With Spatial Intelligence, AI Will Understand the Real World | Fei-Fei Li | TED

711,435 views ・ 2024-05-16

TED


請雙擊下方英文字幕播放視頻。

譯者: C Leung 審譯者: 麗玲 辛
00:04
Let me show you something.
0
4334
1877
讓我展示一些東西給你看。
00:06
To be precise,
1
6253
1626
準確來說,
00:07
I'm going to show you nothing.
2
7921
2002
我要展示給你們的是 「什麼都看不到」。
00:10
This was the world 540 million years ago.
3
10423
4797
這是 540 億年前的世界,
00:15
Pure, endless darkness.
4
15262
2711
純粹、無盡的黑暗。
00:18
It wasn't dark due to a lack of light.
5
18723
3587
不是因為沒有光,
00:22
It was dark because of a lack of sight.
6
22602
3253
而是因為沒有視覺。
00:27
Although sunshine did filter 1,000 meters
7
27566
5005
雖然陽光確實能透射到
海平面下 1000 米。
00:32
beneath the surface of ocean,
8
32612
2378
00:35
a light permeated from hydrothermal vents to seafloor,
9
35031
5339
光線穿透到海底熱泉、到海床,
00:40
brimming with life,
10
40370
1710
充滿著生機,
00:42
there was not a single eye to be found in these ancient waters.
11
42122
5046
這些古老水域卻連一隻眼睛都找不到,
00:47
No retinas, no corneas, no lenses.
12
47669
4588
沒有視網膜,沒有角膜,沒有晶狀體。
00:52
So all this light, all this life went unseen.
13
52632
4880
所以這些光,這些生命, 從未被看見。
00:57
There was a time that the very idea of seeing didn't exist.
14
57971
5005
曾經有一段時間, 「視覺」這個概念根本不存在。
01:03
It [had] simply never been done before.
15
63351
2544
這在以前從未發生過,
01:06
Until it was.
16
66438
1459
直到它發生。
01:09
So for reasons we're only beginning to understand,
17
69274
3253
因此,由於我們才剛開始了解的原因,
01:12
trilobites, the first organisms that could sense light, emerged.
18
72569
5839
三葉蟲,第一種能夠 感知光的生物出現了,
01:18
They're the first inhabitants of this reality that we take for granted.
19
78408
5797
它們是我們視為理所當然的 這個現實世界的第一批居民。
01:24
First to discover that there is something other than oneself.
20
84247
4671
首次發現除了自己之外, 還有其他東西存在,
01:28
A world of many selves.
21
88918
2420
一個有多個我的世界。
01:32
The ability to see is thought to have ushered in Cambrian explosion,
22
92339
4754
一般認為,視覺能力 促成寒武紀的大爆發,
01:37
a period in which a huge variety of animal species
23
97093
4338
這時期,種類繁多的動物物種
01:41
entered fossil records.
24
101431
2377
進入了化石記錄。
01:43
What began as a passive experience,
25
103808
3045
最初,視覺是一種被動體驗,
01:46
the simple act of letting light in,
26
106895
3462
單純讓光進入,
01:50
soon became far more active.
27
110357
2544
但很快就變得更加主動。
01:53
The nervous system began to evolve.
28
113443
3503
神經系統開始進化。
01:56
Sight turning to insight.
29
116988
3379
視力轉變成洞察力。
02:00
Seeing became understanding.
30
120367
2877
看見變成了理解。
02:03
Understanding led to actions.
31
123244
2461
理解導致行動。
02:05
And all these gave rise to intelligence.
32
125705
4129
這一切都促成了智能的誕生。
02:10
Today, we're no longer satisfied with just nature's gift of visual intelligence.
33
130669
6756
今天,我們不再滿足於 僅僅擁有自然賦予的視覺智能,
02:17
Curiosity urges us to create machines to see just as intelligently as we can,
34
137425
6507
好奇心促使我們創造出 跟我們同樣有視覺智能的機器,
02:23
if not better.
35
143932
1793
甚至更好。
02:25
Nine years ago, on this stage,
36
145725
2086
九年前,在這個講臺,
02:27
I delivered an early progress report on computer vision,
37
147811
4421
我發表了一份有關 電腦視覺的早期進度報告,
02:32
a subfield of artificial intelligence.
38
152273
2461
這是人工智能的一個分支。 (Intelligence一字譯法以講者為準)
02:35
Three powerful forces converged for the first time.
39
155235
4546
三種強大力量第一次匯集。
02:39
Aa family of algorithms called neural networks.
40
159823
3587
稱為神經網路的一系列演算法,
02:43
Fast, specialized hardware called graphic processing units,
41
163410
4587
快速、專門化的硬體,稱為圖形處理器
02:48
or GPUs.
42
168039
1585
或 GPU,
02:49
And big data.
43
169666
1418
以及大數據。
02:51
Like the 15 million images that my lab spent years curating called ImageNet.
44
171126
6256
就像我的實驗室花費多年時間整理
名為 ImageNet 的 1500 萬張圖像,
02:57
Together, they ushered in the age of modern AI.
45
177382
4171
這些力量共同開啟了 現代 AI 時代。
03:02
We've come a long way.
46
182554
1585
我們已有很大的進展,
03:04
Back then, just putting labels on images was a big breakthrough.
47
184139
4546
當時,只在圖像上加入標籤 就是個重大突破。
03:09
But the speed and accuracy of these algorithms just improved rapidly.
48
189352
4963
但這些演算法的速度 和準確性迅速提高。
03:14
The annual ImageNet challenge, led by my lab,
49
194816
3503
由我實驗室主導的 年度 ImageNet 挑戰賽
03:18
gauged the performance of this progress.
50
198361
3003
評估了這項進展的表現。
03:21
And on this plot, you're seeing the annual improvement
51
201364
3587
在這張圖上,你會看到每年的進步
03:24
and milestone models.
52
204993
2127
和里程碑模型。
03:27
We went a step further
53
207787
1669
我們更進一步,
03:29
and created algorithms that can segment objects
54
209456
5005
創建了可以分割物件
03:34
or predict the dynamic relationships among them
55
214461
3378
或預測物件之間動態關係的演算法。
03:37
in these works done by my students and collaborators.
56
217839
3587
這些都是我的學生們 和合作者完成的工作。
03:41
And there's more.
57
221885
1543
還有更多。
03:43
Recall last time I showed you the first computer-vision algorithm
58
223428
4463
請回想一下,我上次 向你展示的首個電腦視覺演算法,
03:47
that can describe a photo in human natural language.
59
227932
4463
它可以用人類自然語言描述照片。
03:52
That was work done with my brilliant former student, Andrej Karpathy.
60
232729
4171
那是我之前優秀的學生 安德烈·卡帕蒂跟我一起完成。
03:57
At that time, I pushed my luck and said,
61
237484
2294
當時我碰碰運氣跟他說:
03:59
"Andrej, can we make computers to do the reverse?"
62
239819
3045
「安德烈,我們可以用電腦 來做相反的事嗎?」
04:02
And Andrej said, "Ha ha, that's impossible."
63
242906
2919
他說:「哈哈,這是不可能的。」
04:05
Well, as you can see from this post,
64
245867
1835
嗯,正如你從這篇文章中看到,
04:07
recently the impossible has become possible.
65
247744
3628
最近,這件不可能的事已成為可能。
04:11
That's thanks to a family of diffusion models
66
251998
3003
這要歸功於一組稱為擴散模型的技術,
04:15
that powers today's generative AI algorithm,
67
255001
3545
驅動了當今的生成式 AI 演算法,
04:18
which can take human-prompted sentences
68
258546
3629
可以將人類提示的句子
04:22
and turn them into photos and videos
69
262175
3462
變成全新創作的照片和影片。
04:25
of something that's entirely new.
70
265678
2628
04:28
Many of you have seen the recent impressive results of Sora by OpenAI.
71
268306
5297
在座許多人都看過 OpenAI 最近推出令人驚豔的 Sora 成果。
04:34
But even without the enormous number of GPUs,
72
274187
3754
但即使沒有大量 GPU,
04:37
my student and our collaborators
73
277941
2502
我的學生和合作夥伴
04:40
have developed a generative video model called Walt
74
280443
4421
也已開發了一個名為 Walt 的生成式影片模型,
04:44
months before Sora.
75
284906
2502
而且比 Sora 還早幾個月。
04:47
And you're seeing some of these results.
76
287450
2586
你們現在看到的是一些成果。
04:50
There is room for improvement.
77
290703
2711
還有改進空間。
04:53
I mean, look at that cat's eye
78
293414
2294
看看那隻貓的眼睛,
04:55
and the way it goes under the wave without ever getting wet.
79
295750
3337
還有它在浪潮下卻不會被弄濕。
04:59
What a cat-astrophe.
80
299546
1710
真是場災難。
05:01
(Laughter)
81
301673
2711
(笑聲)
05:04
And if past is prologue,
82
304425
2670
若過去是序幕,
05:07
we will learn from these mistakes and create a future we imagine.
83
307136
4672
我們將從這些錯誤中學習, 創造我們所想像的未來。
05:11
And in this future,
84
311850
1793
而在未來,
05:13
we want AI to do everything it can for us,
85
313643
3629
我們希望 AI 能為我們 做一切它能做的事,
05:17
or to help us.
86
317313
1877
或協助我們。
05:19
For years I have been saying
87
319607
2461
多年來,我一直在說,
05:22
that taking a picture is not the same as seeing and understanding.
88
322110
4379
拍照並不等於看到和理解。
05:26
Today, I would like to add to that.
89
326906
3128
今天,我想再補充一點,
05:30
Simply seeing is not enough.
90
330034
3170
只是看到還不夠,
05:33
Seeing is for doing and learning.
91
333204
3212
看見是為了行動和學習。
05:36
When we act upon this world in 3D space and time,
92
336833
4755
當我們在三維空間和時間中行動時,
05:41
we learn, and we learn to see and do better.
93
341629
4213
我們會學習,並學會去看和做得更好。
05:46
Nature has created this virtuous cycle of seeing and doing
94
346175
4463
大自然創造了由「空間智能」 驅動的良性循環,
05:50
powered by “spatial intelligence.”
95
350680
2836
觀察和行動。
05:54
To illustrate to you what your spatial intelligence is doing constantly,
96
354142
4171
為了向你說明你的空間智能 如何不斷地運作,
05:58
look at this picture.
97
358354
1335
請看這張圖片。
05:59
Raise your hand if you feel like you want to do something.
98
359731
3003
如果你覺得自己想採取行動,請舉手。
06:02
(Laughter)
99
362775
1377
(笑聲)
06:04
In the last split of a second,
100
364193
2420
在剛剛極短的時間裏,
06:06
your brain looked at the geometry of this glass,
101
366654
3087
你的大腦觀察了 這個玻璃杯的幾何形狀,
06:09
its place in 3D space,
102
369782
3003
在三維空間中的位置,
06:12
its relationship with the table, the cat
103
372827
2503
它與桌子、貓
06:15
and everything else.
104
375371
1335
和其他物品的關係。
06:16
And you can predict what's going to happen next.
105
376706
3045
你可以預測接下來會發生什麼事。
06:20
The urge to act is innate to all beings with spatial intelligence,
106
380501
6632
行動的衝動是所有 具有空間智能的生物的天性,
06:27
which links perception with action.
107
387133
3086
它將感知與行動聯繫起來。
06:30
And if we want to advance AI beyond its current capabilities,
108
390637
5422
如果我們想讓 AI 超越目前的能力,
06:36
we want more than AI that can see and talk.
109
396059
3169
我們需要的不僅僅是 能看見和交談的 AI,
06:39
We want AI that can do.
110
399270
2711
我們需要的是能夠做到 實際行動的 AI。
06:42
Indeed, we're making exciting progress.
111
402815
3838
的確,我們正取得令人興奮的進展。
06:46
The recent milestones in spatial intelligence
112
406694
4004
空間智能最近的里程碑
06:50
is teaching computers to see, learn, do
113
410698
3921
是教電腦去看見、學習、行動,
06:54
and learn to see and do better.
114
414619
2210
並且學會更好地看見和行動。
06:57
This is not easy.
115
417372
1710
這並不容易。
06:59
It took nature millions of years to evolve spatial intelligence,
116
419123
5172
大自然花了數百萬年的時間 才進化出空間智能,
07:04
which depends on the eye taking light,
117
424295
2711
這取決於眼睛接收光線,
07:07
project 2D images on the retina
118
427006
2711
將二維影像投射到視網膜上,
07:09
and the brain to translate these data into 3D information.
119
429717
4004
大腦再將這些數據轉換為三維信息。
07:14
Only recently, a group of researchers from Google
120
434222
3587
就最近,一群來自谷歌的研究人員
07:17
are able to develop an algorithm to take a bunch of photos
121
437850
4880
開發出一種演算法,
可以將一組照片轉換為三維空間,
07:22
and translate that into 3D space,
122
442730
3337
07:26
like the examples we're showing here.
123
446109
2252
就像我們在這裡展示的例子。
07:29
My student and our collaborators have taken a step further
124
449070
4630
我的學生和我們的合作夥伴更進一步,
07:33
and created an algorithm that takes one input image
125
453741
4421
創建了一個演算法,
可以從一張輸入圖片生成三維形狀。
07:38
and turn that into 3D shape.
126
458204
2586
07:40
Here are more examples.
127
460832
1960
以下是更多的例子。
07:43
Recall, we talked about computer programs that can take a human sentence
128
463668
5422
回想一下,我們剛提到一個電腦程式,
可以將人類句子轉換為影片,
07:49
and turn it into videos.
129
469132
2043
07:51
A group of researchers in University of Michigan
130
471217
4046
密歇根大學的一群研究人員 已經找到了一種方法,
07:55
have figured out a way to translate that line of sentence
131
475304
3796
將這些句子轉化成三維的 房間佈局,如影片所示。
07:59
into 3D room layout, like shown here.
132
479142
3378
08:03
And my colleagues at Stanford and their students
133
483354
3337
我在史丹福的同事和他們的學生
08:06
have developed an algorithm that takes one image
134
486691
4087
開發了一種演算法,
可以從一張圖像生成無限可能的空間,
08:10
and generates infinitely plausible spaces
135
490820
3420
08:14
for viewers to explore.
136
494240
1960
供觀眾探索。
08:17
These are prototypes of the first budding signs of a future possibility.
137
497035
6256
這些是未來可能性的 最初萌芽跡象的原型。
08:23
One in which the human race can take our entire world
138
503332
6507
在這個未來,人類可以將整個世界
08:29
and translate it into digital forms
139
509881
2210
轉化為數位形式,
08:32
and model the richness and nuances.
140
512133
2753
並模擬其豐富性和細微差別。
08:35
What nature did to us implicitly in our individual minds,
141
515303
5255
大自然在我們的個體大腦中 隱含完成的事情,
08:40
spatial intelligence technology can hope to do
142
520600
3587
空間智能技術可以為 我們的集體意識做到。
08:44
for our collective consciousness.
143
524187
2210
08:47
As the progress of spatial intelligence accelerates,
144
527356
3963
隨著空間智能的進展加速,
08:51
a new era in this virtuous cycle is taking place in front of our eyes.
145
531319
5589
一個新的良性循環時代 正在我們眼前展開。
08:56
This back and forth is catalyzing robotic learning,
146
536908
4462
這一來一回促進了機器學習,
09:01
a key component for any embodied intelligence system
147
541412
5005
這是任何實體智能系統的 關鍵組成部份,
09:06
that needs to understand and interact with the 3D world.
148
546417
5297
因其需要理解三維世界並與之互動。
09:12
A decade ago,
149
552507
1626
十年前,
09:14
ImageNet from my lab
150
554175
2169
我實驗室的 ImageNet
09:16
enabled a database of millions of high-quality photos
151
556385
4547
啟用了包含數百萬張 高品質照片的資料庫,
09:20
to help train computers to see.
152
560932
2460
以幫助訓練電腦去看。
09:23
Today, we're doing the same with behaviors and actions
153
563810
4754
今天,我們同樣用行為和行動
09:28
to train computers and robots how to act in the 3D world.
154
568606
4796
訓練電腦和機器人在三維世界中行動。
09:34
But instead of collecting static images,
155
574403
3254
我們不是收集靜態影像,
09:37
we develop simulation environments powered by 3D spatial models
156
577657
5755
而是開發由三維空間模型 驅動的模擬環境,
09:43
so that the computers can have infinite varieties of possibilities
157
583454
5339
這樣電腦就可以有無限種可能性
09:48
to learn to act.
158
588793
2085
來學習行動。
09:50
And you're just seeing a small number of examples
159
590920
4630
而你只是看到了少量例子,
09:55
to teach our robots
160
595591
1418
在教導我們的機器人,
09:57
in a project led by my lab called Behavior.
161
597009
3003
來自我實驗室主導 一個叫「行為」的專案。
10:00
We’re also making exciting progress in robotic language intelligence.
162
600805
5839
我們也在機器人語言智能方面 取得令人興奮的進展。
10:06
Using large language model-based input,
163
606644
3170
使用大型語言模型輸入,
10:09
my students and our collaborators are among the first teams
164
609814
4004
我的學生和我們的合作夥伴 是眾多團隊中第一批
10:13
that can show a robotic arm performing a variety of tasks
165
613818
5547
能夠展示機械臂
根據口頭指令,執行各種任務,
10:19
based on verbal instructions,
166
619407
2002
10:21
like opening this drawer or unplugging a charged phone.
167
621409
4421
如打開這個抽屜 或拔下充好電的手機,
10:26
Or making sandwiches, using bread, lettuce, tomatoes
168
626330
5130
或者製作三明治, 用麵包,生菜,蕃茄,
10:31
and even putting a napkin for the user.
169
631460
3045
甚至為用戶放張餐巾紙。
10:34
Typically I would like a little more for my sandwich,
170
634505
2878
通常我想我的三明治要更多配料,
10:37
but this is a good start.
171
637425
1877
但這是個好開始。
10:39
(Laughter)
172
639302
1167
(笑聲)
10:40
In that primordial ocean, in our ancient times,
173
640970
5130
在那遠古時代的原始海洋中,
10:46
the ability to see and perceive one's environment
174
646142
3837
觀察和感知環境的能力
10:50
kicked off the Cambrian explosion of interactions with other life forms.
175
650021
5130
引發了寒武紀大爆發, 各種生命形式的相互作用。
10:55
Today, that light is reaching the digital minds.
176
655193
4629
如今,這種光芒正照亮數位思維。
10:59
Spatial intelligence is allowing machines
177
659864
3503
空間智能不僅讓機器能彼此互動,
11:03
to interact not only with one another,
178
663409
3086
11:06
but with humans, and with 3D worlds,
179
666537
3379
還可以與人類以及三維世界互動,
11:09
real or virtual.
180
669957
1919
無論是真實還是虛擬世界。
11:12
And as that future is taking shape,
181
672251
2628
隨著未來漸漸成形,
11:14
it will have a profound impact to many lives.
182
674879
3795
它將對許多人的生活產生深遠的影響。
11:18
Let's take health care as an example.
183
678716
2878
我們以醫療保健為例。
11:21
For the past decade,
184
681636
1668
過去十年來,
11:23
my lab has been taking some of the first steps
185
683346
3461
我的實驗室已經邁出了第一步,
11:26
in applying AI to tackle challenges that impact patient outcome
186
686849
5589
應用 AI 來應對影響患者治療結果
11:32
and medical staff burnout.
187
692438
2252
和醫護人員過勞的挑戰。
11:34
Together with our collaborators from Stanford School of Medicine
188
694732
3754
我們與史丹福醫學院的合作夥伴
11:38
and partnering hospitals,
189
698486
2085
和合作醫院
11:40
we're piloting smart sensors
190
700571
2419
一起試行智能感測器,
11:43
that can detect clinicians going into patient rooms
191
703032
3712
檢測醫護人員是否 在未正確洗手的情況下進入病房。
11:46
without properly washing their hands.
192
706744
3003
11:49
Or keep track of surgical instruments.
193
709747
3337
或追蹤手術器械的位置。
11:53
Or alert care teams when a patient is at physical risk,
194
713084
3920
或者,當患者面臨跌倒等 風險時,提醒護理團隊。
11:57
such as falling.
195
717004
1502
11:59
We consider these techniques a form of ambient intelligence,
196
719465
4630
我們認為這些技術是 環境智能的一種形式,
12:04
like extra pairs of eyes that do make a difference.
197
724095
4212
就像多一雙眼睛,確實能帶來改變。
12:08
But I would like more interactive help for our patients, clinicians
198
728724
5756
但我希望為我們的患者、臨床醫生 和護理人員提供更多互動幫助,
12:14
and caretakers, who desperately also need an extra pair of hands.
199
734522
4921
他們也迫切需要額外的協助。
12:19
Imagine an autonomous robot transporting medical supplies
200
739860
4672
想像一個自主機器人運送醫療用品,
12:24
while caretakers focus on our patients
201
744573
3003
與此同時,護理人員專注於照顧患者,
12:27
or augmented reality, guiding surgeons to do safer, faster
202
747618
4713
或擴增實境指導外科醫生 進行更安全、更快速、
12:32
and less invasive operations.
203
752373
2377
更少侵入性的手術。
12:35
Or imagine patients with severe paralysis controlling robots with their thoughts.
204
755584
6841
或者想像嚴重癱瘓的患者 用他們的思想控制機器人。
12:42
That's right, brainwaves, to perform everyday tasks
205
762466
3921
沒錯,用腦電波來執行
你我都認為理所當然的日常任務。
12:46
that you and I take for granted.
206
766429
2627
12:49
You're seeing a glimpse of that future in this pilot study from my lab recently.
207
769098
5881
你可以在我實驗室最近進行的 試點研究中看到這一未來。
12:55
In this video, the robotic arm is cooking a Japanese sukiyaki meal
208
775021
5964
在這部影片中, 機械臂正在烹調日本壽喜燒,
13:00
controlled only by the brain electrical signal,
209
780985
4463
它僅由大腦電信號控制,
13:05
non-invasively collected through an EEG cap.
210
785489
4338
信號是由非侵入性 腦電圖(EEG)帽收集的。
13:10
(Applause)
211
790661
2586
(掌聲)
13:13
Thank you.
212
793289
1168
謝謝
13:16
The emergence of vision half a billion years ago
213
796292
3378
五億年前,視覺的出現
13:19
turned a world of darkness upside down.
214
799712
3337
顛覆了黑暗世界。
13:23
It set off the most profound evolutionary process:
215
803090
4004
它引發了最深遠的進化過程:
13:27
the development of intelligence in the animal world.
216
807136
3962
動物世界智能的發展。
13:31
AI's breathtaking progress in the last decade is just as astounding.
217
811515
5381
AI 在過去十年中取得的 驚人進步同樣令人驚訝。
13:37
But I believe the full potential of this digital Cambrian explosion
218
817730
4880
但我相信,這種數位寒武紀爆發的 全部潛力不會完全實現,
13:42
won't be fully realized until we power our computers and robots
219
822651
6507
直到我們為電腦和機器人 提供空間智能,
13:49
with spatial intelligence,
220
829158
2169
13:51
just like what nature did to all of us.
221
831369
2585
就像大自然給予我們所有人的一樣。
這是一個令人興奮的時機,
13:55
It’s an exciting time to teach our digital companion
222
835081
4045
教導我們的數位伴侶學會推理,
13:59
to learn to reason
223
839126
1669
14:00
and to interact with this beautiful 3D space we call home,
224
840836
4797
並與我們這個稱為家的 美麗三維空間互動,
14:05
and also create many more new worlds that we can all explore.
225
845674
5172
也創造許多我們可以探索的新世界。
14:11
To realize this future won't be easy.
226
851514
2878
實現這個未來並不容易。
14:14
It requires all of us to take thoughtful steps
227
854433
4463
這需要我們所有人深思熟慮的努力,
14:18
and develop technologies that always put humans in the center.
228
858938
4421
開發始終以人類為中心的技術。
14:23
But if we do this right,
229
863776
2210
但如果我們做得對,
14:26
the computers and robots powered by spatial intelligence
230
866028
3837
由空間智能驅動的電腦和機器人
14:29
will not only be useful tools
231
869907
2419
不僅會成為有用的工具,
14:32
but also trusted partners
232
872368
2586
也會是值得信賴的合作夥伴,
14:34
to enhance and augment our productivity and humanity
233
874995
4130
可以增強、提升我們的生產力和人性,
14:39
while respecting our individual dignity
234
879166
2920
同時尊重我們的個體尊嚴,
14:42
and lifting our collective prosperity.
235
882128
2585
並提升我們的集體繁榮。
14:45
What excites me the most in the future
236
885631
3712
未來最令我興奮的事
14:49
is a future in which that AI grows more perceptive,
237
889343
4671
是 AI 變得更加敏銳、
14:54
insightful and spatially aware,
238
894056
3128
有洞察力和空間感知,
14:57
and they join us on our quest
239
897184
2920
並與我們一起
15:00
to always pursue a better way to make a better world.
240
900104
5172
努力追求更好的方法, 以創造更美好的世界。
15:05
Thank you.
241
905276
1209
謝謝。
15:06
(Applause)
242
906485
4296
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog