With Spatial Intelligence, AI Will Understand the Real World | Fei-Fei Li | TED

621,822 views ・ 2024-05-16

TED


請雙擊下方英文字幕播放視頻。

譯者: C Leung 審譯者: 麗玲 辛
00:04
Let me show you something.
0
4334
1877
讓我展示一些東西給你看。
00:06
To be precise,
1
6253
1626
準確來說,
00:07
I'm going to show you nothing.
2
7921
2002
我要展示給你們的是 「什麼都看不到」。
00:10
This was the world 540 million years ago.
3
10423
4797
這是 540 億年前的世界,
00:15
Pure, endless darkness.
4
15262
2711
純粹、無盡的黑暗。
00:18
It wasn't dark due to a lack of light.
5
18723
3587
不是因為沒有光,
00:22
It was dark because of a lack of sight.
6
22602
3253
而是因為沒有視覺。
00:27
Although sunshine did filter 1,000 meters
7
27566
5005
雖然陽光確實能透射到
海平面下 1000 米。
00:32
beneath the surface of ocean,
8
32612
2378
00:35
a light permeated from hydrothermal vents to seafloor,
9
35031
5339
光線穿透到海底熱泉、到海床,
00:40
brimming with life,
10
40370
1710
充滿著生機,
00:42
there was not a single eye to be found in these ancient waters.
11
42122
5046
這些古老水域卻連一隻眼睛都找不到,
00:47
No retinas, no corneas, no lenses.
12
47669
4588
沒有視網膜,沒有角膜,沒有晶狀體。
00:52
So all this light, all this life went unseen.
13
52632
4880
所以這些光,這些生命, 從未被看見。
00:57
There was a time that the very idea of seeing didn't exist.
14
57971
5005
曾經有一段時間, 「視覺」這個概念根本不存在。
01:03
It [had] simply never been done before.
15
63351
2544
這在以前從未發生過,
01:06
Until it was.
16
66438
1459
直到它發生。
01:09
So for reasons we're only beginning to understand,
17
69274
3253
因此,由於我們才剛開始了解的原因,
01:12
trilobites, the first organisms that could sense light, emerged.
18
72569
5839
三葉蟲,第一種能夠 感知光的生物出現了,
01:18
They're the first inhabitants of this reality that we take for granted.
19
78408
5797
它們是我們視為理所當然的 這個現實世界的第一批居民。
01:24
First to discover that there is something other than oneself.
20
84247
4671
首次發現除了自己之外, 還有其他東西存在,
01:28
A world of many selves.
21
88918
2420
一個有多個我的世界。
01:32
The ability to see is thought to have ushered in Cambrian explosion,
22
92339
4754
一般認為,視覺能力 促成寒武紀的大爆發,
01:37
a period in which a huge variety of animal species
23
97093
4338
這時期,種類繁多的動物物種
01:41
entered fossil records.
24
101431
2377
進入了化石記錄。
01:43
What began as a passive experience,
25
103808
3045
最初,視覺是一種被動體驗,
01:46
the simple act of letting light in,
26
106895
3462
單純讓光進入,
01:50
soon became far more active.
27
110357
2544
但很快就變得更加主動。
01:53
The nervous system began to evolve.
28
113443
3503
神經系統開始進化。
01:56
Sight turning to insight.
29
116988
3379
視力轉變成洞察力。
02:00
Seeing became understanding.
30
120367
2877
看見變成了理解。
02:03
Understanding led to actions.
31
123244
2461
理解導致行動。
02:05
And all these gave rise to intelligence.
32
125705
4129
這一切都促成了智能的誕生。
02:10
Today, we're no longer satisfied with just nature's gift of visual intelligence.
33
130669
6756
今天,我們不再滿足於 僅僅擁有自然賦予的視覺智能,
02:17
Curiosity urges us to create machines to see just as intelligently as we can,
34
137425
6507
好奇心促使我們創造出 跟我們同樣有視覺智能的機器,
02:23
if not better.
35
143932
1793
甚至更好。
02:25
Nine years ago, on this stage,
36
145725
2086
九年前,在這個講臺,
02:27
I delivered an early progress report on computer vision,
37
147811
4421
我發表了一份有關 電腦視覺的早期進度報告,
02:32
a subfield of artificial intelligence.
38
152273
2461
這是人工智能的一個分支。 (Intelligence一字譯法以講者為準)
02:35
Three powerful forces converged for the first time.
39
155235
4546
三種強大力量第一次匯集。
02:39
Aa family of algorithms called neural networks.
40
159823
3587
稱為神經網路的一系列演算法,
02:43
Fast, specialized hardware called graphic processing units,
41
163410
4587
快速、專門化的硬體,稱為圖形處理器
02:48
or GPUs.
42
168039
1585
或 GPU,
02:49
And big data.
43
169666
1418
以及大數據。
02:51
Like the 15 million images that my lab spent years curating called ImageNet.
44
171126
6256
就像我的實驗室花費多年時間整理
名為 ImageNet 的 1500 萬張圖像,
02:57
Together, they ushered in the age of modern AI.
45
177382
4171
這些力量共同開啟了 現代 AI 時代。
03:02
We've come a long way.
46
182554
1585
我們已有很大的進展,
03:04
Back then, just putting labels on images was a big breakthrough.
47
184139
4546
當時,只在圖像上加入標籤 就是個重大突破。
03:09
But the speed and accuracy of these algorithms just improved rapidly.
48
189352
4963
但這些演算法的速度 和準確性迅速提高。
03:14
The annual ImageNet challenge, led by my lab,
49
194816
3503
由我實驗室主導的 年度 ImageNet 挑戰賽
03:18
gauged the performance of this progress.
50
198361
3003
評估了這項進展的表現。
03:21
And on this plot, you're seeing the annual improvement
51
201364
3587
在這張圖上,你會看到每年的進步
03:24
and milestone models.
52
204993
2127
和里程碑模型。
03:27
We went a step further
53
207787
1669
我們更進一步,
03:29
and created algorithms that can segment objects
54
209456
5005
創建了可以分割物件
03:34
or predict the dynamic relationships among them
55
214461
3378
或預測物件之間動態關係的演算法。
03:37
in these works done by my students and collaborators.
56
217839
3587
這些都是我的學生們 和合作者完成的工作。
03:41
And there's more.
57
221885
1543
還有更多。
03:43
Recall last time I showed you the first computer-vision algorithm
58
223428
4463
請回想一下,我上次 向你展示的首個電腦視覺演算法,
03:47
that can describe a photo in human natural language.
59
227932
4463
它可以用人類自然語言描述照片。
03:52
That was work done with my brilliant former student, Andrej Karpathy.
60
232729
4171
那是我之前優秀的學生 安德烈·卡帕蒂跟我一起完成。
03:57
At that time, I pushed my luck and said,
61
237484
2294
當時我碰碰運氣跟他說:
03:59
"Andrej, can we make computers to do the reverse?"
62
239819
3045
「安德烈,我們可以用電腦 來做相反的事嗎?」
04:02
And Andrej said, "Ha ha, that's impossible."
63
242906
2919
他說:「哈哈,這是不可能的。」
04:05
Well, as you can see from this post,
64
245867
1835
嗯,正如你從這篇文章中看到,
04:07
recently the impossible has become possible.
65
247744
3628
最近,這件不可能的事已成為可能。
04:11
That's thanks to a family of diffusion models
66
251998
3003
這要歸功於一組稱為擴散模型的技術,
04:15
that powers today's generative AI algorithm,
67
255001
3545
驅動了當今的生成式 AI 演算法,
04:18
which can take human-prompted sentences
68
258546
3629
可以將人類提示的句子
04:22
and turn them into photos and videos
69
262175
3462
變成全新創作的照片和影片。
04:25
of something that's entirely new.
70
265678
2628
04:28
Many of you have seen the recent impressive results of Sora by OpenAI.
71
268306
5297
在座許多人都看過 OpenAI 最近推出令人驚豔的 Sora 成果。
04:34
But even without the enormous number of GPUs,
72
274187
3754
但即使沒有大量 GPU,
04:37
my student and our collaborators
73
277941
2502
我的學生和合作夥伴
04:40
have developed a generative video model called Walt
74
280443
4421
也已開發了一個名為 Walt 的生成式影片模型,
04:44
months before Sora.
75
284906
2502
而且比 Sora 還早幾個月。
04:47
And you're seeing some of these results.
76
287450
2586
你們現在看到的是一些成果。
04:50
There is room for improvement.
77
290703
2711
還有改進空間。
04:53
I mean, look at that cat's eye
78
293414
2294
看看那隻貓的眼睛,
04:55
and the way it goes under the wave without ever getting wet.
79
295750
3337
還有它在浪潮下卻不會被弄濕。
04:59
What a cat-astrophe.
80
299546
1710
真是場災難。
05:01
(Laughter)
81
301673
2711
(笑聲)
05:04
And if past is prologue,
82
304425
2670
若過去是序幕,
05:07
we will learn from these mistakes and create a future we imagine.
83
307136
4672
我們將從這些錯誤中學習, 創造我們所想像的未來。
05:11
And in this future,
84
311850
1793
而在未來,
05:13
we want AI to do everything it can for us,
85
313643
3629
我們希望 AI 能為我們 做一切它能做的事,
05:17
or to help us.
86
317313
1877
或協助我們。
05:19
For years I have been saying
87
319607
2461
多年來,我一直在說,
05:22
that taking a picture is not the same as seeing and understanding.
88
322110
4379
拍照並不等於看到和理解。
05:26
Today, I would like to add to that.
89
326906
3128
今天,我想再補充一點,
05:30
Simply seeing is not enough.
90
330034
3170
只是看到還不夠,
05:33
Seeing is for doing and learning.
91
333204
3212
看見是為了行動和學習。
05:36
When we act upon this world in 3D space and time,
92
336833
4755
當我們在三維空間和時間中行動時,
05:41
we learn, and we learn to see and do better.
93
341629
4213
我們會學習,並學會去看和做得更好。
05:46
Nature has created this virtuous cycle of seeing and doing
94
346175
4463
大自然創造了由「空間智能」 驅動的良性循環,
05:50
powered by “spatial intelligence.”
95
350680
2836
觀察和行動。
05:54
To illustrate to you what your spatial intelligence is doing constantly,
96
354142
4171
為了向你說明你的空間智能 如何不斷地運作,
05:58
look at this picture.
97
358354
1335
請看這張圖片。
05:59
Raise your hand if you feel like you want to do something.
98
359731
3003
如果你覺得自己想採取行動,請舉手。
06:02
(Laughter)
99
362775
1377
(笑聲)
06:04
In the last split of a second,
100
364193
2420
在剛剛極短的時間裏,
06:06
your brain looked at the geometry of this glass,
101
366654
3087
你的大腦觀察了 這個玻璃杯的幾何形狀,
06:09
its place in 3D space,
102
369782
3003
在三維空間中的位置,
06:12
its relationship with the table, the cat
103
372827
2503
它與桌子、貓
06:15
and everything else.
104
375371
1335
和其他物品的關係。
06:16
And you can predict what's going to happen next.
105
376706
3045
你可以預測接下來會發生什麼事。
06:20
The urge to act is innate to all beings with spatial intelligence,
106
380501
6632
行動的衝動是所有 具有空間智能的生物的天性,
06:27
which links perception with action.
107
387133
3086
它將感知與行動聯繫起來。
06:30
And if we want to advance AI beyond its current capabilities,
108
390637
5422
如果我們想讓 AI 超越目前的能力,
06:36
we want more than AI that can see and talk.
109
396059
3169
我們需要的不僅僅是 能看見和交談的 AI,
06:39
We want AI that can do.
110
399270
2711
我們需要的是能夠做到 實際行動的 AI。
06:42
Indeed, we're making exciting progress.
111
402815
3838
的確,我們正取得令人興奮的進展。
06:46
The recent milestones in spatial intelligence
112
406694
4004
空間智能最近的里程碑
06:50
is teaching computers to see, learn, do
113
410698
3921
是教電腦去看見、學習、行動,
06:54
and learn to see and do better.
114
414619
2210
並且學會更好地看見和行動。
06:57
This is not easy.
115
417372
1710
這並不容易。
06:59
It took nature millions of years to evolve spatial intelligence,
116
419123
5172
大自然花了數百萬年的時間 才進化出空間智能,
07:04
which depends on the eye taking light,
117
424295
2711
這取決於眼睛接收光線,
07:07
project 2D images on the retina
118
427006
2711
將二維影像投射到視網膜上,
07:09
and the brain to translate these data into 3D information.
119
429717
4004
大腦再將這些數據轉換為三維信息。
07:14
Only recently, a group of researchers from Google
120
434222
3587
就最近,一群來自谷歌的研究人員
07:17
are able to develop an algorithm to take a bunch of photos
121
437850
4880
開發出一種演算法,
可以將一組照片轉換為三維空間,
07:22
and translate that into 3D space,
122
442730
3337
07:26
like the examples we're showing here.
123
446109
2252
就像我們在這裡展示的例子。
07:29
My student and our collaborators have taken a step further
124
449070
4630
我的學生和我們的合作夥伴更進一步,
07:33
and created an algorithm that takes one input image
125
453741
4421
創建了一個演算法,
可以從一張輸入圖片生成三維形狀。
07:38
and turn that into 3D shape.
126
458204
2586
07:40
Here are more examples.
127
460832
1960
以下是更多的例子。
07:43
Recall, we talked about computer programs that can take a human sentence
128
463668
5422
回想一下,我們剛提到一個電腦程式,
可以將人類句子轉換為影片,
07:49
and turn it into videos.
129
469132
2043
07:51
A group of researchers in University of Michigan
130
471217
4046
密歇根大學的一群研究人員 已經找到了一種方法,
07:55
have figured out a way to translate that line of sentence
131
475304
3796
將這些句子轉化成三維的 房間佈局,如影片所示。
07:59
into 3D room layout, like shown here.
132
479142
3378
08:03
And my colleagues at Stanford and their students
133
483354
3337
我在史丹福的同事和他們的學生
08:06
have developed an algorithm that takes one image
134
486691
4087
開發了一種演算法,
可以從一張圖像生成無限可能的空間,
08:10
and generates infinitely plausible spaces
135
490820
3420
08:14
for viewers to explore.
136
494240
1960
供觀眾探索。
08:17
These are prototypes of the first budding signs of a future possibility.
137
497035
6256
這些是未來可能性的 最初萌芽跡象的原型。
08:23
One in which the human race can take our entire world
138
503332
6507
在這個未來,人類可以將整個世界
08:29
and translate it into digital forms
139
509881
2210
轉化為數位形式,
08:32
and model the richness and nuances.
140
512133
2753
並模擬其豐富性和細微差別。
08:35
What nature did to us implicitly in our individual minds,
141
515303
5255
大自然在我們的個體大腦中 隱含完成的事情,
08:40
spatial intelligence technology can hope to do
142
520600
3587
空間智能技術可以為 我們的集體意識做到。
08:44
for our collective consciousness.
143
524187
2210
08:47
As the progress of spatial intelligence accelerates,
144
527356
3963
隨著空間智能的進展加速,
08:51
a new era in this virtuous cycle is taking place in front of our eyes.
145
531319
5589
一個新的良性循環時代 正在我們眼前展開。
08:56
This back and forth is catalyzing robotic learning,
146
536908
4462
這一來一回促進了機器學習,
09:01
a key component for any embodied intelligence system
147
541412
5005
這是任何實體智能系統的 關鍵組成部份,
09:06
that needs to understand and interact with the 3D world.
148
546417
5297
因其需要理解三維世界並與之互動。
09:12
A decade ago,
149
552507
1626
十年前,
09:14
ImageNet from my lab
150
554175
2169
我實驗室的 ImageNet
09:16
enabled a database of millions of high-quality photos
151
556385
4547
啟用了包含數百萬張 高品質照片的資料庫,
09:20
to help train computers to see.
152
560932
2460
以幫助訓練電腦去看。
09:23
Today, we're doing the same with behaviors and actions
153
563810
4754
今天,我們同樣用行為和行動
09:28
to train computers and robots how to act in the 3D world.
154
568606
4796
訓練電腦和機器人在三維世界中行動。
09:34
But instead of collecting static images,
155
574403
3254
我們不是收集靜態影像,
09:37
we develop simulation environments powered by 3D spatial models
156
577657
5755
而是開發由三維空間模型 驅動的模擬環境,
09:43
so that the computers can have infinite varieties of possibilities
157
583454
5339
這樣電腦就可以有無限種可能性
09:48
to learn to act.
158
588793
2085
來學習行動。
09:50
And you're just seeing a small number of examples
159
590920
4630
而你只是看到了少量例子,
09:55
to teach our robots
160
595591
1418
在教導我們的機器人,
09:57
in a project led by my lab called Behavior.
161
597009
3003
來自我實驗室主導 一個叫「行為」的專案。
10:00
We’re also making exciting progress in robotic language intelligence.
162
600805
5839
我們也在機器人語言智能方面 取得令人興奮的進展。
10:06
Using large language model-based input,
163
606644
3170
使用大型語言模型輸入,
10:09
my students and our collaborators are among the first teams
164
609814
4004
我的學生和我們的合作夥伴 是眾多團隊中第一批
10:13
that can show a robotic arm performing a variety of tasks
165
613818
5547
能夠展示機械臂
根據口頭指令,執行各種任務,
10:19
based on verbal instructions,
166
619407
2002
10:21
like opening this drawer or unplugging a charged phone.
167
621409
4421
如打開這個抽屜 或拔下充好電的手機,
10:26
Or making sandwiches, using bread, lettuce, tomatoes
168
626330
5130
或者製作三明治, 用麵包,生菜,蕃茄,
10:31
and even putting a napkin for the user.
169
631460
3045
甚至為用戶放張餐巾紙。
10:34
Typically I would like a little more for my sandwich,
170
634505
2878
通常我想我的三明治要更多配料,
10:37
but this is a good start.
171
637425
1877
但這是個好開始。
10:39
(Laughter)
172
639302
1167
(笑聲)
10:40
In that primordial ocean, in our ancient times,
173
640970
5130
在那遠古時代的原始海洋中,
10:46
the ability to see and perceive one's environment
174
646142
3837
觀察和感知環境的能力
10:50
kicked off the Cambrian explosion of interactions with other life forms.
175
650021
5130
引發了寒武紀大爆發, 各種生命形式的相互作用。
10:55
Today, that light is reaching the digital minds.
176
655193
4629
如今,這種光芒正照亮數位思維。
10:59
Spatial intelligence is allowing machines
177
659864
3503
空間智能不僅讓機器能彼此互動,
11:03
to interact not only with one another,
178
663409
3086
11:06
but with humans, and with 3D worlds,
179
666537
3379
還可以與人類以及三維世界互動,
11:09
real or virtual.
180
669957
1919
無論是真實還是虛擬世界。
11:12
And as that future is taking shape,
181
672251
2628
隨著未來漸漸成形,
11:14
it will have a profound impact to many lives.
182
674879
3795
它將對許多人的生活產生深遠的影響。
11:18
Let's take health care as an example.
183
678716
2878
我們以醫療保健為例。
11:21
For the past decade,
184
681636
1668
過去十年來,
11:23
my lab has been taking some of the first steps
185
683346
3461
我的實驗室已經邁出了第一步,
11:26
in applying AI to tackle challenges that impact patient outcome
186
686849
5589
應用 AI 來應對影響患者治療結果
11:32
and medical staff burnout.
187
692438
2252
和醫護人員過勞的挑戰。
11:34
Together with our collaborators from Stanford School of Medicine
188
694732
3754
我們與史丹福醫學院的合作夥伴
11:38
and partnering hospitals,
189
698486
2085
和合作醫院
11:40
we're piloting smart sensors
190
700571
2419
一起試行智能感測器,
11:43
that can detect clinicians going into patient rooms
191
703032
3712
檢測醫護人員是否 在未正確洗手的情況下進入病房。
11:46
without properly washing their hands.
192
706744
3003
11:49
Or keep track of surgical instruments.
193
709747
3337
或追蹤手術器械的位置。
11:53
Or alert care teams when a patient is at physical risk,
194
713084
3920
或者,當患者面臨跌倒等 風險時,提醒護理團隊。
11:57
such as falling.
195
717004
1502
11:59
We consider these techniques a form of ambient intelligence,
196
719465
4630
我們認為這些技術是 環境智能的一種形式,
12:04
like extra pairs of eyes that do make a difference.
197
724095
4212
就像多一雙眼睛,確實能帶來改變。
12:08
But I would like more interactive help for our patients, clinicians
198
728724
5756
但我希望為我們的患者、臨床醫生 和護理人員提供更多互動幫助,
12:14
and caretakers, who desperately also need an extra pair of hands.
199
734522
4921
他們也迫切需要額外的協助。
12:19
Imagine an autonomous robot transporting medical supplies
200
739860
4672
想像一個自主機器人運送醫療用品,
12:24
while caretakers focus on our patients
201
744573
3003
與此同時,護理人員專注於照顧患者,
12:27
or augmented reality, guiding surgeons to do safer, faster
202
747618
4713
或擴增實境指導外科醫生 進行更安全、更快速、
12:32
and less invasive operations.
203
752373
2377
更少侵入性的手術。
12:35
Or imagine patients with severe paralysis controlling robots with their thoughts.
204
755584
6841
或者想像嚴重癱瘓的患者 用他們的思想控制機器人。
12:42
That's right, brainwaves, to perform everyday tasks
205
762466
3921
沒錯,用腦電波來執行
你我都認為理所當然的日常任務。
12:46
that you and I take for granted.
206
766429
2627
12:49
You're seeing a glimpse of that future in this pilot study from my lab recently.
207
769098
5881
你可以在我實驗室最近進行的 試點研究中看到這一未來。
12:55
In this video, the robotic arm is cooking a Japanese sukiyaki meal
208
775021
5964
在這部影片中, 機械臂正在烹調日本壽喜燒,
13:00
controlled only by the brain electrical signal,
209
780985
4463
它僅由大腦電信號控制,
13:05
non-invasively collected through an EEG cap.
210
785489
4338
信號是由非侵入性 腦電圖(EEG)帽收集的。
13:10
(Applause)
211
790661
2586
(掌聲)
13:13
Thank you.
212
793289
1168
謝謝
13:16
The emergence of vision half a billion years ago
213
796292
3378
五億年前,視覺的出現
13:19
turned a world of darkness upside down.
214
799712
3337
顛覆了黑暗世界。
13:23
It set off the most profound evolutionary process:
215
803090
4004
它引發了最深遠的進化過程:
13:27
the development of intelligence in the animal world.
216
807136
3962
動物世界智能的發展。
13:31
AI's breathtaking progress in the last decade is just as astounding.
217
811515
5381
AI 在過去十年中取得的 驚人進步同樣令人驚訝。
13:37
But I believe the full potential of this digital Cambrian explosion
218
817730
4880
但我相信,這種數位寒武紀爆發的 全部潛力不會完全實現,
13:42
won't be fully realized until we power our computers and robots
219
822651
6507
直到我們為電腦和機器人 提供空間智能,
13:49
with spatial intelligence,
220
829158
2169
13:51
just like what nature did to all of us.
221
831369
2585
就像大自然給予我們所有人的一樣。
這是一個令人興奮的時機,
13:55
It’s an exciting time to teach our digital companion
222
835081
4045
教導我們的數位伴侶學會推理,
13:59
to learn to reason
223
839126
1669
14:00
and to interact with this beautiful 3D space we call home,
224
840836
4797
並與我們這個稱為家的 美麗三維空間互動,
14:05
and also create many more new worlds that we can all explore.
225
845674
5172
也創造許多我們可以探索的新世界。
14:11
To realize this future won't be easy.
226
851514
2878
實現這個未來並不容易。
14:14
It requires all of us to take thoughtful steps
227
854433
4463
這需要我們所有人深思熟慮的努力,
14:18
and develop technologies that always put humans in the center.
228
858938
4421
開發始終以人類為中心的技術。
14:23
But if we do this right,
229
863776
2210
但如果我們做得對,
14:26
the computers and robots powered by spatial intelligence
230
866028
3837
由空間智能驅動的電腦和機器人
14:29
will not only be useful tools
231
869907
2419
不僅會成為有用的工具,
14:32
but also trusted partners
232
872368
2586
也會是值得信賴的合作夥伴,
14:34
to enhance and augment our productivity and humanity
233
874995
4130
可以增強、提升我們的生產力和人性,
14:39
while respecting our individual dignity
234
879166
2920
同時尊重我們的個體尊嚴,
14:42
and lifting our collective prosperity.
235
882128
2585
並提升我們的集體繁榮。
14:45
What excites me the most in the future
236
885631
3712
未來最令我興奮的事
14:49
is a future in which that AI grows more perceptive,
237
889343
4671
是 AI 變得更加敏銳、
14:54
insightful and spatially aware,
238
894056
3128
有洞察力和空間感知,
14:57
and they join us on our quest
239
897184
2920
並與我們一起
15:00
to always pursue a better way to make a better world.
240
900104
5172
努力追求更好的方法, 以創造更美好的世界。
15:05
Thank you.
241
905276
1209
謝謝。
15:06
(Applause)
242
906485
4296
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7