
237985
1861
还能作为音乐生日卡片上的扬声器,
03:59
and the spark that ignites the gas in some barbecue grill lighters
84
239846
3159
还有在你轻打开关的时候,
04:03
when you flick the switch.
85
243005
2111
在烧烤架上产生让汽油点燃的火花。
04:05
And piezoelectric devices may become even more common
86
245116
3231
压电设备或许会越来越普及,
04:08
since electricity is in high demand and mechanical energy is abundant.
87
248347
4640
因为电力需求量大而机械能又极其丰富。
04:12
There are already train stations that use passengers' footsteps
88
252987
2949
已经有火车站利用乘客脚步这一机械能
04:15
to power the ticket gates and displays
89
255936
2542
来给检票门和显示器提供电力,
04:18
and a dance club where piezoelectricity helps power the lights.
90
258478
3619
还有一个跳舞俱乐部利用压电性提供照明。
04:22
Could basketball players running back and forth power the scoreboard?
91
262097
3251
来回跑动的篮球运动员可以给记分牌提供电力吗?
04:25
Or might walking down the street charge your electronic devices?
92
265348
3320
沿街步行的同时还能让你的电子设备充上电吗?
04:28
What's next for piezoelectricity?
93
268668
2568
压电性的下一种可能会是什么?
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog