With Spatial Intelligence, AI Will Understand the Real World | Fei-Fei Li | TED

711,435 views ・ 2024-05-16

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Lening Xu
00:04
Let me show you something.
0
4334
1877
给大家展示一下。
00:06
To be precise,
1
6253
1626
确切地说,
00:07
I'm going to show you nothing.
2
7921
2002
我什么都不会展示。
00:10
This was the world 540 million years ago.
3
10423
4797
这是 5.4 亿年前的世界。
00:15
Pure, endless darkness.
4
15262
2711
纯粹、无尽的黑暗。
00:18
It wasn't dark due to a lack of light.
5
18723
3587
黑暗并非因为缺乏光线。
00:22
It was dark because of a lack of sight.
6
22602
3253
而是因为缺乏观察的眼睛。
00:27
Although sunshine did filter 1,000 meters
7
27566
5005
虽然阳光穿透了海洋表面,
00:32
beneath the surface of ocean,
8
32612
2378
深入到 1000 米以下,
00:35
a light permeated from hydrothermal vents to seafloor,
9
35031
5339
光线通过热液喷口照射着 充满着生命的海底,
00:40
brimming with life,
10
40370
1710
00:42
there was not a single eye to be found in these ancient waters.
11
42122
5046
但在这古老的水域中并没有一只眼睛。
00:47
No retinas, no corneas, no lenses.
12
47669
4588
没有视网膜,没有角膜,没有晶状体。
00:52
So all this light, all this life went unseen.
13
52632
4880
每一束光、每一个生命都不为人知。
00:57
There was a time that the very idea of seeing didn't exist.
14
57971
5005
曾经有一段时间, “看”这一概念并不存在。
01:03
It [had] simply never been done before.
15
63351
2544
以前就是没有这种做法。
01:06
Until it was.
16
66438
1459
直到看见的这一刻。
01:09
So for reasons we're only beginning to understand,
17
69274
3253
出于我们才摸到门槛的一些原因,
01:12
trilobites, the first organisms that could sense light, emerged.
18
72569
5839
三叶虫——第一种能感光的生物,出现了。
01:18
They're the first inhabitants of this reality that we take for granted.
19
78408
5797
它们是我们现在理所当然 身处的环境里的第一批栖息动物。
01:24
First to discover that there is something other than oneself.
20
84247
4671
它们第一个发现了 除了自己还有别的东西。
01:28
A world of many selves.
21
88918
2420
一个由许多“自我”组成的世界。
01:32
The ability to see is thought to have ushered in Cambrian explosion,
22
92339
4754
视觉被认为推动了寒武纪生命大爆发,
01:37
a period in which a huge variety of animal species
23
97093
4338
在此期间, 各种各样的动物物种
01:41
entered fossil records.
24
101431
2377
有了化石记录。
01:43
What began as a passive experience,
25
103808
3045
最初的被动体验, 即 让光透进来简单动作,
01:46
the simple act of letting light in,
26
106895
3462
01:50
soon became far more active.
27
110357
2544
很快就变得更加主动了。
01:53
The nervous system began to evolve.
28
113443
3503
神经系统开始进化。
01:56
Sight turning to insight.
29
116988
3379
观察变成了洞察。
02:00
Seeing became understanding.
30
120367
2877
看见变成了理解。
02:03
Understanding led to actions.
31
123244
2461
理解带来了行动。
02:05
And all these gave rise to intelligence.
32
125705
4129
它们促成了智能。
02:10
Today, we're no longer satisfied with just nature's gift of visual intelligence.
33
130669
6756
如今,我们不再满足于 大自然赋予的视觉智能。
02:17
Curiosity urges us to create machines to see just as intelligently as we can,
34
137425
6507
好奇心促使我们创造出那些机器, 使其尽可能智能,
02:23
if not better.
35
143932
1793
甚至更好。
02:25
Nine years ago, on this stage,
36
145725
2086
九年前,在这个舞台上,
02:27
I delivered an early progress report on computer vision,
37
147811
4421
我发表了一场有关计算机视觉的 早期进展报告。
02:32
a subfield of artificial intelligence.
38
152273
2461
这是人工智能的一个细分领域。
02:35
Three powerful forces converged for the first time.
39
155235
4546
三股强大的力量首次 汇聚在一起。
02:39
Aa family of algorithms called neural networks.
40
159823
3587
一种称为神经网络的算法。
02:43
Fast, specialized hardware called graphic processing units,
41
163410
4587
称为“图形处理器”或 GPU的快速、专业的硬件,
02:48
or GPUs.
42
168039
1585
02:49
And big data.
43
169666
1418
还有大数据。
02:51
Like the 15 million images that my lab spent years curating called ImageNet.
44
171126
6256
就像我的实验室花了多年时间整理的
名为 ImageNet 的 1500 万张图像一样。
02:57
Together, they ushered in the age of modern AI.
45
177382
4171
它们共同开创了现代 AI 时代。
03:02
We've come a long way.
46
182554
1585
我们已经走了很长一段路。
03:04
Back then, just putting labels on images was a big breakthrough.
47
184139
4546
当时,单单是给图片打标签 都是一个重大突破。
03:09
But the speed and accuracy of these algorithms just improved rapidly.
48
189352
4963
但是这些算法的速度和准确性 迅速提高了。
03:14
The annual ImageNet challenge, led by my lab,
49
194816
3503
由我的实验室领导的 一年一度 ImageNet 挑战赛
03:18
gauged the performance of this progress.
50
198361
3003
评测了这一进展的表现。
03:21
And on this plot, you're seeing the annual improvement
51
201364
3587
在这张图上,可以看到每年的改进
03:24
and milestone models.
52
204993
2127
和里程碑式模型。
03:27
We went a step further
53
207787
1669
我们更进一步,
03:29
and created algorithms that can segment objects
54
209456
5005
创造了算法切分物体
03:34
or predict the dynamic relationships among them
55
214461
3378
或预测它们之间的动态关系,
03:37
in these works done by my students and collaborators.
56
217839
3587
由我的学生和合作者们 在这些项目中共同完成。
03:41
And there's more.
57
221885
1543
还有更多。
03:43
Recall last time I showed you the first computer-vision algorithm
58
223428
4463
回想一下上一次我展示了 第一个计算机视觉算法,
03:47
that can describe a photo in human natural language.
59
227932
4463
使用人类自然语言描述照片。
03:52
That was work done with my brilliant former student, Andrej Karpathy.
60
232729
4171
那是我与我以前的优秀学生 安德烈·卡帕蒂 (Andrej Karpathy)
合作完成的。
03:57
At that time, I pushed my luck and said,
61
237484
2294
当时,我想碰碰运气地说:
03:59
"Andrej, can we make computers to do the reverse?"
62
239819
3045
“安德烈, 我们能让计算机反向操作吗?”
04:02
And Andrej said, "Ha ha, that's impossible."
63
242906
2919
安德烈说: “哈哈,不可能。”
04:05
Well, as you can see from this post,
64
245867
1835
正如这篇推文所示,
04:07
recently the impossible has become possible.
65
247744
3628
最近,不可能变成了可能。
04:11
That's thanks to a family of diffusion models
66
251998
3003
这要归功于一系列扩散模型,
04:15
that powers today's generative AI algorithm,
67
255001
3545
是它们驱动了如今的生成式 AI 算法,
04:18
which can take human-prompted sentences
68
258546
3629
将人为输入的句子
04:22
and turn them into photos and videos
69
262175
3462
转换为闻所未闻事物的照片和视频。
04:25
of something that's entirely new.
70
265678
2628
04:28
Many of you have seen the recent impressive results of Sora by OpenAI.
71
268306
5297
很多人已经看到了 OpenAI 的 Sora
最近展示出的惊人成果。
04:34
But even without the enormous number of GPUs,
72
274187
3754
但是,即使没有大量的 GPU,
04:37
my student and our collaborators
73
277941
2502
我的学生和合作者们
04:40
have developed a generative video model called Walt
74
280443
4421
开发了一个生成式视频模型, 名为“Walt”,
04:44
months before Sora.
75
284906
2502
领先 Sora 数月。
04:47
And you're seeing some of these results.
76
287450
2586
来看一些结果。
04:50
There is room for improvement.
77
290703
2711
还有改进的余地。
04:53
I mean, look at that cat's eye
78
293414
2294
看看那只猫的眼睛,
04:55
and the way it goes under the wave without ever getting wet.
79
295750
3337
还有它怎么能在水下 却没有被弄湿。
04:59
What a cat-astrophe.
80
299546
1710
真是个大“猫”病。
05:01
(Laughter)
81
301673
2711
(笑声)
05:04
And if past is prologue,
82
304425
2670
如果过去是序言,
05:07
we will learn from these mistakes and create a future we imagine.
83
307136
4672
我们会从这些错误中吸取教训, 创造一个我们想象的未来。
05:11
And in this future,
84
311850
1793
在未来,
05:13
we want AI to do everything it can for us,
85
313643
3629
我们希望 AI 为我们尽其所能,
05:17
or to help us.
86
317313
1877
或者帮助我们。
05:19
For years I have been saying
87
319607
2461
多年来,我一直在说
05:22
that taking a picture is not the same as seeing and understanding.
88
322110
4379
拍照不等于看见和理解。
05:26
Today, I would like to add to that.
89
326906
3128
今天,我想补充一下。
05:30
Simply seeing is not enough.
90
330034
3170
仅仅看见是不够的。
05:33
Seeing is for doing and learning.
91
333204
3212
看见是为了做和学。
05:36
When we act upon this world in 3D space and time,
92
336833
4755
当我们在三维空间和时间中 对这个世界采取行动时,
05:41
we learn, and we learn to see and do better.
93
341629
4213
我们会学习, 学会观察并做得更好。
05:46
Nature has created this virtuous cycle of seeing and doing
94
346175
4463
大自然创造了这种视与行的良性循环,
05:50
powered by “spatial intelligence.”
95
350680
2836
由“空间智能”所驱动。
05:54
To illustrate to you what your spatial intelligence is doing constantly,
96
354142
4171
为了说明空间智能 一直在做些什么,
05:58
look at this picture.
97
358354
1335
请看这张图片。
05:59
Raise your hand if you feel like you want to do something.
98
359731
3003
如果你想做点什么,请举手。
06:02
(Laughter)
99
362775
1377
(笑声)
06:04
In the last split of a second,
100
364193
2420
在刚才的一秒钟里,
06:06
your brain looked at the geometry of this glass,
101
366654
3087
你的大脑观察了 这个杯子的几何形状、
06:09
its place in 3D space,
102
369782
3003
它在三维空间中的位置、
06:12
its relationship with the table, the cat
103
372827
2503
它与桌子、猫 以及其他一切的关系。
06:15
and everything else.
104
375371
1335
06:16
And you can predict what's going to happen next.
105
376706
3045
而且你可以预测接下来会发生什么。
06:20
The urge to act is innate to all beings with spatial intelligence,
106
380501
6632
采取行动的冲动是所有 拥有空间智能的生物与生俱来的,
06:27
which links perception with action.
107
387133
3086
空间智能将感知与行动联系起来。
06:30
And if we want to advance AI beyond its current capabilities,
108
390637
5422
如果我们想推动 AI 超越其现有能力,
06:36
we want more than AI that can see and talk.
109
396059
3169
我们需要的不仅仅 是能看见和说话的 AI。
06:39
We want AI that can do.
110
399270
2711
我们要能做事的 AI。
06:42
Indeed, we're making exciting progress.
111
402815
3838
我们确实正在取得 一些令人兴奋的进展。
06:46
The recent milestones in spatial intelligence
112
406694
4004
空间智能领域最近的里程碑
06:50
is teaching computers to see, learn, do
113
410698
3921
是教会计算机看见、学习、做事,
06:54
and learn to see and do better.
114
414619
2210
学会看见,做得更好。
06:57
This is not easy.
115
417372
1710
这并不容易。
06:59
It took nature millions of years to evolve spatial intelligence,
116
419123
5172
大自然花了数百万年 才发展出空间智能,
07:04
which depends on the eye taking light,
117
424295
2711
由眼睛捕捉光线,
07:07
project 2D images on the retina
118
427006
2711
将二维图像投射到视网膜
07:09
and the brain to translate these data into 3D information.
119
429717
4004
和大脑上, 将这些数据转化为三维信息。
07:14
Only recently, a group of researchers from Google
120
434222
3587
就在最近,谷歌的一组研究人员
07:17
are able to develop an algorithm to take a bunch of photos
121
437850
4880
开发出了一种算法, 拍摄大量照片
07:22
and translate that into 3D space,
122
442730
3337
并将其转换到三维空间,
07:26
like the examples we're showing here.
123
446109
2252
就像我们在这里展示的例子一样。
07:29
My student and our collaborators have taken a step further
124
449070
4630
我的学生和我们的合作者更进一步,
07:33
and created an algorithm that takes one input image
125
453741
4421
创建了一种算法, 采集一张输入图像
07:38
and turn that into 3D shape.
126
458204
2586
并将其转换为三维形状。
07:40
Here are more examples.
127
460832
1960
以下是更多示例。
07:43
Recall, we talked about computer programs that can take a human sentence
128
463668
5422
回想一下,我们谈到过 可以将人类语句
转换为视频的计算机程序。
07:49
and turn it into videos.
129
469132
2043
07:51
A group of researchers in University of Michigan
130
471217
4046
密歇根大学的一组研究人员
07:55
have figured out a way to translate that line of sentence
131
475304
3796
研究出了将这行句子转换成
07:59
into 3D room layout, like shown here.
132
479142
3378
三维房间布局的方法, 如下所示。
08:03
And my colleagues at Stanford and their students
133
483354
3337
我在斯坦福大学的同事 和他们的学生
08:06
have developed an algorithm that takes one image
134
486691
4087
开发了一种算法, 可以通过一张图像
08:10
and generates infinitely plausible spaces
135
490820
3420
生成无限可能的空间
08:14
for viewers to explore.
136
494240
1960
供观众探索。
08:17
These are prototypes of the first budding signs of a future possibility.
137
497035
6256
这是未来可能性的 第一个萌芽的雏形。
08:23
One in which the human race can take our entire world
138
503332
6507
在这个可能性里, 人类采集了整个世界,
08:29
and translate it into digital forms
139
509881
2210
将其转化为数字形式,
08:32
and model the richness and nuances.
140
512133
2753
模拟其丰富性和细微的参差。
08:35
What nature did to us implicitly in our individual minds,
141
515303
5255
正如大自然暗暗 对我们每个人的大脑所做的,
08:40
spatial intelligence technology can hope to do
142
520600
3587
空间智能技术有望 提高我们的集体意识。
08:44
for our collective consciousness.
143
524187
2210
08:47
As the progress of spatial intelligence accelerates,
144
527356
3963
随着空间智能进步的加速,
08:51
a new era in this virtuous cycle is taking place in front of our eyes.
145
531319
5589
这种良性循环的新时代 正在我们眼前发生。
08:56
This back and forth is catalyzing robotic learning,
146
536908
4462
这种往复的交流 正在加速机器人学习,
09:01
a key component for any embodied intelligence system
147
541412
5005
它是任何需要理解 并与三维世界互动的
09:06
that needs to understand and interact with the 3D world.
148
546417
5297
具身智能系统的关键组成部分。
09:12
A decade ago,
149
552507
1626
十年前,
09:14
ImageNet from my lab
150
554175
2169
我实验室的 ImageNet
09:16
enabled a database of millions of high-quality photos
151
556385
4547
启用了一个包含数百万张 高质量照片的数据库,
09:20
to help train computers to see.
152
560932
2460
帮助训练计算机“看见”。
09:23
Today, we're doing the same with behaviors and actions
153
563810
4754
如今,我们也在用行为和动作
09:28
to train computers and robots how to act in the 3D world.
154
568606
4796
训练计算机和机器人 在三维世界中采取行动。
09:34
But instead of collecting static images,
155
574403
3254
但是,我们没有收集静态图像,
09:37
we develop simulation environments powered by 3D spatial models
156
577657
5755
而是开发了 基于三维空间模型的仿真环境,
09:43
so that the computers can have infinite varieties of possibilities
157
583454
5339
这样计算机就可以有无限的可能性
09:48
to learn to act.
158
588793
2085
来学会行动。
09:50
And you're just seeing a small number of examples
159
590920
4630
你刚看到了一小部分示例,
09:55
to teach our robots
160
595591
1418
是在指导我们的机器人,
09:57
in a project led by my lab called Behavior.
161
597009
3003
来自我的实验室领导的 一个名为 Behavior 的项目。
10:00
We’re also making exciting progress in robotic language intelligence.
162
600805
5839
我们还在机器人语言智能方面 取得了令人兴奋的进展。
10:06
Using large language model-based input,
163
606644
3170
通过基于大语言模型的输入,
10:09
my students and our collaborators are among the first teams
164
609814
4004
我的学生和合作者们是第一批
10:13
that can show a robotic arm performing a variety of tasks
165
613818
5547
能够展示机械臂根据口头指示
执行各种任务的团队之一,
10:19
based on verbal instructions,
166
619407
2002
10:21
like opening this drawer or unplugging a charged phone.
167
621409
4421
例如打开抽屉 或拔掉充满电的手机。
10:26
Or making sandwiches, using bread, lettuce, tomatoes
168
626330
5130
或者用面包、生菜、西红柿 制作三明治,
10:31
and even putting a napkin for the user.
169
631460
3045
甚至会为用户放上一张纸巾。
10:34
Typically I would like a little more for my sandwich,
170
634505
2878
通常我会想在三明治里多放点料,
10:37
but this is a good start.
171
637425
1877
但这是一个不错的开始。
10:39
(Laughter)
172
639302
1167
(笑声)
10:40
In that primordial ocean, in our ancient times,
173
640970
5130
在我们远古时代的那片原始海洋中,
10:46
the ability to see and perceive one's environment
174
646142
3837
看见和感知环境的能力
10:50
kicked off the Cambrian explosion of interactions with other life forms.
175
650021
5130
拉开了与其他生命形式互动的 寒武纪生命大爆发的序幕。
10:55
Today, that light is reaching the digital minds.
176
655193
4629
此刻,这道光射向了数字大脑。
10:59
Spatial intelligence is allowing machines
177
659864
3503
空间智能使机器
11:03
to interact not only with one another,
178
663409
3086
不仅可以相互交互,
11:06
but with humans, and with 3D worlds,
179
666537
3379
还可以与人类、 真实或虚拟的三维世界进行交互。
11:09
real or virtual.
180
669957
1919
11:12
And as that future is taking shape,
181
672251
2628
随着未来逐渐成形,
11:14
it will have a profound impact to many lives.
182
674879
3795
它将对许多生命产生深远的影响。
11:18
Let's take health care as an example.
183
678716
2878
我们以医疗保健为例。
11:21
For the past decade,
184
681636
1668
在过去的十年中,
11:23
my lab has been taking some of the first steps
185
683346
3461
我的实验室一直在 进行一些初步研究,
11:26
in applying AI to tackle challenges that impact patient outcome
186
686849
5589
将 AI 应用于应对影响患者预后
11:32
and medical staff burnout.
187
692438
2252
和医务人员倦怠的挑战。
11:34
Together with our collaborators from Stanford School of Medicine
188
694732
3754
我们正在与斯坦福医学院
11:38
and partnering hospitals,
189
698486
2085
和合作医院的合作者们一起
11:40
we're piloting smart sensors
190
700571
2419
试点使用智能传感器,
11:43
that can detect clinicians going into patient rooms
191
703032
3712
检测临床医生在 未正确洗手的情况下进入病房。
11:46
without properly washing their hands.
192
706744
3003
11:49
Or keep track of surgical instruments.
193
709747
3337
或者追踪手术器械。
11:53
Or alert care teams when a patient is at physical risk,
194
713084
3920
或者,当患者面临身体危险, 例如跌倒时,提醒护理团队。
11:57
such as falling.
195
717004
1502
11:59
We consider these techniques a form of ambient intelligence,
196
719465
4630
我们将这些技术 视为环境智能的一种形式,
12:04
like extra pairs of eyes that do make a difference.
197
724095
4212
就像多几双帮得上忙的眼睛。
12:08
But I would like more interactive help for our patients, clinicians
198
728724
5756
但我希望为我们的患者、临床医生
和看护人员提供更多的互动式帮助, 他们也迫切需要帮助。
12:14
and caretakers, who desperately also need an extra pair of hands.
199
734522
4921
12:19
Imagine an autonomous robot transporting medical supplies
200
739860
4672
想象一下, 一个自主机器人运送医疗用品,
12:24
while caretakers focus on our patients
201
744573
3003
看护人员则专注于我们的患者,
12:27
or augmented reality, guiding surgeons to do safer, faster
202
747618
4713
或用增强现实 引导外科医生更安全、更快地做手术
12:32
and less invasive operations.
203
752373
2377
或者让手术的侵入性更低。
12:35
Or imagine patients with severe paralysis controlling robots with their thoughts.
204
755584
6841
或者想象一下严重瘫痪的患者 用自己的意念控制机器人。
12:42
That's right, brainwaves, to perform everyday tasks
205
762466
3921
没错,脑电波,可以执行 你我司空见惯的日常任务。
12:46
that you and I take for granted.
206
766429
2627
12:49
You're seeing a glimpse of that future in this pilot study from my lab recently.
207
769098
5881
在我实验室最近进行的这项试点研究中, 你可以一窥那样的未来。
12:55
In this video, the robotic arm is cooking a Japanese sukiyaki meal
208
775021
5964
在这段视频中,机械臂 正在烹饪一顿日本寿喜烧,
13:00
controlled only by the brain electrical signal,
209
780985
4463
仅由大脑电信号控制,
13:05
non-invasively collected through an EEG cap.
210
785489
4338
通过脑电帽非侵入性收集。
13:10
(Applause)
211
790661
2586
(掌声)
13:13
Thank you.
212
793289
1168
谢谢。
13:16
The emergence of vision half a billion years ago
213
796292
3378
五亿年前视觉的出现
13:19
turned a world of darkness upside down.
214
799712
3337
颠覆了黑暗的世界。
13:23
It set off the most profound evolutionary process:
215
803090
4004
它开启了最重大的进化过程:
13:27
the development of intelligence in the animal world.
216
807136
3962
动物世界智力的发展。
13:31
AI's breathtaking progress in the last decade is just as astounding.
217
811515
5381
AI 在过去十年中取得的惊人进步 同样令人震惊。
13:37
But I believe the full potential of this digital Cambrian explosion
218
817730
4880
但我相信,这场 数字寒武纪大爆发的全部潜力
13:42
won't be fully realized until we power our computers and robots
219
822651
6507
不会被完全发挥出来, 除非我们用空间智能
13:49
with spatial intelligence,
220
829158
2169
赋能我们的计算机和机器人,
13:51
just like what nature did to all of us.
221
831369
2585
正如大自然对我们所有人做的那样。
13:55
It’s an exciting time to teach our digital companion
222
835081
4045
这是一个激动人心的时刻, 可以教导我们的数字伙伴
13:59
to learn to reason
223
839126
1669
学会推理
14:00
and to interact with this beautiful 3D space we call home,
224
840836
4797
并与这个我们称为“家”的 美丽三维空间互动,
14:05
and also create many more new worlds that we can all explore.
225
845674
5172
同时创造更多我们可以探索的新世界。
14:11
To realize this future won't be easy.
226
851514
2878
要实现这个未来并不容易。
14:14
It requires all of us to take thoughtful steps
227
854433
4463
需要我们所有人每一步深思熟虑,
14:18
and develop technologies that always put humans in the center.
228
858938
4421
开发始终以人为本的技术。
14:23
But if we do this right,
229
863776
2210
但是,如果我们做对了,
14:26
the computers and robots powered by spatial intelligence
230
866028
3837
由空间智能驱动的计算机和机器人
14:29
will not only be useful tools
231
869907
2419
将不仅是实用的工具,
14:32
but also trusted partners
232
872368
2586
而且是值得信赖的合作伙伴,
14:34
to enhance and augment our productivity and humanity
233
874995
4130
可以提高、增强 我们的生产力和人性,
14:39
while respecting our individual dignity
234
879166
2920
同时,不损害我们每个人的尊严,
14:42
and lifting our collective prosperity.
235
882128
2585
促进我们的共同繁荣。
14:45
What excites me the most in the future
236
885631
3712
未来最令我兴奋的是,
14:49
is a future in which that AI grows more perceptive,
237
889343
4671
在未来,AI 有更强的理解能力、
14:54
insightful and spatially aware,
238
894056
3128
洞察力和空间感知能力,
14:57
and they join us on our quest
239
897184
2920
它们将和我们一起追求
15:00
to always pursue a better way to make a better world.
240
900104
5172
更好的方式, 创造更美好的世界。
15:05
Thank you.
241
905276
1209
谢谢。
15:06
(Applause)
242
906485
4296
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog