The Vital Data You Flush Down the Toilet | Newsha Ghaeli | TED

60,681 views ・ 2024-01-05

TED


请双击下面的英文字幕来播放视频。

翻译人员: Lening Xu 校对人员: Yip Yan Yeung
00:04
Has it ever occurred to you, as you walk down the street,
0
4251
3503
你有没有想过,
当你走在街上时,
00:07
just how much data is flowing beneath your feet?
1
7796
3628
有多少数据在你脚下流动?
00:12
A wealth of information on our health and our well-being
2
12175
2920
关乎我们健康福祉的大量信息,
00:15
is running through our city sewers,
3
15136
2294
正流经城市的下水道,
00:17
and we're all contributing to it every single time we use the toilet.
4
17472
3879
我们每次上厕所, 都会为此做出贡献。
00:22
Think about it.
5
22561
1167
想一想。
00:23
Everybody pees and poops,
6
23770
2461
每个人都要大小便,
00:26
and we know that urine and stool contain a rich source of information
7
26273
3878
我们知道,
尿液和粪便包含有关我们 健康和福祉的丰富信息来源。
00:30
on our health and our well-being.
8
30151
1585
00:32
Our doctors look at it all the time to analyze for a variety of things.
9
32195
4588
医生们一直研究它, 分析各种各样的信息。
00:37
Now, every time you flush,
10
37158
1627
每当你冲水时,
00:38
you're sending this valuable information down into our sewers,
11
38785
3754
你都会将这些有用的信息 送进我们的下水道,
00:42
where it's mixing with waste from hundreds of thousands of other people.
12
42539
3837
那里会混入成千上万 其他人的排泄物。
00:46
Once collected, it looks something like this.
13
46418
2961
收集起来就是这样。
00:49
This tiny sample
14
49379
2044
这个微小的样本,
00:51
comes from a wastewater treatment plant
15
51423
2043
来自处理超过 一百万人污水的处理厂。
00:53
that represents more than one million people.
16
53508
2711
00:56
And from it, we can detect all sorts of things about that community:
17
56219
4171
从中,我们可以发现有关 该社区各种各样的信息:
01:01
the infectious disease viruses that are circulating in our bodies,
18
61141
4421
在我们体内传播的传染病病毒,
01:05
chemical markers for the drugs that are most commonly consumed.
19
65562
4171
经常服用药物的化学标记。
01:09
And we can analyze for all the bacteria that live in our collective microbiomes.
20
69733
5130
我们可以分析生活在 微生物集群中的所有细菌。
01:15
Now, if this sounds too close for comfort,
21
75488
2044
如果这听起来不舒服,
01:17
just consider all the personalized data that you're parting with every day
22
77532
3754
想想每天使用智能手机或智能手表时 要分享的所有个性化数据即可。
01:21
when you use gadgets like your smartphone or your smart watch.
23
81286
3628
01:24
What's amazing about sewage
24
84956
2086
污水的神奇之处在于,
01:27
is that it's naturally aggregated and anonymized.
25
87042
3169
它是自然聚合和匿名的。
01:30
Once flushed,
26
90879
1418
一旦被冲走,
01:32
your waste is mixing with that of thousands and thousands of people,
27
92339
3378
你的排泄物就会 与成千上万人的混在一起,
01:35
so there's actually no way to tie any information from here
28
95717
3378
因此无法将来自这里的任何信息 与特定的人联系起来。
01:39
back to a specific person.
29
99095
1877
01:41
Put differently, it's the perfect data dump.
30
101264
3379
换句话说, 这是完美的数据转储。
01:44
(Laughter)
31
104684
2503
(笑声)
01:47
The thoughtful collection and analysis of sewage
32
107187
3003
深思熟虑的污水收集和分析,
01:50
has the potential to radically improve health outcomes
33
110231
3170
有可能会从根本上 改善世界各地城市的健康状况,
01:53
in cities around the world,
34
113401
1877
01:55
and it's a growing field called "wastewater epidemiology."
35
115278
3712
这是一个不断发展的领域, 被称为“废水流行病学”。
01:59
And wastewater epidemiology is but one example
36
119324
2753
废水流行病学只是当今城市 生成的所有大数据的一个例子。
02:02
of all the big data that we're generating in our cities today.
37
122118
3879
02:07
Consider all the data that you generate with every phone call, package delivered,
38
127082
4004
想想每次通话、快递、 驾驶所生成的所有数据。
02:11
mile driven.
39
131086
1418
02:12
It's data from cameras, sensors, drones,
40
132837
3170
来自摄像头、 传感器、无人机、
空气质量、水质监测的数据,
02:16
air quality, water quality monitoring,
41
136007
2753
02:18
and the vast amounts of information generated by our health care
42
138802
3461
以及医疗保健和教育系统 产生的大量信息。
02:22
and our educational systems.
43
142263
1961
02:24
All of this information, these digital breadcrumbs,
44
144891
3212
所有这些信息, 这些数字面包屑,
02:28
tell us unique stories about our cities and the way that we live our lives.
45
148103
4629
向我们讲述了有关城市 和生活方式的独特故事。
02:33
The thoughtful collection and analysis of this information
46
153149
4296
收集和深入分析这些信息,
02:37
has the power to inform real-time improvements
47
157445
3337
能够为实时改善提供帮助,
02:40
to things like social policy,
48
160824
1835
如社会政策、环境管理、 健康公平等方面。
02:42
environmental management, health equity and more.
49
162701
2669
02:45
As an architect, I believe that we need to harness
50
165745
2962
作为一名架构师,
我认为,
我们必须利用每天在城市中 生成的数亿TB的数据。
02:48
the hundreds of millions of terabytes of data
51
168707
2877
02:51
that we're generating in our cities each and every day.
52
171626
3045
02:54
And this is important now more than ever,
53
174671
2377
现在比以往更为重要,
02:57
because for the first time in human history,
54
177090
2502
因为在人类历史上, 第一次,
02:59
more than half of all people live in cities.
55
179592
3379
一半以上的人口生活在城市中。
03:02
By 2050,
56
182971
1293
到 2050 年,
03:04
this number will grow to nearly seven in 10 people.
57
184264
3628
这一数字将增长至将近十分之七。
03:07
Now just think about what that means for a second.
58
187934
2961
想一想这意味着什么。
03:10
It means our biggest crises,
59
190937
1960
这意味着我们最大的危机,
03:12
from climate change to pandemics to growing inequality,
60
192939
3921
从气候变化到流行病再到 日益加剧的不平等现象,
03:16
are going to hit cities first and hardest.
61
196901
3003
将首先对城市造成最严重的打击。
03:21
But the era of big data offers an opportunity
62
201072
2961
但是, 大数据时代为解决这些问题,
03:24
for new and creative solutions to tackle these problems.
63
204075
3337
提供了新的创造性解决方案。
03:29
So let's dive into the opportunity presented by wastewater epidemiology.
64
209038
4088
因此,让我们深入探讨 废水流行病学带来的机遇。
03:34
Some of you may have heard of it as it gained a lot of popularity
65
214335
3170
你们当中有些人可能听说过它,
因为它在新冠病毒 大流行期间得到普及和关注。
03:37
and attention during the COVID-19 pandemic.
66
217505
2795
03:41
In 2020, research groups from around the world
67
221009
3503
2020 年, 来自世界各地的研究小组,
03:44
began detecting SARS-CoV-2 RNA,
68
224554
2836
开始在污水样本中 检测出SARS-CoV-2 RNA,
03:47
the virus that causes COVID-19, in sewage samples.
69
227432
3086
即导致新冠肺炎的病毒。
03:51
I was on one of those teams.
70
231102
1919
我曾在其中一个小组任职。
03:53
We and others showed that you can actually use sewage
71
233605
3545
研究发现, 实际上可以通过污水,
03:57
as an accurate representation of COVID activity in our communities.
72
237150
3503
准确反映社区中新冠病毒的活动。
04:01
Let me show you what I mean.
73
241070
1502
让我们看看这幅图,
04:02
Here we're looking at a time series over the course of the pandemic.
74
242572
4046
这是大流行期间的时间序列。
04:06
So from March 2020 through just last week.
75
246951
3128
从 2020 年 3 月到上周。
04:10
The blue line represents COVID virus concentrations in sewage samples
76
250079
4922
蓝线表示美国各地 污水样本中的新冠病毒浓度。
04:15
from across the United States.
77
255043
1877
04:16
In yellow, we see COVID clinical case data.
78
256961
3587
黄线表示的是新冠肺炎 临床病例数据。
04:21
For the first two years of the pandemic, case data was very reliable.
79
261132
3921
在疫情的前两年, 病例数据非常可靠。
04:25
People were getting PCR-tested all the time.
80
265053
2836
人们一直在接受PCR检测。
04:27
During those two years,
81
267889
1209
在这两年中,
04:29
the two data sets tracked very well.
82
269140
1960
这两个数据集的跟踪非常好。
04:31
That was great.
83
271142
1168
太棒了。
04:32
It meant that sewage was also reliable
84
272310
2169
这意味着污水 提供的信息是可靠的,
04:34
and an accurate representation of disease burden.
85
274521
2585
可以准确地反映病例增减。
04:37
However, over the past year and a half to two years,
86
277857
2836
但是,在过去的 一年半到两年中,
04:40
we've seen a divergence in those data sets.
87
280693
2920
我们发现这些数据集存在差异。
04:43
People just aren't getting COVID-tested nearly as often.
88
283613
3212
人们不再那么频繁地 接受新冠病毒检测。
04:46
Sewage, on the other hand,
89
286825
1918
另一方面,
04:48
doesn't require us to access health care services.
90
288785
3378
污水并不要求我们 接受医疗保健服务。
04:52
We're all represented just by peeing and pooping.
91
292163
3671
我们都是通过大小便 提供信息的。
04:55
Throughout the pandemic, we and others also showed that sewage is predictive
92
295834
4295
在整个大流行期间, 我们和其他组都发现,
05:00
and a leading indicator of new COVID clinical cases.
93
300129
4463
污水具有预测性,
是新的新冠肺炎 临床病例的领先指标。
05:04
This is because infectious disease viruses incubate in our bodies
94
304634
4129
在我们出现症状或接受检测之前, 传染病病毒就潜伏在我们体内。
05:08
before we develop symptoms or go get tested.
95
308763
3128
05:12
Meanwhile, we've been excreting the virus for days.
96
312308
3295
同时, 我们已经排出病毒好几天了。
05:16
During COVID,
97
316271
1167
在大流行期间, 研究表明,
05:17
it was shown that sewage was anywhere between one to three weeks
98
317438
4130
污水是临床病例的领先指标, 介于一到三周之间。
05:21
leading indicator for clinical cases.
99
321568
2460
05:25
Now I'm going to show you an example
100
325280
1751
我要举一个例子,
05:27
of one time that this led to a big community-impacting decision.
101
327073
3629
有一次, 这导致了一项影响社区的重大决定。
05:31
Here, we're looking at data from the Boston area
102
331244
3253
在这里,我们看到的是奥密克戎 流行期间波士顿地区的数据。
05:34
during the Omicron wave.
103
334539
1793
05:36
In December 2021, towards the end of the month,
104
336332
3128
2021 年 12 月, 接近月底,
05:39
COVID cases began to skyrocket across the country
105
339460
3045
奥密克戎病例开始激增,
05:42
and didn't slow until the end of January.
106
342547
2794
直到 1 月底才放缓。
05:45
Boston Children's Hospital, though, was ready.
107
345341
2419
但是,波士顿儿童医院 已经提前准备。
05:47
They had been looking at Boston area sewage
108
347802
2211
他们一直在监测 波士顿地区的污水,
05:50
and saw the sewage levels go up weeks earlier,
109
350054
3712
并在几周前看到 污水中的病毒浓度在上升,
05:53
so they proactively postponed all non-emergency medical procedures.
110
353808
4671
因此他们主动推迟了 所有非紧急医疗手术。
05:59
They wanted to free up resources so that they could adequately respond
111
359522
3879
他们腾出资源,
以便全力应对 即将到来的住院高潮。
06:03
to the incoming wave of hospitalizations.
112
363443
2419
06:07
Now wastewater epidemiology has been used
113
367238
2419
现在,废水流行病学也被用来 解决其他紧迫的健康问题。
06:09
to tackle other pressing health issues as well.
114
369657
2878
06:12
Before the pandemic,
115
372994
1209
在新冠大流行之前,
06:14
the biggest public health crisis in the United States
116
374203
2920
美国最大的公共卫生危机,
06:17
was our growing drug epidemic.
117
377123
2211
是日益严重的毒品泛滥。
06:20
Drug overdoses were growing year over year
118
380001
2753
药物过量致死人数逐年增加,
06:22
and had become the leading cause of accidental death
119
382795
3254
已成为 50 岁以下美国人 意外死亡的主要原因。
06:26
for Americans under the age of 50.
120
386049
2544
06:28
In 2018, a small town in North Carolina had seen overdoses go up,
121
388927
5171
2018 年,北卡罗来纳州的一个小镇 出现了药物过量上升的情况,
06:34
and they wanted better information,
122
394098
1961
他们想获得更多的信息,
06:36
better data to know what to do about it,
123
396059
2085
更准确的数据, 以了解该怎么做,
06:38
what was driving this trend and how to respond.
124
398186
2878
是什么推动了这种趋势, 以及如何应对。
06:41
So we turned to the sewers, and together with the mayor's office,
125
401064
4087
因此,我们想到下水道,
并与市长办公室一起开始分析,
06:45
we began to analyze sewage samples from several sites across the city
126
405193
4838
来自全市多个地点的污水样本,
06:50
and were able to show that prescription opioids
127
410073
3879
并得以证明,
处方阿片类药物 是最常使用的药物,
06:53
were the drug most commonly consumed, not injectable opioids.
128
413952
3795
而不是注射的阿片类药物。
06:58
Equipped with this data,
129
418748
1919
有了这些数据,
07:00
the city diverted resources from needle exchange sites
130
420667
3420
该市从针头交换点转移了资源,
07:04
and put that money into medication takeback programs instead.
131
424128
3629
将这笔钱投入药物回收计划。
他们投放广告,
07:08
They advertised and held dozens of town halls
132
428174
2503
并举行了数十次市政厅会议,
07:10
where they talked about the adverse effects of prescription painkillers.
133
430718
4004
讨论处方止痛药的不良影响。
07:15
That year,
134
435264
1460
那一年,
07:16
the city saw a 40 percent reduction in overdoses,
135
436766
4630
该市的药物过量减少了 40%,
07:21
and for the first time,
136
441437
1293
他们首次让社区参与了有关毒品、
07:22
they had engaged their community in a dialogue around drugs,
137
442730
3462
07:26
addiction and overdose.
138
446234
2002
成瘾和药物过量的对话。
07:28
Now imagine if every city around the world had access to this sort of information.
139
448736
5714
想象一下,
如果世界上每个城市 都能获得此类信息。
07:34
Before the pandemic,
140
454951
1168
在大流行之前,
07:36
wastewater epidemiology was a tiny field
141
456160
2920
废水流行病学是一个很小的领域。
07:39
with no more than a dozen experts worldwide.
142
459122
3211
全球只有十几位专家。
07:42
Today, 72 countries
143
462333
3420
如今,
已有 72 个国家使用废水监测 来研究新冠肺炎。
07:45
have used wastewater monitoring to understand COVID-19.
144
465753
4255
07:50
And it's time that we leverage these investments
145
470675
2419
现在是我们利用这些投资,
07:53
to monitor for all sorts of other things as well.
146
473094
2502
来监控各种其他情况的时候了。
07:56
Imagine knowing when influenza and RSV are going to peak every year
147
476305
4505
如果知道每年流感和 呼吸道合胞病毒何时会达到峰值,
08:00
so that our hospitals can prepare.
148
480810
2044
医院就可以做好准备。
08:03
Imagine mapping nutrition in our cities
149
483229
2669
想象一下城市的营养状况图,
08:05
so that we can identify food deserts
150
485940
2169
我们可以发现食物沙漠,
08:08
and understand social determinants of health.
151
488109
2419
并了解健康的社会决定因素。
08:11
Imagine identifying superbugs and antibiotic resistant genes
152
491154
4713
想象一下,识别出现在社区的 超级细菌和抗生素耐药基因。
08:15
as they emerge in our communities.
153
495908
2002
08:19
Imagine preventing the next pandemic before it happens.
154
499120
3503
想象一下,在下一次大流行 发生之前将其预防。
08:23
In the way that cholera prompted London to build modern-day sewer systems,
155
503499
5005
霍乱促使伦敦建造 现代化的下水道系统,
08:28
and poor health in the tenements of New York City
156
508546
2503
而纽约市公寓的健康状况不佳,
08:31
were one of the catalysts behind the building of Central Park,
157
511049
4045
是中央公园建设的催化剂之一,
08:35
this is how our cities can learn from COVID-19.
158
515136
3170
这是我们的城市可以 从新冠病毒中吸取的教训。
08:38
And this is precisely how we can foster a new, intelligent kind of urbanization.
159
518806
5589
而这正是我们培育一种 新的、智能的城市化的方式。
08:45
For years now, scientists, policymakers,
160
525354
3212
多年来,科学家、政策制定者、 建筑师和城市规划师,
08:48
architects and urban planners
161
528566
2169
08:50
have been harnessing the power of technology and big data
162
530735
3420
一直在运用技术和大数据的力量,
08:54
to future-proof our cities.
163
534197
2085
使我们的城市适应未来发展。
08:57
Over the last decade,
164
537200
1543
在过去的十年中,
08:58
chief technology officers have been appointed in cities
165
538743
3170
世界各地的城市 都任命了首席技术官。
09:01
around the world.
166
541954
1502
09:04
Roles once reserved for the boardrooms
167
544415
2127
曾经为硅谷董事会保留的职位,
09:06
and hallways of Silicon Valley
168
546584
1460
09:08
are now finally open in city hall.
169
548044
2794
现在终于向市政厅开放了。
09:12
So next time you swipe your credit card,
170
552006
3128
因此,下次你刷信用卡、
09:15
take a ride in a taxi or tap your MetroCard,
171
555176
3462
乘坐出租车或刷地铁卡时,
09:18
just consider how you're contributing
172
558679
1961
想一想怎么为不断增长的 城市数字基础设施做出贡献。
09:20
to your city's ever-growing digital infrastructure.
173
560681
2878
09:24
And next time you use the toilet,
174
564685
2795
下次上厕所时,
09:27
just remember, you're doing your civic duty.
175
567480
3128
请记得,
你正在履行公民义务。
09:30
(Laughter)
176
570650
1543
(笑声)
09:32
Thank you.
177
572235
1167
谢谢。
09:33
(Applause)
178
573402
3921
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7