The Vital Data You Flush Down the Toilet | Newsha Ghaeli | TED

61,394 views ・ 2024-01-05

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Yanyan Hong
00:04
Has it ever occurred to you, as you walk down the street,
0
4251
3503
當你走在街上時,可曾想過,
00:07
just how much data is flowing beneath your feet?
1
7796
3628
有多少資料從你腳下流過?
00:12
A wealth of information on our health and our well-being
2
12175
2920
有大量關於我們健康和安康的 資訊流經我們城市的下水道,
00:15
is running through our city sewers,
3
15136
2294
00:17
and we're all contributing to it every single time we use the toilet.
4
17472
3879
而每次我們使用廁所時 都貢獻了一點資訊。
00:22
Think about it.
5
22561
1167
想想看。
00:23
Everybody pees and poops,
6
23770
2461
每個人都會尿尿和大便,
00:26
and we know that urine and stool contain a rich source of information
7
26273
3878
而我們知道尿液和糞便 含有豐富的資訊,
00:30
on our health and our well-being.
8
30151
1585
和我們的健康與安康有關。
00:32
Our doctors look at it all the time to analyze for a variety of things.
9
32195
4588
我們的醫生做許多分析時 都常會用到它們。
00:37
Now, every time you flush,
10
37158
1627
每當你沖馬桶時,
00:38
you're sending this valuable information down into our sewers,
11
38785
3754
就是將這些寶貴的資訊 送到下頭的下水道,
00:42
where it's mixing with waste from hundreds of thousands of other people.
12
42539
3837
在那裡,它們會混入 來成千上萬人的排泄物中。
00:46
Once collected, it looks something like this.
13
46418
2961
收集起來就會像這樣。
00:49
This tiny sample
14
49379
2044
這個小小的樣本
00:51
comes from a wastewater treatment plant
15
51423
2043
來自一個廢水處理廠, 代表超過一百萬人。
00:53
that represents more than one million people.
16
53508
2711
00:56
And from it, we can detect all sorts of things about that community:
17
56219
4171
我們可以從這個樣本檢測出 關於那個社區的各種狀況:
01:01
the infectious disease viruses that are circulating in our bodies,
18
61141
4421
在我們體內循環的感染性疾病病毒、
01:05
chemical markers for the drugs that are most commonly consumed.
19
65562
4171
最常被使用的藥物的化學標記。
01:09
And we can analyze for all the bacteria that live in our collective microbiomes.
20
69733
5130
我們可以分析存在於我們 集體微生物群中的所有細菌。
01:15
Now, if this sounds too close for comfort,
21
75488
2044
如果這聽起來不太舒服,
01:17
just consider all the personalized data that you're parting with every day
22
77532
3754
那就想一下你每天在用
智慧手機或智慧手錶時 分享出去的個人資料。
01:21
when you use gadgets like your smartphone or your smart watch.
23
81286
3628
01:24
What's amazing about sewage
24
84956
2086
汙水有個神奇的特色,
01:27
is that it's naturally aggregated and anonymized.
25
87042
3169
它很自然就會做到匯整和匿名化。
01:30
Once flushed,
26
90879
1418
你的排泄物被沖走之後就會 和成千上萬人的排泄物混在一起,
01:32
your waste is mixing with that of thousands and thousands of people,
27
92339
3378
01:35
so there's actually no way to tie any information from here
28
95717
3378
所以實際上不可能把這裡的任何資訊
01:39
back to a specific person.
29
99095
1877
連結到特定的人。
01:41
Put differently, it's the perfect data dump.
30
101264
3379
換句話說,它是完美的資料傾倒場。
01:44
(Laughter)
31
104684
2503
(笑聲)
01:47
The thoughtful collection and analysis of sewage
32
107187
3003
對汙水做考慮周全的收集和分析
01:50
has the potential to radically improve health outcomes
33
110231
3170
有可能可以大大改善 世界各地城市的健康結果,
01:53
in cities around the world,
34
113401
1877
01:55
and it's a growing field called "wastewater epidemiology."
35
115278
3712
這是個正在發展的領域, 叫「廢水流行病學」。
01:59
And wastewater epidemiology is but one example
36
119324
2753
現今我們會在我們的城市裡 產生各種大數據,
02:02
of all the big data that we're generating in our cities today.
37
122118
3879
廢水流行病學只不過是一個例子。
02:07
Consider all the data that you generate with every phone call, package delivered,
38
127082
4004
想想你每打一通電話、寄一個包裏、
開一英里路的車所產生的各種資料。
02:11
mile driven.
39
131086
1418
02:12
It's data from cameras, sensors, drones,
40
132837
3170
資料可能來自於相機、 感測器、無人機、
02:16
air quality, water quality monitoring,
41
136007
2753
空氣品質、水質監測,
02:18
and the vast amounts of information generated by our health care
42
138802
3461
以及我們的健康照護 及教育體系所產生的大量資訊。
02:22
and our educational systems.
43
142263
1961
02:24
All of this information, these digital breadcrumbs,
44
144891
3212
所有這些資訊,這些數位麵包屑,
02:28
tell us unique stories about our cities and the way that we live our lives.
45
148103
4629
講述的是關於我們城市 及我們生活方式的獨家故事。
02:33
The thoughtful collection and analysis of this information
46
153149
4296
考慮周全地收集和分析這些資訊
02:37
has the power to inform real-time improvements
47
157445
3337
就能提供訊息來做即時改善,
02:40
to things like social policy,
48
160824
1835
能協助如社會政策、 環境管理、健康平權等等。
02:42
environmental management, health equity and more.
49
162701
2669
02:45
As an architect, I believe that we need to harness
50
165745
2962
身為建築師,
我相信我們必須要利用 這數億 TB 的資料,
02:48
the hundreds of millions of terabytes of data
51
168707
2877
02:51
that we're generating in our cities each and every day.
52
171626
3045
我們每天在我們的城市中產生的資料。
02:54
And this is important now more than ever,
53
174671
2377
此時,這點特別重要,
02:57
because for the first time in human history,
54
177090
2502
因為這是人類史上第一次
02:59
more than half of all people live in cities.
55
179592
3379
全人類有一半以上的人住在城市裡。
03:02
By 2050,
56
182971
1293
到 2050 年,
03:04
this number will grow to nearly seven in 10 people.
57
184264
3628
會增加到有七成的人住在城市裡。
03:07
Now just think about what that means for a second.
58
187934
2961
想想看這背後的意涵。
03:10
It means our biggest crises,
59
190937
1960
那就是,我們最大的危機,
03:12
from climate change to pandemics to growing inequality,
60
192939
3921
從氣候變遷,到疫情, 到越來越嚴重的不平等,
03:16
are going to hit cities first and hardest.
61
196901
3003
最先衝擊到的就是城市, 且這衝擊會是最重的。
03:21
But the era of big data offers an opportunity
62
201072
2961
但大數據的時代提供了一個機會,
可以用有創意的新解決方案 來處理這些問題。
03:24
for new and creative solutions to tackle these problems.
63
204075
3337
所以,咱們來深入探討 廢水流行病學帶來的機會。
03:29
So let's dive into the opportunity presented by wastewater epidemiology.
64
209038
4088
03:34
Some of you may have heard of it as it gained a lot of popularity
65
214335
3170
有些人可能聽過它,
因為在新冠肺炎疫情期間 它得到相當的知名度及注意力。
03:37
and attention during the COVID-19 pandemic.
66
217505
2795
2020 年,世界各地的研究團隊
03:41
In 2020, research groups from around the world
67
221009
3503
03:44
began detecting SARS-CoV-2 RNA,
68
224554
2836
開始在汙水樣本中檢測造成
03:47
the virus that causes COVID-19, in sewage samples.
69
227432
3086
新冠肺炎的病毒, SARS-CoV-2 的 RNA。
03:51
I was on one of those teams.
70
231102
1919
我隸屬其中一個團隊。
03:53
We and others showed that you can actually use sewage
71
233605
3545
我們和其他人證明了 實際上可以用汙水
03:57
as an accurate representation of COVID activity in our communities.
72
237150
3503
準確地代表我們社區中的 新冠肺炎活動。
讓我說明我的意思。
04:01
Let me show you what I mean.
73
241070
1502
04:02
Here we're looking at a time series over the course of the pandemic.
74
242572
4046
圖上的是在疫情期間的時間序列。
04:06
So from March 2020 through just last week.
75
246951
3128
也就是從 2020 三月到上週。
04:10
The blue line represents COVID virus concentrations in sewage samples
76
250079
4922
藍色代表
美國各地汙水樣本中的 新冠肺炎病毒濃度,
04:15
from across the United States.
77
255043
1877
04:16
In yellow, we see COVID clinical case data.
78
256961
3587
黃色的是新冠肺炎臨床病例資料。
04:21
For the first two years of the pandemic, case data was very reliable.
79
261132
3921
在疫情的前兩年,病例資料非常可靠。
04:25
People were getting PCR-tested all the time.
80
265053
2836
大家隨時都在接受 PCR 檢測。
04:27
During those two years,
81
267889
1209
在這兩年中,這兩組資料集 都追蹤得非常好,那很棒。
04:29
the two data sets tracked very well.
82
269140
1960
04:31
That was great.
83
271142
1168
04:32
It meant that sewage was also reliable
84
272310
2169
這意味著汙水也是可靠的,
04:34
and an accurate representation of disease burden.
85
274521
2585
可以正確反應出這些疾病負擔。
04:37
However, over the past year and a half to two years,
86
277857
2836
然而,在過去一年半到兩年中,
04:40
we've seen a divergence in those data sets.
87
280693
2920
我們看到這兩組資料集出現分歧。
04:43
People just aren't getting COVID-tested nearly as often.
88
283613
3212
大家沒那麼常做新冠肺炎檢測了。
04:46
Sewage, on the other hand,
89
286825
1918
另一方面,汙水
04:48
doesn't require us to access health care services.
90
288785
3378
並不需要我們去使用 健康照護服務才能被記錄到。
04:52
We're all represented just by peeing and pooping.
91
292163
3671
樣本會代表所有有尿尿和大便的人。
04:55
Throughout the pandemic, we and others also showed that sewage is predictive
92
295834
4295
在整個疫情期間,我們和其他人 也證明了可以用汙水來做預測,
05:00
and a leading indicator of new COVID clinical cases.
93
300129
4463
且是預測新冠肺炎 臨床新病例的領先指標。
05:04
This is because infectious disease viruses incubate in our bodies
94
304634
4129
這是因為感染性疾病病毒 會在我們的體內醞釀,
05:08
before we develop symptoms or go get tested.
95
308763
3128
且在我們出現症狀或去做 檢測之前就開始醞釀了。
05:12
Meanwhile, we've been excreting the virus for days.
96
312308
3295
而這幾天我們也一直在排泄出病毒。
05:16
During COVID,
97
316271
1167
在新冠肺炎期間,已證明 在預測臨床病例方面汙水是
05:17
it was shown that sewage was anywhere between one to three weeks
98
317438
4130
05:21
leading indicator for clinical cases.
99
321568
2460
一到三週的領先指標。
05:25
Now I'm going to show you an example
100
325280
1751
接著我要舉個例子,有一回, 這促成了影響社區的重大決策。
05:27
of one time that this led to a big community-impacting decision.
101
327073
3629
05:31
Here, we're looking at data from the Boston area
102
331244
3253
現在看到的是來自波士頓地區的資料,
05:34
during the Omicron wave.
103
334539
1793
時間是 Omicron 流行期間。
05:36
In December 2021, towards the end of the month,
104
336332
3128
2021 年十二月的月底,
05:39
COVID cases began to skyrocket across the country
105
339460
3045
全國各地的新冠肺炎 病例數開始向上衝,
05:42
and didn't slow until the end of January.
106
342547
2794
到一月底才緩下來。
05:45
Boston Children's Hospital, though, was ready.
107
345341
2419
不過,波士頓兒童醫院 已經做好了準備。
05:47
They had been looking at Boston area sewage
108
347802
2211
他們一直在關注波士頓地區的汙水,
在幾週前就發現汙水病毒濃度上升,
05:50
and saw the sewage levels go up weeks earlier,
109
350054
3712
05:53
so they proactively postponed all non-emergency medical procedures.
110
353808
4671
因此他們主動延後了所有 非緊急的醫療程序。
05:59
They wanted to free up resources so that they could adequately respond
111
359522
3879
他們想要騰出資源,讓他們能妥善因應
06:03
to the incoming wave of hospitalizations.
112
363443
2419
接下來的住院潮。
06:07
Now wastewater epidemiology has been used
113
367238
2419
廢水流行病學也有被用來 處理其他迫切的健康議題。
06:09
to tackle other pressing health issues as well.
114
369657
2878
06:12
Before the pandemic,
115
372994
1209
在疫情之前,
06:14
the biggest public health crisis in the United States
116
374203
2920
美國最大的公共衛生危機
06:17
was our growing drug epidemic.
117
377123
2211
是日益嚴重的藥物氾濫。
用藥過量
06:20
Drug overdoses were growing year over year
118
380001
2753
一年比一年多,且已成為 五十歲以下的美國人
06:22
and had become the leading cause of accidental death
119
382795
3254
06:26
for Americans under the age of 50.
120
386049
2544
意外死亡的主因。
06:28
In 2018, a small town in North Carolina had seen overdoses go up,
121
388927
5171
2018 年,北卡羅萊納州的一個 小鎮發現用藥過量越來越多,
06:34
and they wanted better information,
122
394098
1961
他們想要有更好的資訊、
06:36
better data to know what to do about it,
123
396059
2085
更好的資料,以了解該怎麼做、
06:38
what was driving this trend and how to respond.
124
398186
2878
這個趨勢背後的推手 是什麼,以及如何因應。
06:41
So we turned to the sewers, and together with the mayor's office,
125
401064
4087
因此,我們把注意力轉向下水道, 和市長辦公室合作,
06:45
we began to analyze sewage samples from several sites across the city
126
405193
4838
開始分析來自城市中 數個地點的汙水樣本,
06:50
and were able to show that prescription opioids
127
410073
3879
得以證明處方鴉片類藥物
06:53
were the drug most commonly consumed, not injectable opioids.
128
413952
3795
是最常被使用的藥物, 而非注射型鴉片藥物。
06:58
Equipped with this data,
129
418748
1919
有了這些資料,
07:00
the city diverted resources from needle exchange sites
130
420667
3420
該城市把資源從針頭 交換站點轉移出來,
07:04
and put that money into medication takeback programs instead.
131
424128
3629
把那筆錢改投入藥物取回計畫。
07:08
They advertised and held dozens of town halls
132
428174
2503
他們打廣告,並舉辦了 數十場市政廳公眾會議來談論
07:10
where they talked about the adverse effects of prescription painkillers.
133
430718
4004
處方止痛藥的不良影響。
07:15
That year,
134
435264
1460
那一年,
07:16
the city saw a 40 percent reduction in overdoses,
135
436766
4630
該城市的用藥過量減少了四成,
07:21
and for the first time,
136
441437
1293
且頭一次,
07:22
they had engaged their community in a dialogue around drugs,
137
442730
3462
他們讓他們的社區 參與了對談,討論藥物、
07:26
addiction and overdose.
138
446234
2002
成癮,以及用藥過量。
07:28
Now imagine if every city around the world had access to this sort of information.
139
448736
5714
想像一下,如果全世界的每個城市
都能取得這類資訊,會如何?
07:34
Before the pandemic,
140
454951
1168
在疫情之前,廢水流行病學 只是個很小的領域,
07:36
wastewater epidemiology was a tiny field
141
456160
2920
07:39
with no more than a dozen experts worldwide.
142
459122
3211
全世界這方面的專家不超過十二位。
07:42
Today, 72 countries
143
462333
3420
現今,有七十二個國家
07:45
have used wastewater monitoring to understand COVID-19.
144
465753
4255
採用廢水監測來了解新冠肺炎的狀況。
07:50
And it's time that we leverage these investments
145
470675
2419
現在我們可以好好利用這些投資,
07:53
to monitor for all sorts of other things as well.
146
473094
2502
來做其他各式各樣的監測。
07:56
Imagine knowing when influenza and RSV are going to peak every year
147
476305
4505
想像一下,若知道每年何時流感 和呼吸道合胞病毒會達到高峰,
08:00
so that our hospitals can prepare.
148
480810
2044
醫院就可以做好準備。
08:03
Imagine mapping nutrition in our cities
149
483229
2669
想像一下,能夠繪出 我們城市的營養地圖,
08:05
so that we can identify food deserts
150
485940
2169
幫助我們辨識出食物沙漠,
08:08
and understand social determinants of health.
151
488109
2419
並了解決定健康的社會因子有哪些。
08:11
Imagine identifying superbugs and antibiotic resistant genes
152
491154
4713
想像一下,能辨識出超級細菌
及抗生素耐藥基因,當它們 出現在我們的社區時就能發現。
08:15
as they emerge in our communities.
153
495908
2002
08:19
Imagine preventing the next pandemic before it happens.
154
499120
3503
想像一下,能在下一次 疫情發生之前就預防它。
08:23
In the way that cholera prompted London to build modern-day sewer systems,
155
503499
5005
就如同霍亂促使倫敦建造 現代的下水道系統,
08:28
and poor health in the tenements of New York City
156
508546
2503
以及紐約市廉價公寓居民健康不佳
08:31
were one of the catalysts behind the building of Central Park,
157
511049
4045
是建立中央公園背後的催化劑之一,
08:35
this is how our cities can learn from COVID-19.
158
515136
3170
我們的城市以這種方式 從新冠肺炎疫情中學習。
08:38
And this is precisely how we can foster a new, intelligent kind of urbanization.
159
518806
5589
我們也能以這種方式, 促進新型且明智的都市化。
08:45
For years now, scientists, policymakers,
160
525354
3212
至今已經很多年,
科學家、政策制訂者、 建築師,以及都市規劃師
08:48
architects and urban planners
161
528566
2169
08:50
have been harnessing the power of technology and big data
162
530735
3420
都一直在利用科技和大數據的力量
08:54
to future-proof our cities.
163
534197
2085
讓我們的城市為未來做好準備。
08:57
Over the last decade,
164
537200
1543
在過去十年,
08:58
chief technology officers have been appointed in cities
165
538743
3170
世界各地的城市都安排了 技術長這個職務。
09:01
around the world.
166
541954
1502
09:04
Roles once reserved for the boardrooms
167
544415
2127
過去只為矽谷董事會 會議室和走廊保留的角色
09:06
and hallways of Silicon Valley
168
546584
1460
現在終於在市政廳中開放了。
09:08
are now finally open in city hall.
169
548044
2794
因此,當你下次刷信用卡、
09:12
So next time you swipe your credit card,
170
552006
3128
09:15
take a ride in a taxi or tap your MetroCard,
171
555176
3462
搭乘計程車,或感應捷運卡時,
09:18
just consider how you're contributing
172
558679
1961
想一下你正在如何為城市不斷 成長的數位基礎設施做出貢獻。
09:20
to your city's ever-growing digital infrastructure.
173
560681
2878
09:24
And next time you use the toilet,
174
564685
2795
當你下次上廁所時,
09:27
just remember, you're doing your civic duty.
175
567480
3128
別忘了,你是在履行你的公民職責。
09:30
(Laughter)
176
570650
1543
(笑聲)
09:32
Thank you.
177
572235
1167
謝謝。
09:33
(Applause)
178
573402
3921
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog