The Vital Data You Flush Down the Toilet | Newsha Ghaeli | TED

61,021 views ・ 2024-01-05

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Yanyan Hong
00:04
Has it ever occurred to you, as you walk down the street,
0
4251
3503
當你走在街上時,可曾想過,
00:07
just how much data is flowing beneath your feet?
1
7796
3628
有多少資料從你腳下流過?
00:12
A wealth of information on our health and our well-being
2
12175
2920
有大量關於我們健康和安康的 資訊流經我們城市的下水道,
00:15
is running through our city sewers,
3
15136
2294
00:17
and we're all contributing to it every single time we use the toilet.
4
17472
3879
而每次我們使用廁所時 都貢獻了一點資訊。
00:22
Think about it.
5
22561
1167
想想看。
00:23
Everybody pees and poops,
6
23770
2461
每個人都會尿尿和大便,
00:26
and we know that urine and stool contain a rich source of information
7
26273
3878
而我們知道尿液和糞便 含有豐富的資訊,
00:30
on our health and our well-being.
8
30151
1585
和我們的健康與安康有關。
00:32
Our doctors look at it all the time to analyze for a variety of things.
9
32195
4588
我們的醫生做許多分析時 都常會用到它們。
00:37
Now, every time you flush,
10
37158
1627
每當你沖馬桶時,
00:38
you're sending this valuable information down into our sewers,
11
38785
3754
就是將這些寶貴的資訊 送到下頭的下水道,
00:42
where it's mixing with waste from hundreds of thousands of other people.
12
42539
3837
在那裡,它們會混入 來成千上萬人的排泄物中。
00:46
Once collected, it looks something like this.
13
46418
2961
收集起來就會像這樣。
00:49
This tiny sample
14
49379
2044
這個小小的樣本
00:51
comes from a wastewater treatment plant
15
51423
2043
來自一個廢水處理廠, 代表超過一百萬人。
00:53
that represents more than one million people.
16
53508
2711
00:56
And from it, we can detect all sorts of things about that community:
17
56219
4171
我們可以從這個樣本檢測出 關於那個社區的各種狀況:
01:01
the infectious disease viruses that are circulating in our bodies,
18
61141
4421
在我們體內循環的感染性疾病病毒、
01:05
chemical markers for the drugs that are most commonly consumed.
19
65562
4171
最常被使用的藥物的化學標記。
01:09
And we can analyze for all the bacteria that live in our collective microbiomes.
20
69733
5130
我們可以分析存在於我們 集體微生物群中的所有細菌。
01:15
Now, if this sounds too close for comfort,
21
75488
2044
如果這聽起來不太舒服,
01:17
just consider all the personalized data that you're parting with every day
22
77532
3754
那就想一下你每天在用
智慧手機或智慧手錶時 分享出去的個人資料。
01:21
when you use gadgets like your smartphone or your smart watch.
23
81286
3628
01:24
What's amazing about sewage
24
84956
2086
汙水有個神奇的特色,
01:27
is that it's naturally aggregated and anonymized.
25
87042
3169
它很自然就會做到匯整和匿名化。
01:30
Once flushed,
26
90879
1418
你的排泄物被沖走之後就會 和成千上萬人的排泄物混在一起,
01:32
your waste is mixing with that of thousands and thousands of people,
27
92339
3378
01:35
so there's actually no way to tie any information from here
28
95717
3378
所以實際上不可能把這裡的任何資訊
01:39
back to a specific person.
29
99095
1877
連結到特定的人。
01:41
Put differently, it's the perfect data dump.
30
101264
3379
換句話說,它是完美的資料傾倒場。
01:44
(Laughter)
31
104684
2503
(笑聲)
01:47
The thoughtful collection and analysis of sewage
32
107187
3003
對汙水做考慮周全的收集和分析
01:50
has the potential to radically improve health outcomes
33
110231
3170
有可能可以大大改善 世界各地城市的健康結果,
01:53
in cities around the world,
34
113401
1877
01:55
and it's a growing field called "wastewater epidemiology."
35
115278
3712
這是個正在發展的領域, 叫「廢水流行病學」。
01:59
And wastewater epidemiology is but one example
36
119324
2753
現今我們會在我們的城市裡 產生各種大數據,
02:02
of all the big data that we're generating in our cities today.
37
122118
3879
廢水流行病學只不過是一個例子。
02:07
Consider all the data that you generate with every phone call, package delivered,
38
127082
4004
想想你每打一通電話、寄一個包裏、
開一英里路的車所產生的各種資料。
02:11
mile driven.
39
131086
1418
02:12
It's data from cameras, sensors, drones,
40
132837
3170
資料可能來自於相機、 感測器、無人機、
02:16
air quality, water quality monitoring,
41
136007
2753
空氣品質、水質監測,
02:18
and the vast amounts of information generated by our health care
42
138802
3461
以及我們的健康照護 及教育體系所產生的大量資訊。
02:22
and our educational systems.
43
142263
1961
02:24
All of this information, these digital breadcrumbs,
44
144891
3212
所有這些資訊,這些數位麵包屑,
02:28
tell us unique stories about our cities and the way that we live our lives.
45
148103
4629
講述的是關於我們城市 及我們生活方式的獨家故事。
02:33
The thoughtful collection and analysis of this information
46
153149
4296
考慮周全地收集和分析這些資訊
02:37
has the power to inform real-time improvements
47
157445
3337
就能提供訊息來做即時改善,
02:40
to things like social policy,
48
160824
1835
能協助如社會政策、 環境管理、健康平權等等。
02:42
environmental management, health equity and more.
49
162701
2669
02:45
As an architect, I believe that we need to harness
50
165745
2962
身為建築師,
我相信我們必須要利用 這數億 TB 的資料,
02:48
the hundreds of millions of terabytes of data
51
168707
2877
02:51
that we're generating in our cities each and every day.
52
171626
3045
我們每天在我們的城市中產生的資料。
02:54
And this is important now more than ever,
53
174671
2377
此時,這點特別重要,
02:57
because for the first time in human history,
54
177090
2502
因為這是人類史上第一次
02:59
more than half of all people live in cities.
55
179592
3379
全人類有一半以上的人住在城市裡。
03:02
By 2050,
56
182971
1293
到 2050 年,
03:04
this number will grow to nearly seven in 10 people.
57
184264
3628
會增加到有七成的人住在城市裡。
03:07
Now just think about what that means for a second.
58
187934
2961
想想看這背後的意涵。
03:10
It means our biggest crises,
59
190937
1960
那就是,我們最大的危機,
03:12
from climate change to pandemics to growing inequality,
60
192939
3921
從氣候變遷,到疫情, 到越來越嚴重的不平等,
03:16
are going to hit cities first and hardest.
61
196901
3003
最先衝擊到的就是城市, 且這衝擊會是最重的。
03:21
But the era of big data offers an opportunity
62
201072
2961
但大數據的時代提供了一個機會,
可以用有創意的新解決方案 來處理這些問題。
03:24
for new and creative solutions to tackle these problems.
63
204075
3337
所以,咱們來深入探討 廢水流行病學帶來的機會。
03:29
So let's dive into the opportunity presented by wastewater epidemiology.
64
209038
4088
03:34
Some of you may have heard of it as it gained a lot of popularity
65
214335
3170
有些人可能聽過它,
因為在新冠肺炎疫情期間 它得到相當的知名度及注意力。
03:37
and attention during the COVID-19 pandemic.
66
217505
2795
2020 年,世界各地的研究團隊
03:41
In 2020, research groups from around the world
67
221009
3503
03:44
began detecting SARS-CoV-2 RNA,
68
224554
2836
開始在汙水樣本中檢測造成
03:47
the virus that causes COVID-19, in sewage samples.
69
227432
3086
新冠肺炎的病毒, SARS-CoV-2 的 RNA。
03:51
I was on one of those teams.
70
231102
1919
我隸屬其中一個團隊。
03:53
We and others showed that you can actually use sewage
71
233605
3545
我們和其他人證明了 實際上可以用汙水
03:57
as an accurate representation of COVID activity in our communities.
72
237150
3503
準確地代表我們社區中的 新冠肺炎活動。
讓我說明我的意思。
04:01
Let me show you what I mean.
73
241070
1502
04:02
Here we're looking at a time series over the course of the pandemic.
74
242572
4046
圖上的是在疫情期間的時間序列。
04:06
So from March 2020 through just last week.
75
246951
3128
也就是從 2020 三月到上週。
04:10
The blue line represents COVID virus concentrations in sewage samples
76
250079
4922
藍色代表
美國各地汙水樣本中的 新冠肺炎病毒濃度,
04:15
from across the United States.
77
255043
1877
04:16
In yellow, we see COVID clinical case data.
78
256961
3587
黃色的是新冠肺炎臨床病例資料。
04:21
For the first two years of the pandemic, case data was very reliable.
79
261132
3921
在疫情的前兩年,病例資料非常可靠。
04:25
People were getting PCR-tested all the time.
80
265053
2836
大家隨時都在接受 PCR 檢測。
04:27
During those two years,
81
267889
1209
在這兩年中,這兩組資料集 都追蹤得非常好,那很棒。
04:29
the two data sets tracked very well.
82
269140
1960
04:31
That was great.
83
271142
1168
04:32
It meant that sewage was also reliable
84
272310
2169
這意味著汙水也是可靠的,
04:34
and an accurate representation of disease burden.
85
274521
2585
可以正確反應出這些疾病負擔。
04:37
However, over the past year and a half to two years,
86
277857
2836
然而,在過去一年半到兩年中,
04:40
we've seen a divergence in those data sets.
87
280693
2920
我們看到這兩組資料集出現分歧。
04:43
People just aren't getting COVID-tested nearly as often.
88
283613
3212
大家沒那麼常做新冠肺炎檢測了。
04:46
Sewage, on the other hand,
89
286825
1918
另一方面,汙水
04:48
doesn't require us to access health care services.
90
288785
3378
並不需要我們去使用 健康照護服務才能被記錄到。
04:52
We're all represented just by peeing and pooping.
91
292163
3671
樣本會代表所有有尿尿和大便的人。
04:55
Throughout the pandemic, we and others also showed that sewage is predictive
92
295834
4295
在整個疫情期間,我們和其他人 也證明了可以用汙水來做預測,
05:00
and a leading indicator of new COVID clinical cases.
93
300129
4463
且是預測新冠肺炎 臨床新病例的領先指標。
05:04
This is because infectious disease viruses incubate in our bodies
94
304634
4129
這是因為感染性疾病病毒 會在我們的體內醞釀,
05:08
before we develop symptoms or go get tested.
95
308763
3128
且在我們出現症狀或去做 檢測之前就開始醞釀了。
05:12
Meanwhile, we've been excreting the virus for days.
96
312308
3295
而這幾天我們也一直在排泄出病毒。
05:16
During COVID,
97
316271
1167
在新冠肺炎期間,已證明 在預測臨床病例方面汙水是
05:17
it was shown that sewage was anywhere between one to three weeks
98
317438
4130
05:21
leading indicator for clinical cases.
99
321568
2460
一到三週的領先指標。
05:25
Now I'm going to show you an example
100
325280
1751
接著我要舉個例子,有一回, 這促成了影響社區的重大決策。
05:27
of one time that this led to a big community-impacting decision.
101
327073
3629
05:31
Here, we're looking at data from the Boston area
102
331244
3253
現在看到的是來自波士頓地區的資料,
05:34
during the Omicron wave.
103
334539
1793
時間是 Omicron 流行期間。
05:36
In December 2021, towards the end of the month,
104
336332
3128
2021 年十二月的月底,
05:39
COVID cases began to skyrocket across the country
105
339460
3045
全國各地的新冠肺炎 病例數開始向上衝,
05:42
and didn't slow until the end of January.
106
342547
2794
到一月底才緩下來。
05:45
Boston Children's Hospital, though, was ready.
107
345341
2419
不過,波士頓兒童醫院 已經做好了準備。
05:47
They had been looking at Boston area sewage
108
347802
2211
他們一直在關注波士頓地區的汙水,
在幾週前就發現汙水病毒濃度上升,
05:50
and saw the sewage levels go up weeks earlier,
109
350054
3712
05:53
so they proactively postponed all non-emergency medical procedures.
110
353808
4671
因此他們主動延後了所有 非緊急的醫療程序。
05:59
They wanted to free up resources so that they could adequately respond
111
359522
3879
他們想要騰出資源,讓他們能妥善因應
06:03
to the incoming wave of hospitalizations.
112
363443
2419
接下來的住院潮。
06:07
Now wastewater epidemiology has been used
113
367238
2419
廢水流行病學也有被用來 處理其他迫切的健康議題。
06:09
to tackle other pressing health issues as well.
114
369657
2878
06:12
Before the pandemic,
115
372994
1209
在疫情之前,
06:14
the biggest public health crisis in the United States
116
374203
2920
美國最大的公共衛生危機
06:17
was our growing drug epidemic.
117
377123
2211
是日益嚴重的藥物氾濫。
用藥過量
06:20
Drug overdoses were growing year over year
118
380001
2753
一年比一年多,且已成為 五十歲以下的美國人
06:22
and had become the leading cause of accidental death
119
382795
3254
06:26
for Americans under the age of 50.
120
386049
2544
意外死亡的主因。
06:28
In 2018, a small town in North Carolina had seen overdoses go up,
121
388927
5171
2018 年,北卡羅萊納州的一個 小鎮發現用藥過量越來越多,
06:34
and they wanted better information,
122
394098
1961
他們想要有更好的資訊、
06:36
better data to know what to do about it,
123
396059
2085
更好的資料,以了解該怎麼做、
06:38
what was driving this trend and how to respond.
124
398186
2878
這個趨勢背後的推手 是什麼,以及如何因應。
06:41
So we turned to the sewers, and together with the mayor's office,
125
401064
4087
因此,我們把注意力轉向下水道, 和市長辦公室合作,
06:45
we began to analyze sewage samples from several sites across the city
126
405193
4838
開始分析來自城市中 數個地點的汙水樣本,
06:50
and were able to show that prescription opioids
127
410073
3879
得以證明處方鴉片類藥物
06:53
were the drug most commonly consumed, not injectable opioids.
128
413952
3795
是最常被使用的藥物, 而非注射型鴉片藥物。
06:58
Equipped with this data,
129
418748
1919
有了這些資料,
07:00
the city diverted resources from needle exchange sites
130
420667
3420
該城市把資源從針頭 交換站點轉移出來,
07:04
and put that money into medication takeback programs instead.
131
424128
3629
把那筆錢改投入藥物取回計畫。
07:08
They advertised and held dozens of town halls
132
428174
2503
他們打廣告,並舉辦了 數十場市政廳公眾會議來談論
07:10
where they talked about the adverse effects of prescription painkillers.
133
430718
4004
處方止痛藥的不良影響。
07:15
That year,
134
435264
1460
那一年,
07:16
the city saw a 40 percent reduction in overdoses,
135
436766
4630
該城市的用藥過量減少了四成,
07:21
and for the first time,
136
441437
1293
且頭一次,
07:22
they had engaged their community in a dialogue around drugs,
137
442730
3462
他們讓他們的社區 參與了對談,討論藥物、
07:26
addiction and overdose.
138
446234
2002
成癮,以及用藥過量。
07:28
Now imagine if every city around the world had access to this sort of information.
139
448736
5714
想像一下,如果全世界的每個城市
都能取得這類資訊,會如何?
07:34
Before the pandemic,
140
454951
1168
在疫情之前,廢水流行病學 只是個很小的領域,
07:36
wastewater epidemiology was a tiny field
141
456160
2920
07:39
with no more than a dozen experts worldwide.
142
459122
3211
全世界這方面的專家不超過十二位。
07:42
Today, 72 countries
143
462333
3420
現今,有七十二個國家
07:45
have used wastewater monitoring to understand COVID-19.
144
465753
4255
採用廢水監測來了解新冠肺炎的狀況。
07:50
And it's time that we leverage these investments
145
470675
2419
現在我們可以好好利用這些投資,
07:53
to monitor for all sorts of other things as well.
146
473094
2502
來做其他各式各樣的監測。
07:56
Imagine knowing when influenza and RSV are going to peak every year
147
476305
4505
想像一下,若知道每年何時流感 和呼吸道合胞病毒會達到高峰,
08:00
so that our hospitals can prepare.
148
480810
2044
醫院就可以做好準備。
08:03
Imagine mapping nutrition in our cities
149
483229
2669
想像一下,能夠繪出 我們城市的營養地圖,
08:05
so that we can identify food deserts
150
485940
2169
幫助我們辨識出食物沙漠,
08:08
and understand social determinants of health.
151
488109
2419
並了解決定健康的社會因子有哪些。
08:11
Imagine identifying superbugs and antibiotic resistant genes
152
491154
4713
想像一下,能辨識出超級細菌
及抗生素耐藥基因,當它們 出現在我們的社區時就能發現。
08:15
as they emerge in our communities.
153
495908
2002
08:19
Imagine preventing the next pandemic before it happens.
154
499120
3503
想像一下,能在下一次 疫情發生之前就預防它。
08:23
In the way that cholera prompted London to build modern-day sewer systems,
155
503499
5005
就如同霍亂促使倫敦建造 現代的下水道系統,
08:28
and poor health in the tenements of New York City
156
508546
2503
以及紐約市廉價公寓居民健康不佳
08:31
were one of the catalysts behind the building of Central Park,
157
511049
4045
是建立中央公園背後的催化劑之一,
08:35
this is how our cities can learn from COVID-19.
158
515136
3170
我們的城市以這種方式 從新冠肺炎疫情中學習。
08:38
And this is precisely how we can foster a new, intelligent kind of urbanization.
159
518806
5589
我們也能以這種方式, 促進新型且明智的都市化。
08:45
For years now, scientists, policymakers,
160
525354
3212
至今已經很多年,
科學家、政策制訂者、 建築師,以及都市規劃師
08:48
architects and urban planners
161
528566
2169
08:50
have been harnessing the power of technology and big data
162
530735
3420
都一直在利用科技和大數據的力量
08:54
to future-proof our cities.
163
534197
2085
讓我們的城市為未來做好準備。
08:57
Over the last decade,
164
537200
1543
在過去十年,
08:58
chief technology officers have been appointed in cities
165
538743
3170
世界各地的城市都安排了 技術長這個職務。
09:01
around the world.
166
541954
1502
09:04
Roles once reserved for the boardrooms
167
544415
2127
過去只為矽谷董事會 會議室和走廊保留的角色
09:06
and hallways of Silicon Valley
168
546584
1460
現在終於在市政廳中開放了。
09:08
are now finally open in city hall.
169
548044
2794
因此,當你下次刷信用卡、
09:12
So next time you swipe your credit card,
170
552006
3128
09:15
take a ride in a taxi or tap your MetroCard,
171
555176
3462
搭乘計程車,或感應捷運卡時,
09:18
just consider how you're contributing
172
558679
1961
想一下你正在如何為城市不斷 成長的數位基礎設施做出貢獻。
09:20
to your city's ever-growing digital infrastructure.
173
560681
2878
09:24
And next time you use the toilet,
174
564685
2795
當你下次上廁所時,
09:27
just remember, you're doing your civic duty.
175
567480
3128
別忘了,你是在履行你的公民職責。
09:30
(Laughter)
176
570650
1543
(笑聲)
09:32
Thank you.
177
572235
1167
謝謝。
09:33
(Applause)
178
573402
3921
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7