The Vital Data You Flush Down the Toilet | Newsha Ghaeli | TED

61,394 views ・ 2024-01-05

TED


请双击下面的英文字幕来播放视频。

翻译人员: Lening Xu 校对人员: Yip Yan Yeung
00:04
Has it ever occurred to you, as you walk down the street,
0
4251
3503
你有没有想过,
当你走在街上时,
00:07
just how much data is flowing beneath your feet?
1
7796
3628
有多少数据在你脚下流动?
00:12
A wealth of information on our health and our well-being
2
12175
2920
关乎我们健康福祉的大量信息,
00:15
is running through our city sewers,
3
15136
2294
正流经城市的下水道,
00:17
and we're all contributing to it every single time we use the toilet.
4
17472
3879
我们每次上厕所, 都会为此做出贡献。
00:22
Think about it.
5
22561
1167
想一想。
00:23
Everybody pees and poops,
6
23770
2461
每个人都要大小便,
00:26
and we know that urine and stool contain a rich source of information
7
26273
3878
我们知道,
尿液和粪便包含有关我们 健康和福祉的丰富信息来源。
00:30
on our health and our well-being.
8
30151
1585
00:32
Our doctors look at it all the time to analyze for a variety of things.
9
32195
4588
医生们一直研究它, 分析各种各样的信息。
00:37
Now, every time you flush,
10
37158
1627
每当你冲水时,
00:38
you're sending this valuable information down into our sewers,
11
38785
3754
你都会将这些有用的信息 送进我们的下水道,
00:42
where it's mixing with waste from hundreds of thousands of other people.
12
42539
3837
那里会混入成千上万 其他人的排泄物。
00:46
Once collected, it looks something like this.
13
46418
2961
收集起来就是这样。
00:49
This tiny sample
14
49379
2044
这个微小的样本,
00:51
comes from a wastewater treatment plant
15
51423
2043
来自处理超过 一百万人污水的处理厂。
00:53
that represents more than one million people.
16
53508
2711
00:56
And from it, we can detect all sorts of things about that community:
17
56219
4171
从中,我们可以发现有关 该社区各种各样的信息:
01:01
the infectious disease viruses that are circulating in our bodies,
18
61141
4421
在我们体内传播的传染病病毒,
01:05
chemical markers for the drugs that are most commonly consumed.
19
65562
4171
经常服用药物的化学标记。
01:09
And we can analyze for all the bacteria that live in our collective microbiomes.
20
69733
5130
我们可以分析生活在 微生物集群中的所有细菌。
01:15
Now, if this sounds too close for comfort,
21
75488
2044
如果这听起来不舒服,
01:17
just consider all the personalized data that you're parting with every day
22
77532
3754
想想每天使用智能手机或智能手表时 要分享的所有个性化数据即可。
01:21
when you use gadgets like your smartphone or your smart watch.
23
81286
3628
01:24
What's amazing about sewage
24
84956
2086
污水的神奇之处在于,
01:27
is that it's naturally aggregated and anonymized.
25
87042
3169
它是自然聚合和匿名的。
01:30
Once flushed,
26
90879
1418
一旦被冲走,
01:32
your waste is mixing with that of thousands and thousands of people,
27
92339
3378
你的排泄物就会 与成千上万人的混在一起,
01:35
so there's actually no way to tie any information from here
28
95717
3378
因此无法将来自这里的任何信息 与特定的人联系起来。
01:39
back to a specific person.
29
99095
1877
01:41
Put differently, it's the perfect data dump.
30
101264
3379
换句话说, 这是完美的数据转储。
01:44
(Laughter)
31
104684
2503
(笑声)
01:47
The thoughtful collection and analysis of sewage
32
107187
3003
深思熟虑的污水收集和分析,
01:50
has the potential to radically improve health outcomes
33
110231
3170
有可能会从根本上 改善世界各地城市的健康状况,
01:53
in cities around the world,
34
113401
1877
01:55
and it's a growing field called "wastewater epidemiology."
35
115278
3712
这是一个不断发展的领域, 被称为“废水流行病学”。
01:59
And wastewater epidemiology is but one example
36
119324
2753
废水流行病学只是当今城市 生成的所有大数据的一个例子。
02:02
of all the big data that we're generating in our cities today.
37
122118
3879
02:07
Consider all the data that you generate with every phone call, package delivered,
38
127082
4004
想想每次通话、快递、 驾驶所生成的所有数据。
02:11
mile driven.
39
131086
1418
02:12
It's data from cameras, sensors, drones,
40
132837
3170
来自摄像头、 传感器、无人机、
空气质量、水质监测的数据,
02:16
air quality, water quality monitoring,
41
136007
2753
02:18
and the vast amounts of information generated by our health care
42
138802
3461
以及医疗保健和教育系统 产生的大量信息。
02:22
and our educational systems.
43
142263
1961
02:24
All of this information, these digital breadcrumbs,
44
144891
3212
所有这些信息, 这些数字面包屑,
02:28
tell us unique stories about our cities and the way that we live our lives.
45
148103
4629
向我们讲述了有关城市 和生活方式的独特故事。
02:33
The thoughtful collection and analysis of this information
46
153149
4296
收集和深入分析这些信息,
02:37
has the power to inform real-time improvements
47
157445
3337
能够为实时改善提供帮助,
02:40
to things like social policy,
48
160824
1835
如社会政策、环境管理、 健康公平等方面。
02:42
environmental management, health equity and more.
49
162701
2669
02:45
As an architect, I believe that we need to harness
50
165745
2962
作为一名架构师,
我认为,
我们必须利用每天在城市中 生成的数亿TB的数据。
02:48
the hundreds of millions of terabytes of data
51
168707
2877
02:51
that we're generating in our cities each and every day.
52
171626
3045
02:54
And this is important now more than ever,
53
174671
2377
现在比以往更为重要,
02:57
because for the first time in human history,
54
177090
2502
因为在人类历史上, 第一次,
02:59
more than half of all people live in cities.
55
179592
3379
一半以上的人口生活在城市中。
03:02
By 2050,
56
182971
1293
到 2050 年,
03:04
this number will grow to nearly seven in 10 people.
57
184264
3628
这一数字将增长至将近十分之七。
03:07
Now just think about what that means for a second.
58
187934
2961
想一想这意味着什么。
03:10
It means our biggest crises,
59
190937
1960
这意味着我们最大的危机,
03:12
from climate change to pandemics to growing inequality,
60
192939
3921
从气候变化到流行病再到 日益加剧的不平等现象,
03:16
are going to hit cities first and hardest.
61
196901
3003
将首先对城市造成最严重的打击。
03:21
But the era of big data offers an opportunity
62
201072
2961
但是, 大数据时代为解决这些问题,
03:24
for new and creative solutions to tackle these problems.
63
204075
3337
提供了新的创造性解决方案。
03:29
So let's dive into the opportunity presented by wastewater epidemiology.
64
209038
4088
因此,让我们深入探讨 废水流行病学带来的机遇。
03:34
Some of you may have heard of it as it gained a lot of popularity
65
214335
3170
你们当中有些人可能听说过它,
因为它在新冠病毒 大流行期间得到普及和关注。
03:37
and attention during the COVID-19 pandemic.
66
217505
2795
03:41
In 2020, research groups from around the world
67
221009
3503
2020 年, 来自世界各地的研究小组,
03:44
began detecting SARS-CoV-2 RNA,
68
224554
2836
开始在污水样本中 检测出SARS-CoV-2 RNA,
03:47
the virus that causes COVID-19, in sewage samples.
69
227432
3086
即导致新冠肺炎的病毒。
03:51
I was on one of those teams.
70
231102
1919
我曾在其中一个小组任职。
03:53
We and others showed that you can actually use sewage
71
233605
3545
研究发现, 实际上可以通过污水,
03:57
as an accurate representation of COVID activity in our communities.
72
237150
3503
准确反映社区中新冠病毒的活动。
04:01
Let me show you what I mean.
73
241070
1502
让我们看看这幅图,
04:02
Here we're looking at a time series over the course of the pandemic.
74
242572
4046
这是大流行期间的时间序列。
04:06
So from March 2020 through just last week.
75
246951
3128
从 2020 年 3 月到上周。
04:10
The blue line represents COVID virus concentrations in sewage samples
76
250079
4922
蓝线表示美国各地 污水样本中的新冠病毒浓度。
04:15
from across the United States.
77
255043
1877
04:16
In yellow, we see COVID clinical case data.
78
256961
3587
黄线表示的是新冠肺炎 临床病例数据。
04:21
For the first two years of the pandemic, case data was very reliable.
79
261132
3921
在疫情的前两年, 病例数据非常可靠。
04:25
People were getting PCR-tested all the time.
80
265053
2836
人们一直在接受PCR检测。
04:27
During those two years,
81
267889
1209
在这两年中,
04:29
the two data sets tracked very well.
82
269140
1960
这两个数据集的跟踪非常好。
04:31
That was great.
83
271142
1168
太棒了。
04:32
It meant that sewage was also reliable
84
272310
2169
这意味着污水 提供的信息是可靠的,
04:34
and an accurate representation of disease burden.
85
274521
2585
可以准确地反映病例增减。
04:37
However, over the past year and a half to two years,
86
277857
2836
但是,在过去的 一年半到两年中,
04:40
we've seen a divergence in those data sets.
87
280693
2920
我们发现这些数据集存在差异。
04:43
People just aren't getting COVID-tested nearly as often.
88
283613
3212
人们不再那么频繁地 接受新冠病毒检测。
04:46
Sewage, on the other hand,
89
286825
1918
另一方面,
04:48
doesn't require us to access health care services.
90
288785
3378
污水并不要求我们 接受医疗保健服务。
04:52
We're all represented just by peeing and pooping.
91
292163
3671
我们都是通过大小便 提供信息的。
04:55
Throughout the pandemic, we and others also showed that sewage is predictive
92
295834
4295
在整个大流行期间, 我们和其他组都发现,
05:00
and a leading indicator of new COVID clinical cases.
93
300129
4463
污水具有预测性,
是新的新冠肺炎 临床病例的领先指标。
05:04
This is because infectious disease viruses incubate in our bodies
94
304634
4129
在我们出现症状或接受检测之前, 传染病病毒就潜伏在我们体内。
05:08
before we develop symptoms or go get tested.
95
308763
3128
05:12
Meanwhile, we've been excreting the virus for days.
96
312308
3295
同时, 我们已经排出病毒好几天了。
05:16
During COVID,
97
316271
1167
在大流行期间, 研究表明,
05:17
it was shown that sewage was anywhere between one to three weeks
98
317438
4130
污水是临床病例的领先指标, 介于一到三周之间。
05:21
leading indicator for clinical cases.
99
321568
2460
05:25
Now I'm going to show you an example
100
325280
1751
我要举一个例子,
05:27
of one time that this led to a big community-impacting decision.
101
327073
3629
有一次, 这导致了一项影响社区的重大决定。
05:31
Here, we're looking at data from the Boston area
102
331244
3253
在这里,我们看到的是奥密克戎 流行期间波士顿地区的数据。
05:34
during the Omicron wave.
103
334539
1793
05:36
In December 2021, towards the end of the month,
104
336332
3128
2021 年 12 月, 接近月底,
05:39
COVID cases began to skyrocket across the country
105
339460
3045
奥密克戎病例开始激增,
05:42
and didn't slow until the end of January.
106
342547
2794
直到 1 月底才放缓。
05:45
Boston Children's Hospital, though, was ready.
107
345341
2419
但是,波士顿儿童医院 已经提前准备。
05:47
They had been looking at Boston area sewage
108
347802
2211
他们一直在监测 波士顿地区的污水,
05:50
and saw the sewage levels go up weeks earlier,
109
350054
3712
并在几周前看到 污水中的病毒浓度在上升,
05:53
so they proactively postponed all non-emergency medical procedures.
110
353808
4671
因此他们主动推迟了 所有非紧急医疗手术。
05:59
They wanted to free up resources so that they could adequately respond
111
359522
3879
他们腾出资源,
以便全力应对 即将到来的住院高潮。
06:03
to the incoming wave of hospitalizations.
112
363443
2419
06:07
Now wastewater epidemiology has been used
113
367238
2419
现在,废水流行病学也被用来 解决其他紧迫的健康问题。
06:09
to tackle other pressing health issues as well.
114
369657
2878
06:12
Before the pandemic,
115
372994
1209
在新冠大流行之前,
06:14
the biggest public health crisis in the United States
116
374203
2920
美国最大的公共卫生危机,
06:17
was our growing drug epidemic.
117
377123
2211
是日益严重的毒品泛滥。
06:20
Drug overdoses were growing year over year
118
380001
2753
药物过量致死人数逐年增加,
06:22
and had become the leading cause of accidental death
119
382795
3254
已成为 50 岁以下美国人 意外死亡的主要原因。
06:26
for Americans under the age of 50.
120
386049
2544
06:28
In 2018, a small town in North Carolina had seen overdoses go up,
121
388927
5171
2018 年,北卡罗来纳州的一个小镇 出现了药物过量上升的情况,
06:34
and they wanted better information,
122
394098
1961
他们想获得更多的信息,
06:36
better data to know what to do about it,
123
396059
2085
更准确的数据, 以了解该怎么做,
06:38
what was driving this trend and how to respond.
124
398186
2878
是什么推动了这种趋势, 以及如何应对。
06:41
So we turned to the sewers, and together with the mayor's office,
125
401064
4087
因此,我们想到下水道,
并与市长办公室一起开始分析,
06:45
we began to analyze sewage samples from several sites across the city
126
405193
4838
来自全市多个地点的污水样本,
06:50
and were able to show that prescription opioids
127
410073
3879
并得以证明,
处方阿片类药物 是最常使用的药物,
06:53
were the drug most commonly consumed, not injectable opioids.
128
413952
3795
而不是注射的阿片类药物。
06:58
Equipped with this data,
129
418748
1919
有了这些数据,
07:00
the city diverted resources from needle exchange sites
130
420667
3420
该市从针头交换点转移了资源,
07:04
and put that money into medication takeback programs instead.
131
424128
3629
将这笔钱投入药物回收计划。
他们投放广告,
07:08
They advertised and held dozens of town halls
132
428174
2503
并举行了数十次市政厅会议,
07:10
where they talked about the adverse effects of prescription painkillers.
133
430718
4004
讨论处方止痛药的不良影响。
07:15
That year,
134
435264
1460
那一年,
07:16
the city saw a 40 percent reduction in overdoses,
135
436766
4630
该市的药物过量减少了 40%,
07:21
and for the first time,
136
441437
1293
他们首次让社区参与了有关毒品、
07:22
they had engaged their community in a dialogue around drugs,
137
442730
3462
07:26
addiction and overdose.
138
446234
2002
成瘾和药物过量的对话。
07:28
Now imagine if every city around the world had access to this sort of information.
139
448736
5714
想象一下,
如果世界上每个城市 都能获得此类信息。
07:34
Before the pandemic,
140
454951
1168
在大流行之前,
07:36
wastewater epidemiology was a tiny field
141
456160
2920
废水流行病学是一个很小的领域。
07:39
with no more than a dozen experts worldwide.
142
459122
3211
全球只有十几位专家。
07:42
Today, 72 countries
143
462333
3420
如今,
已有 72 个国家使用废水监测 来研究新冠肺炎。
07:45
have used wastewater monitoring to understand COVID-19.
144
465753
4255
07:50
And it's time that we leverage these investments
145
470675
2419
现在是我们利用这些投资,
07:53
to monitor for all sorts of other things as well.
146
473094
2502
来监控各种其他情况的时候了。
07:56
Imagine knowing when influenza and RSV are going to peak every year
147
476305
4505
如果知道每年流感和 呼吸道合胞病毒何时会达到峰值,
08:00
so that our hospitals can prepare.
148
480810
2044
医院就可以做好准备。
08:03
Imagine mapping nutrition in our cities
149
483229
2669
想象一下城市的营养状况图,
08:05
so that we can identify food deserts
150
485940
2169
我们可以发现食物沙漠,
08:08
and understand social determinants of health.
151
488109
2419
并了解健康的社会决定因素。
08:11
Imagine identifying superbugs and antibiotic resistant genes
152
491154
4713
想象一下,识别出现在社区的 超级细菌和抗生素耐药基因。
08:15
as they emerge in our communities.
153
495908
2002
08:19
Imagine preventing the next pandemic before it happens.
154
499120
3503
想象一下,在下一次大流行 发生之前将其预防。
08:23
In the way that cholera prompted London to build modern-day sewer systems,
155
503499
5005
霍乱促使伦敦建造 现代化的下水道系统,
08:28
and poor health in the tenements of New York City
156
508546
2503
而纽约市公寓的健康状况不佳,
08:31
were one of the catalysts behind the building of Central Park,
157
511049
4045
是中央公园建设的催化剂之一,
08:35
this is how our cities can learn from COVID-19.
158
515136
3170
这是我们的城市可以 从新冠病毒中吸取的教训。
08:38
And this is precisely how we can foster a new, intelligent kind of urbanization.
159
518806
5589
而这正是我们培育一种 新的、智能的城市化的方式。
08:45
For years now, scientists, policymakers,
160
525354
3212
多年来,科学家、政策制定者、 建筑师和城市规划师,
08:48
architects and urban planners
161
528566
2169
08:50
have been harnessing the power of technology and big data
162
530735
3420
一直在运用技术和大数据的力量,
08:54
to future-proof our cities.
163
534197
2085
使我们的城市适应未来发展。
08:57
Over the last decade,
164
537200
1543
在过去的十年中,
08:58
chief technology officers have been appointed in cities
165
538743
3170
世界各地的城市 都任命了首席技术官。
09:01
around the world.
166
541954
1502
09:04
Roles once reserved for the boardrooms
167
544415
2127
曾经为硅谷董事会保留的职位,
09:06
and hallways of Silicon Valley
168
546584
1460
09:08
are now finally open in city hall.
169
548044
2794
现在终于向市政厅开放了。
09:12
So next time you swipe your credit card,
170
552006
3128
因此,下次你刷信用卡、
09:15
take a ride in a taxi or tap your MetroCard,
171
555176
3462
乘坐出租车或刷地铁卡时,
09:18
just consider how you're contributing
172
558679
1961
想一想怎么为不断增长的 城市数字基础设施做出贡献。
09:20
to your city's ever-growing digital infrastructure.
173
560681
2878
09:24
And next time you use the toilet,
174
564685
2795
下次上厕所时,
09:27
just remember, you're doing your civic duty.
175
567480
3128
请记得,
你正在履行公民义务。
09:30
(Laughter)
176
570650
1543
(笑声)
09:32
Thank you.
177
572235
1167
谢谢。
09:33
(Applause)
178
573402
3921
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog