The Vital Data You Flush Down the Toilet | Newsha Ghaeli | TED

61,021 views ใƒป 2024-01-05

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: aknv tso ืขืจื™ื›ื”: zeeva livshitz
00:04
Has it ever occurred to you, as you walk down the street,
0
4251
3503
ื”ืื ืชื”ื™ืชื ืื™-ืคืขื, ื›ืฉืืชื ื”ื•ืœื›ื™ื ื‘ืจื—ื•ื‘,
00:07
just how much data is flowing beneath your feet?
1
7796
3628
ืžื” ืจื‘ื™ื ื”ื ืชื•ื ื™ื ืฉื–ื•ืจืžื™ื ืžืชื—ืช ืœืจื’ืœื™ื›ื?
00:12
A wealth of information on our health and our well-being
2
12175
2920
ืฉืคืข ืฉืœ ืžื™ื“ืข ืื•ื“ื•ืช ื‘ืจื™ืื•ืชื ื• ื•ืฉืœื•ืžื ื•
00:15
is running through our city sewers,
3
15136
2294
ื–ื•ืจื ืœื• ื‘ื‘ื™ื•ื‘ ื”ืขื™ืจื•ื ื™ ืฉืœื ื•,
00:17
and we're all contributing to it every single time we use the toilet.
4
17472
3879
ื•ื›ื•ืœื ื• ืชื•ืจืžื™ื ืœื•, ื‘ื›ืœ ืคืขื ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ืฉื™ืจื•ืชื™ื.
00:22
Think about it.
5
22561
1167
ื—ื™ืฉื‘ื• ืขืœ ื›ืš.
00:23
Everybody pees and poops,
6
23770
2461
ื›ื•ืœื ืžืฉืชื™ื ื™ื ื•ืžื—ืจื‘ื ื™ื,
00:26
and we know that urine and stool contain a rich source of information
7
26273
3878
ื•ื™ื“ื•ืข ืœื ื• ืฉื”ืฉืชืŸ ื•ื”ืฆื•ืื” ืžื›ื™ืœื™ื ืžืงื•ืจ ืขืฉื™ืจ ืฉืœ ืžื™ื“ืข
ืขืœ ื‘ืจื™ืื•ืชื ื• ื•ืฉืœื•ืžื ื•.
00:30
on our health and our well-being.
8
30151
1585
00:32
Our doctors look at it all the time to analyze for a variety of things.
9
32195
4588
ื”ืจื•ืคืื™ื ืฉืœื ื• ื‘ื•ื“ืงื™ื ืื•ืชื ืชืžื™ื“ ื›ื“ื™ ืœื ืชื— ืžื’ื•ื•ืŸ ื“ื‘ืจื™ื.
00:37
Now, every time you flush,
10
37158
1627
ื‘ื›ืœ ืคืขื ืฉืืชื ืžื•ืจื™ื“ื™ื ืืช ื”ืžื™ื,
00:38
you're sending this valuable information down into our sewers,
11
38785
3754
ืืชื ืฉื•ืœื—ื™ื ืืช ื”ืžื™ื“ืข ื”ื—ืฉื•ื‘ ื”ื–ื” ืืœ ื”ื‘ื™ื•ื‘ ืฉืœื ื•,
00:42
where it's mixing with waste from hundreds of thousands of other people.
12
42539
3837
ื•ืฉื ื”ื•ื ืžืชืขืจื‘ื‘ ืขื ืคืกื•ืœืช ืฉืœ ืžืื•ืช ืืœืคื™ ืื ืฉื™ื ืื—ืจื™ื.
00:46
Once collected, it looks something like this.
13
46418
2961
ื›ืฉืื•ืกืคื™ื ืื•ืชื”, ื”ื™ื ื ืจืื™ืช ื‘ืขืจืš ื›ื›ื”.
00:49
This tiny sample
14
49379
2044
ื”ื“ื’ื™ืžื” ื”ื–ืขื™ืจื” ื”ื–ืืช
00:51
comes from a wastewater treatment plant
15
51423
2043
ืžื’ื™ืขื” ืžืžืชืงืŸ ืœื˜ื™ืคื•ืœ ื‘ืฉืคื›ื™ื ื•ืžื™ื™ืฆื’ืช ื™ื•ืชืจ ืžืžื™ืœื™ื•ืŸ ื‘ื ื™-ืื“ื.
00:53
that represents more than one million people.
16
53508
2711
00:56
And from it, we can detect all sorts of things about that community:
17
56219
4171
ื•ืžืชื•ืš ื›ืš, ืื ื• ื™ื›ื•ืœื™ื ืœื–ื”ื•ืช ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืขืœ ื”ืงื”ื™ืœื” ื”ื”ื™ื:
ื ื’ื™ืคื™ ื”ืžื—ืœื•ืช ื”ื–ื™ื”ื•ืžื™ื•ืช ืฉืžืกืชื•ื‘ื‘ื™ื ื‘ื’ื•ืคื ื•,
01:01
the infectious disease viruses that are circulating in our bodies,
18
61141
4421
01:05
chemical markers for the drugs that are most commonly consumed.
19
65562
4171
ืกืžื ื™ื ื›ื™ืžื™ื™ื ืœืชืจื•ืคื•ืช ืฉื ืฆืจื›ื•ืช ื‘ื“ืจืš-ื›ืœืœ.
01:09
And we can analyze for all the bacteria that live in our collective microbiomes.
20
69733
5130
ื•ืื ื• ื™ื›ื•ืœื™ื ืœื ืชื— ืืช ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ืฉื—ื™ื™ื ื‘ืžื™ืงืจื•ื‘ื™ื•ืžื™ื ืฉืœ ื›ื•ืœื ื•.
01:15
Now, if this sounds too close for comfort,
21
75488
2044
ืื ื–ื” ืžืขื•ืจืจ ืงืฆืช ืื™-ื ื•ื—ื•ืช,
01:17
just consider all the personalized data that you're parting with every day
22
77532
3754
ื—ื™ืฉื‘ื• ืขืœ ื›ืœ ื”ื ืชื•ื ื™ื ื”ืื™ืฉื™ื™ื ืฉืืชื ื—ื•ืœืงื™ื ืžื™ื“ื™ ื™ื•ื
01:21
when you use gadgets like your smartphone or your smart watch.
23
81286
3628
ื›ืฉืืชื ืžืฉืชืžืฉื™ื ื‘ื—ืคื™ืฆื™ื ื›ืžื• ื”ื˜ืœืคื•ืŸ ื”ื—ื›ื ืื• ื”ืฉืขื•ืŸ ื”ื—ื›ื.
01:24
What's amazing about sewage
24
84956
2086
ื”ืžื“ื”ื™ื ื‘ื‘ื™ื•ื‘ ื”ื•ื,
01:27
is that it's naturally aggregated and anonymized.
25
87042
3169
ืฉื”ื•ื ื ืืกืฃ ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ื•ืืœืžื•ื ื™.
01:30
Once flushed,
26
90879
1418
ืœืื—ืจ ื”ื”ื“ื—ื”,
01:32
your waste is mixing with that of thousands and thousands of people,
27
92339
3378
ื”ืคืกื•ืœืช ืฉืœื›ื ืžืชืขืจื‘ื‘ืช ืขื ื–ื• ืฉืœ ืืœืคื™ื ืจื‘ื™ื,
01:35
so there's actually no way to tie any information from here
28
95717
3378
ื›ืš ืฉืœืžืขืฉื” ืื™ืŸ ื“ืจืš ืœืงืฉืจ ืžื™ื“ืข ืžืžื ื” ืœืื“ื ืžืกื•ื™ื.
01:39
back to a specific person.
29
99095
1877
01:41
Put differently, it's the perfect data dump.
30
101264
3379
ื‘ืžืœื™ื ืื—ืจื•ืช, ื–ื• ืžื–ื‘ืœืช ื”ื ืชื•ื ื™ื ื”ืžื•ืฉืœืžืช.
01:44
(Laughter)
31
104684
2503
(ืฆื—ื•ืง)
01:47
The thoughtful collection and analysis of sewage
32
107187
3003
ืœืื™ืกื•ืฃ ื•ื ื™ืชื•ื— ืจืฆื™ื ื™ ืฉืœ ืชื•ืฆืจื™ ื‘ื™ื•ื‘
01:50
has the potential to radically improve health outcomes
33
110231
3170
ื™ืฉ ืคื•ื˜ื ืฆื™ืืœ ืœืฉืคืจ ื‘ืื•ืคืŸ ืงื™ืฆื•ื ื™ ืืช ื”ืชื•ืฆืื•ืช ื”ื‘ืจื™ืื•ืชื™ื•ืช
01:53
in cities around the world,
34
113401
1877
ื‘ืขืจื™ื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื,
01:55
and it's a growing field called "wastewater epidemiology."
35
115278
3712
ื•ื–ื”ื• ืชื—ื•ื ื”ื•ืœืš ื•ืžืชืคืชื— ื‘ืฉื โ€œืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืฉืœ ืฉืคื›ื™ืโ€œ.
01:59
And wastewater epidemiology is but one example
36
119324
2753
ื•ื”ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืฉืคื›ื™ื ื”ื™ื ืจืง ื“ื•ื’ืžื” ืื—ืช
ืœื›ืœ ื ืชื•ื ื™ ื”ืขืชืง ืฉืื ื• ืžืคื™ืงื™ื ื›ื™ื•ื ื‘ืขืจื™ื ืฉืœื ื•.
02:02
of all the big data that we're generating in our cities today.
37
122118
3879
02:07
Consider all the data that you generate with every phone call, package delivered,
38
127082
4004
ื—ื™ืฉื‘ื• ืขืœ ื›ืœ ื”ื ืชื•ื ื™ื ืฉืืชื ืžืคื™ืงื™ื ื‘ื›ืœ ืฉื™ื—ืช ื˜ืœืคื•ืŸ, ื—ื‘ื™ืœื” ืฉื ืžืกืจื”,
02:11
mile driven.
39
131086
1418
ื‘ื›ืœ ื ืกื™ืขื” ืงืฆืจื”,
02:12
It's data from cameras, sensors, drones,
40
132837
3170
ื ืชื•ื ื™ื ืžืžืฆืœืžื•ืช, ื—ื™ื™ืฉื ื™ื, ืžืœโ€œื˜ื™ื, ืื™ื›ื•ืช ืื•ื•ื™ืจ, ื ื™ื˜ื•ืจ ืื™ื›ื•ืช ืžื™ื,
02:16
air quality, water quality monitoring,
41
136007
2753
02:18
and the vast amounts of information generated by our health care
42
138802
3461
ื•ื›ืžื•ื™ื•ืช ื”ืžื™ื“ืข ื”ืขืฆื•ืžื•ืช ืฉืžื•ืคืงื•ืช ืขืœ ื™ื“ื™ ืฉื™ืจื•ืชื™ ื”ื‘ืจื™ืื•ืช ืฉืœื ื•
02:22
and our educational systems.
43
142263
1961
ื•ืžืขืจื›ื•ืช ื”ื—ื™ื ื•ืš ืฉืœื ื•.
02:24
All of this information, these digital breadcrumbs,
44
144891
3212
ื›ืœ ื”ืžื™ื“ืข ื”ื–ื”, ืคื™ืจื•ืจื™ ื”ืœื—ื ื”ื“ื™ื’ื™ื˜ืœื™ื™ื ื”ืืœื”,
02:28
tell us unique stories about our cities and the way that we live our lives.
45
148103
4629
ืžืกืคืจื™ื ืœื ื• ืกื™ืคื•ืจื™ื ื™ื™ื—ื•ื“ื™ื™ื ืขืœ ื”ืขืจื™ื ืฉืœื ื• ื•ืขืœ ืื•ืจื—ื•ืช ื—ื™ื™ื ื•.
02:33
The thoughtful collection and analysis of this information
46
153149
4296
ืื™ืกื•ืฃ ื•ื ื™ืชื•ื— ืžืœืื™-ืžื—ืฉื‘ื” ืฉืœ ืžื™ื“ืข ื–ื”
02:37
has the power to inform real-time improvements
47
157445
3337
ืขืฉื•ื™ ืœื”ื•ืจื•ืช ืขืœ ืฉื™ืคื•ืจื™ื ื‘ื–ืžืŸ ืืžืช
02:40
to things like social policy,
48
160824
1835
ื‘ื“ื‘ืจื™ื ื›ืžื• ืžื“ื™ื ื™ื•ืช ื—ื‘ืจืชื™ืช, ื ื™ื”ื•ืœ ืกื‘ื™ื‘ืชื™, ืฉื•ื•ื™ื•ืŸ ื‘ืจื™ืื•ืชื™ ื•ืขื•ื“.
02:42
environmental management, health equity and more.
49
162701
2669
02:45
As an architect, I believe that we need to harness
50
165745
2962
ื›ืื“ืจื™ื›ืœื™ืช, ืื ื™ ืžืืžื™ื ื” ืฉืขืœื™ื ื• ืœืจืชื•ื
02:48
the hundreds of millions of terabytes of data
51
168707
2877
ืืช ืžืื•ืช ืžื™ืœื™ื•ื ื™ ื”ื˜ืจื”-ื‘ื™ื™ื˜ื™ื ืฉืœ ื ืชื•ื ื™ื
02:51
that we're generating in our cities each and every day.
52
171626
3045
ืฉืื ื• ืžืคื™ืงื™ื ื‘ืขืจื™ื ืฉืœื ื• ืžื™ื“ื™ ื™ื•ื.
02:54
And this is important now more than ever,
53
174671
2377
ื•ื–ื” ื—ืฉื•ื‘ ืขื›ืฉื™ื• ื™ื•ืชืจ ืžืชืžื™ื“,
02:57
because for the first time in human history,
54
177090
2502
ื›ื™ ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘ื“ื‘ืจื™-ื™ืžื™ ื”ืื ื•ืฉื•ืช,
02:59
more than half of all people live in cities.
55
179592
3379
ื™ื•ืชืจ ืžืžื—ืฆื™ืช ืžื›ืœืœ ื”ืื ื•ืฉื•ืช ื—ื™ื” ื‘ืขืจื™ื.
03:02
By 2050,
56
182971
1293
ืขื“ ืฉื ืช 2050,
03:04
this number will grow to nearly seven in 10 people.
57
184264
3628
ืžืกืคืจ ื–ื” ื™ื’ื“ืœ ืœืฉื‘ืขื” ืžื›ืœ ืขืฉืจื” ืื ืฉื™ื ื›ืžืขื˜.
03:07
Now just think about what that means for a second.
58
187934
2961
ื—ื™ืฉื‘ื• ืœืจื’ืข ืžื” ื–ื” ืื•ืžืจ:
03:10
It means our biggest crises,
59
190937
1960
ืฉื”ืžืฉื‘ืจื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืฉืœื ื•,
03:12
from climate change to pandemics to growing inequality,
60
192939
3921
ืžืฉื™ื ื•ื™ื™ ืืงืœื™ื ื“ืจืš ืžื’ื™ืคื•ืช ื•ืขื“ ืื™-ืฉื•ื•ื™ื•ืŸ ื”ื•ืœืš ื•ื’ื“ืœ,
03:16
are going to hit cities first and hardest.
61
196901
3003
ื™ืคื’ืขื• ืงื•ื“ื-ื›ืœ ื•ื”ื›ื™ ืงืฉื” ื‘ืขืจื™ื.
03:21
But the era of big data offers an opportunity
62
201072
2961
ืื‘ืœ ืขื™ื“ืŸ ื ืชื•ื ื™ ื”ืขืชืง ืžืฆื™ืข ื”ื–ื“ืžื ื•ืช
03:24
for new and creative solutions to tackle these problems.
63
204075
3337
ืœืคืชืจื•ื ื•ืช ื—ื“ืฉื™ื ื•ื™ืฆื™ืจืชื™ื™ื ืœื”ืชืžื•ื“ื“ื•ืช ืขื ื‘ืขื™ื•ืช ืืœื”.
03:29
So let's dive into the opportunity presented by wastewater epidemiology.
64
209038
4088
ืื– ื‘ื•ืื• ื ืฆืœื•ืœ ืœืชื•ืš ื”ื”ื–ื“ืžื ื•ืช ืฉื˜ืžื•ื ื” ื‘ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืฉืคื›ื™ื.
03:34
Some of you may have heard of it as it gained a lot of popularity
65
214335
3170
ื—ืœืงื›ื ืื•ืœื™ ืฉืžืขื• ืขืœ ื›ืš, ืขืงื‘ ื”ืคื•ืคื•ืœืจื™ื•ืช ื•ืชืฉื•ืžืช ื”ืœื‘ ื”ืจื‘ื•ืช
03:37
and attention during the COVID-19 pandemic.
66
217505
2795
ืฉื”ื ื•ืฉื ืฆื‘ืจ ื‘ืžื”ืœืš ืžื’ื™ืคืช ื”ืงื•ืจื•ื ื”.
03:41
In 2020, research groups from around the world
67
221009
3503
ื‘ืฉื ืช 2020
ืงื‘ื•ืฆื•ืช ืžื—ืงืจ ื‘ืขื•ืœื ื›ื•ืœื• ื”ื—ืœื• ืœื–ื”ื•ืช ืืช
03:44
began detecting SARS-CoV-2 RNA,
68
224554
2836
03:47
the virus that causes COVID-19, in sewage samples.
69
227432
3086
ื”ื ื’ื™ืฃ ื”ื’ื•ืจื ืœืงื•ืจื•ื ื”, ื‘ื“ื’ื™ืžื•ืช ื‘ื™ื•ื‘.
03:51
I was on one of those teams.
70
231102
1919
ื”ืฉืชืชืคืชื™ ื‘ืื—ืช ื”ืงื‘ื•ืฆื•ืช ื”ืืœื”.
03:53
We and others showed that you can actually use sewage
71
233605
3545
ืื ื™ ื•ืื—ืจื™ื ื”ืจืื™ื ื• ืฉืืคืฉืจ ืœืžืขืฉื” ืœื”ืฉืชืžืฉ ื‘ืชื•ืฆืจื™ ื‘ื™ื•ื‘
03:57
as an accurate representation of COVID activity in our communities.
72
237150
3503
ื›ื™ื™ืฆื•ื’ ืžื“ื•ื™ืง ืฉืœ ืคืขื™ืœื•ืช ื ื’ื™ืฃ ื”ืงื•ืจื•ื ื” ื‘ืงื”ื™ืœื•ืช ืฉืœื ื•.
04:01
Let me show you what I mean.
73
241070
1502
ื”ื‘ื” ื•ืืจืื” ืœื›ื ืœืžื” ื›ื•ื•ื ืชื™.
04:02
Here we're looking at a time series over the course of the pandemic.
74
242572
4046
ื›ืืŸ ืื ื• ืจื•ืื™ื ื’ืจืฃ ืฉืœ ื”ืชืงื“ืžื•ืช ื”ืžื’ื™ืคื”,
04:06
So from March 2020 through just last week.
75
246951
3128
ืžืžืจืฅ 2020 ื•ืขื“ ืœืฉื‘ื•ืข ืฉืขื‘ืจ ืžืžืฉ.
04:10
The blue line represents COVID virus concentrations in sewage samples
76
250079
4922
ื”ืงื• ื”ื›ื—ื•ืœ ืžื™ื™ืฆื’ ืจื™ื›ื•ื–ื™ ื ื’ื™ืฃ ืงื•ืจื•ื ื” ื‘ื“ื’ื™ืžื•ืช ื‘ื™ื•ื‘
04:15
from across the United States.
77
255043
1877
ืžืจื—ื‘ื™ ืืจืฆื•ืช ื”ื‘ืจื™ืช.
04:16
In yellow, we see COVID clinical case data.
78
256961
3587
ื‘ืฆื”ื•ื‘, ืื ื• ืจื•ืื™ื ื ืชื•ื ื™ ืžืงืจื™ ืงื•ืจื•ื ื” ืงืœื™ื ื™ื™ื.
04:21
For the first two years of the pandemic, case data was very reliable.
79
261132
3921
ื‘ืฉื ืชื™ื™ื ื”ืจืืฉื•ื ื•ืช ืฉืœ ื”ืžื’ื™ืคื”, ื ืชื•ื ื™ ื”ืžืงืจื™ื ื”ื™ื• ืืžื™ื ื™ื ืžืื•ื“.
04:25
People were getting PCR-tested all the time.
80
265053
2836
ืื ืฉื™ื ืขื‘ืจื• ื›ืœ ื”ื–ืžืŸ ื‘ื“ื™ืงื•ืช ืคื™-ืกื™-ืืจ.
04:27
During those two years,
81
267889
1209
ื‘ืžื”ืœืš ื”ืฉื ืชื™ื™ื ื”ืœืœื•,
04:29
the two data sets tracked very well.
82
269140
1960
ืฉื ื™ ืžืขืจื›ื™ ื”ื ืชื•ื ื™ื ื”ื™ื• ื‘ื”ืงื‘ืœื” ื˜ื•ื‘ื”.
04:31
That was great.
83
271142
1168
ื–ื” ื”ื™ื” ืžืขื•ืœื”.
04:32
It meant that sewage was also reliable
84
272310
2169
ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ืฉื”ื‘ื™ื•ื‘ ื”ื™ื” ื’ื ืืžื™ืŸ
04:34
and an accurate representation of disease burden.
85
274521
2585
ื•ื’ื ื™ื™ืฆื’ ื‘ืžื“ื•ื™ืง ืฉืœ ืขื•ืžืก ื”ืžื—ืœื”.
04:37
However, over the past year and a half to two years,
86
277857
2836
ืื‘ืœ ื‘ืžื”ืœืš ื”ืฉื ื” ื•ื—ืฆื™ ืขื“ ื”ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช,
04:40
we've seen a divergence in those data sets.
87
280693
2920
ืจืื™ื ื• ื”ืชืคืฆืœื•ืช ื‘ืžืขืจื›ื™ ื”ื ืชื•ื ื™ื ื”ืœืœื•.
04:43
People just aren't getting COVID-tested nearly as often.
88
283613
3212
ืื ืฉื™ื ืคืฉื•ื˜ ืœื ื ื‘ื“ืงื™ื ืœืงื•ืจื•ื ื” ื‘ืื•ืชื” ืชื“ื™ืจื•ืช.
04:46
Sewage, on the other hand,
89
286825
1918
ื”ื‘ื™ื•ื‘, ืœืขื•ืžืช ื–ืืช,
04:48
doesn't require us to access health care services.
90
288785
3378
ืื™ื ื• ืžื—ื™ื™ื‘ ืื•ืชื ื• ืœื”ื™ื“ืจืฉ ืœื ืชื•ื ื™ ืฉื™ืจื•ืชื™ ื‘ืจื™ืื•ืช.
04:52
We're all represented just by peeing and pooping.
91
292163
3671
ื›ื•ืœื ื• ืžื™ื•ืฆื’ื™ื ืคืฉื•ื˜ ื‘ืคื™ืคื™ ื•ืงืงื™.
04:55
Throughout the pandemic, we and others also showed that sewage is predictive
92
295834
4295
ืœืื•ืจืš ื›ืœ ื”ืžื’ื™ืคื”, ืื ื• ื•ืื—ืจื™ื ื”ืจืื™ื ื• ื’ื ืฉื”ื‘ื™ื•ื‘ ืžื ื‘ื
05:00
and a leading indicator of new COVID clinical cases.
93
300129
4463
ื•ืžื”ื•ื•ื” ืกืžืŸ ืžืจื›ื–ื™ ืœืžืงืจื™ื ืงืœื™ื ื™ื™ื ื—ื“ืฉื™ื ืฉืœ ืงื•ืจื•ื ื”.
05:04
This is because infectious disease viruses incubate in our bodies
94
304634
4129
ื–ื” ืžืฉื•ื ืฉื ื’ื™ืคื™ื ืฉืœ ืžื—ืœื•ืช ื–ื™ื”ื•ืžื™ื•ืช ื“ื•ื’ืจื™ื ื‘ื’ื•ืคื ื•
05:08
before we develop symptoms or go get tested.
95
308763
3128
ืœืคื ื™ ืฉืื ื• ืžืคืชื—ื™ื ืชืกืžื™ื ื™ื ืื• ื ื‘ื“ืงื™ื,
05:12
Meanwhile, we've been excreting the virus for days.
96
312308
3295
ื•ื‘ื™ื ืชื™ื™ื ืื ื• ืžืคืจื™ืฉื™ื ืืช ื”ื ื’ื™ืฃ ื‘ืžืฉืš ื™ืžื™ื.
05:16
During COVID,
97
316271
1167
ื‘ืžื”ืœืš ื”ืงื•ืจื•ื ื”,
05:17
it was shown that sewage was anywhere between one to three weeks
98
317438
4130
ื”ื•ื›ื— ื›ื™ ืชื•ืฆืจื™ ื”ื‘ื™ื•ื‘ ื”ื™ื•ื• ื‘ืžืฉืš ื‘ื™ืŸ ืฉื‘ื•ืข ืœืฉืœื•ืฉื” ืฉื‘ื•ืขื•ืช
05:21
leading indicator for clinical cases.
99
321568
2460
ืกืžืŸ ืžื•ื‘ื™ืœ ืœืžืงืจื™ื ืงืœื™ื ื™ื™ื.
05:25
Now I'm going to show you an example
100
325280
1751
ื›ืขืช ืืจืื” ืœื›ื ื“ื•ื’ืžื” ืœืžืงืจื” ืื—ื“
05:27
of one time that this led to a big community-impacting decision.
101
327073
3629
ืฉื‘ื• ื–ื” ื”ื•ื‘ื™ืœ ืœื”ื—ืœื˜ื” ื’ื“ื•ืœื” ืฉื”ืฉืคื™ืขื” ืขืœ ืงื”ื™ืœื”.
05:31
Here, we're looking at data from the Boston area
102
331244
3253
ื›ืืŸ ืื ื• ืจื•ืื™ื ื ืชื•ื ื™ื ืžืื–ื•ืจ ื‘ื•ืกื˜ื•ืŸ
05:34
during the Omicron wave.
103
334539
1793
ื‘ืžื”ืœืš ื’ืœ ืฉืœ ืื•ืžื™ืงืจื•ืŸ.
05:36
In December 2021, towards the end of the month,
104
336332
3128
ื‘ื“ืฆืžื‘ืจ 2021, ืœืงืจืืช ืกื•ืฃ ื”ื—ื•ื“ืฉ,
05:39
COVID cases began to skyrocket across the country
105
339460
3045
ื”ืงื•ืจื•ื ื” ื”ื—ืœื” ืœื”ืจืงื™ืข ืฉื—ืงื™ื ื‘ืจื—ื‘ื™ ื”ืืจืฅ
05:42
and didn't slow until the end of January.
106
342547
2794
ื•ืœื ื”ืื˜ื” ืขื“ ืกื•ืฃ ื™ื ื•ืืจ.
05:45
Boston Children's Hospital, though, was ready.
107
345341
2419
ืื‘ืœ ื‘ื™ืช ื”ื—ื•ืœื™ื ืœื™ืœื“ื™ื ื‘ื‘ื•ืกื˜ื•ืŸ ื”ื™ื” ืžื•ื›ืŸ.
05:47
They had been looking at Boston area sewage
108
347802
2211
ื”ื ื‘ื“ืงื• ืืช ื”ื‘ื™ื•ื‘ ื‘ืื–ื•ืจ ื‘ื•ืกื˜ื•ืŸ
05:50
and saw the sewage levels go up weeks earlier,
109
350054
3712
ื•ื”ื‘ื—ื™ื ื• ืฉืจืžื•ืช ื”ื‘ื™ื•ื‘ ืขื•ืœื•ืช ืฉื‘ื•ืขื•ืช ืงื•ื“ื ืœื›ืŸ,
05:53
so they proactively postponed all non-emergency medical procedures.
110
353808
4671
ื•ืœื›ืŸ ื”ื ื“ื—ื• ื‘ืื•ืคืŸ ื™ื–ื•ื ืืช ื›ืœ ื”ื”ืœื™ื›ื™ื ื”ืจืคื•ืื™ื™ื ืฉืื™ื ื ื—ื™ืจื•ื.
05:59
They wanted to free up resources so that they could adequately respond
111
359522
3879
ื”ื ืจืฆื• ืœืคื ื•ืช ืžืฉืื‘ื™ื ื›ื“ื™ ืฉื™ื•ื›ืœื• ืœื”ื’ื™ื‘ ื›ืจืื•ื™
06:03
to the incoming wave of hospitalizations.
112
363443
2419
ืœื’ืœ ื”ืืฉืคื•ื–ื™ื ื”ืžืžืฉืžืฉ ื•ื‘ื.
06:07
Now wastewater epidemiology has been used
113
367238
2419
ื”ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืฉืœ ืฉืคื›ื™ื ืฉื™ืžืฉื” ืœื˜ื™ืคื•ืœ ื‘ื‘ืขื™ื•ืช ื‘ืจื™ืื•ืชื™ื•ืช ื“ื—ื•ืคื•ืช ื ื•ืกืคื•ืช.
06:09
to tackle other pressing health issues as well.
114
369657
2878
06:12
Before the pandemic,
115
372994
1209
ืœืคื ื™ ื”ืžื’ื™ืคื”,
06:14
the biggest public health crisis in the United States
116
374203
2920
ืžืฉื‘ืจ ื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช
06:17
was our growing drug epidemic.
117
377123
2211
ื”ื™ื” ืžื’ื™ืคืช ื”ืชืจื•ืคื•ืช ื”ืžืชืคืฉื˜ืช ืฉืœื ื•.
06:20
Drug overdoses were growing year over year
118
380001
2753
ืžื™ื ื•ืŸ ื”ื™ืชืจ ืฉืœ ื”ืชืจื•ืคื•ืช ื’ื“ืœ ืžืฉื ื” ืœืฉื ื”
06:22
and had become the leading cause of accidental death
119
382795
3254
ื•ื–ื” ื”ืคืš ืœื’ื•ืจื ื”ืžื•ื‘ื™ืœ
ืœืžื•ื•ืช ื‘ืฉื•ื’ื’ ื‘ืงืจื‘ ืืžืจื™ืงืื™ื ืžืชื—ืช ืœื’ื™ืœ 50.
06:26
for Americans under the age of 50.
120
386049
2544
06:28
In 2018, a small town in North Carolina had seen overdoses go up,
121
388927
5171
ื‘ืฉื ืช 2018, ืขื™ื™ืจื” ืงื˜ื ื” ื‘ืฆืคื•ืŸ ืงืจื•ืœื™ื™ื ื” ืจืืชื” ืฉืžื™ื ื•ืŸ ื”ื™ืชืจ ืขื•ืœื”,
06:34
and they wanted better information,
122
394098
1961
ื•ื”ื ืจืฆื• ืžื™ื“ืข ื˜ื•ื‘ ื™ื•ืชืจ,
06:36
better data to know what to do about it,
123
396059
2085
ื ืชื•ื ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ ื›ื“ื™ ืœื“ืขืช ืžื” ืœืขืฉื•ืช ื‘ื ื™ื“ื•ืŸ,
06:38
what was driving this trend and how to respond.
124
398186
2878
ืžื” ืžื ื™ืข ืืช ื”ืžื’ืžื” ื”ื–ื• ื•ื›ื™ืฆื“ ืœื”ื’ื™ื‘.
06:41
So we turned to the sewers, and together with the mayor's office,
125
401064
4087
ืื– ืคื ื™ื ื• ืœื‘ื™ื•ื‘ื™ื, ื•ื™ื—ื“ ืขื ืžืฉืจื“ ืจืืฉ ื”ืขื™ืจ,
06:45
we began to analyze sewage samples from several sites across the city
126
405193
4838
ื”ืชื—ืœื ื• ืœื ืชื— ื“ื’ื™ืžื•ืช ื‘ื™ื•ื‘ ืžื›ืžื” ืืชืจื™ื ื‘ืจื—ื‘ื™ ื”ืขื™ืจ
06:50
and were able to show that prescription opioids
127
410073
3879
ื•ื”ืฆืœื—ื ื• ืœื”ืจืื•ืช ืฉืื•ืคื™ื•ืื™ื“ื™ื ื‘ืžืจืฉื ื”ื ื”ืชืจื•ืคื” ื”ื ืฆืจื›ืช ื‘ื™ื•ืชืจ,
06:53
were the drug most commonly consumed, not injectable opioids.
128
413952
3795
ื•ืœื ืื•ืคื™ื•ืื™ื“ื™ื ืฉื ื™ืชื ื™ื ืœื”ื–ืจืงื”.
06:58
Equipped with this data,
129
418748
1919
ืžืฆื•ื™ื“ืช ื‘ื ืชื•ื ื™ื ืืœื”,
07:00
the city diverted resources from needle exchange sites
130
420667
3420
ื”ืขื™ืจ ื”ืกื™ื˜ื” ืžืฉืื‘ื™ื ืžืืชืจื™ ื”ื—ืœืคืช ืžื—ื˜ื™ื
07:04
and put that money into medication takeback programs instead.
131
424128
3629
ื•ื”ืฉืงื™ืขื” ืืช ื”ื›ืกืฃ ื”ื–ื” ื‘ืชื•ื›ื ื™ื•ืช ืื™ืกื•ืฃ ืชืจื•ืคื•ืช.
07:08
They advertised and held dozens of town halls
132
428174
2503
ื”ื ืคืจืกืžื• ื•ืงื™ื™ืžื• ื›ื ืกื™ื ื‘ืขืฉืจื•ืช ื‘ืชื™ ืขื™ืจื™ื™ื”
07:10
where they talked about the adverse effects of prescription painkillers.
133
430718
4004
ืฉื‘ื”ื ื”ืจืฆื• ืขืœ ื”ื”ืฉืคืขื•ืช ื”ืฉืœื™ืœื™ื•ืช ืฉืœ ืžืฉื›ื›ื™-ื›ืื‘ื™ื ื‘ืžืจืฉื.
07:15
That year,
134
435264
1460
ื‘ืื•ืชื” ืฉื ื”,
07:16
the city saw a 40 percent reduction in overdoses,
135
436766
4630
ื”ืขื™ืจ ืจืืชื” ื™ืจื™ื“ื” ืฉืœ 40 ืื—ื•ื–ื™ื ื‘ืžื™ื ื•ืŸ-ื™ืชืจ,
07:21
and for the first time,
136
441437
1293
ื•ืœืจืืฉื•ื ื”,
07:22
they had engaged their community in a dialogue around drugs,
137
442730
3462
ืฉื™ืชืคื• ืืช ื”ืงื”ื™ืœื” ืฉืœื”ื ื‘ื“ื™ืืœื•ื’ ืกื‘ื™ื‘ ืชืจื•ืคื•ืช,
07:26
addiction and overdose.
138
446234
2002
ื”ืชืžื›ืจื•ืช ื•ืžื™ื ื•ืŸ-ื™ืชืจ.
07:28
Now imagine if every city around the world had access to this sort of information.
139
448736
5714
ืชืืจื• ืœืขืฆืžื›ื ืฉื›ืœ ืขื™ืจ ื‘ืขื•ืœื ืชื–ื›ื” ื‘ื’ื™ืฉื” ืœืžื™ื“ืข ืžืกื•ื’ ื–ื”.
07:34
Before the pandemic,
140
454951
1168
ืœืคื ื™ ื”ืžื’ื™ืคื”,
07:36
wastewater epidemiology was a tiny field
141
456160
2920
ื”ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืฉืคื›ื™ื ื”ื™ืชื” ืชื—ื•ื ื–ืขื™ืจ
07:39
with no more than a dozen experts worldwide.
142
459122
3211
ื•ื‘ื• ืœื ื™ื•ืชืจ ืžืชืจื™ืกืจ ืžื•ืžื—ื™ื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื.
07:42
Today, 72 countries
143
462333
3420
ื›ื™ื•ื, 72 ืžื“ื™ื ื•ืช
07:45
have used wastewater monitoring to understand COVID-19.
144
465753
4255
ื”ืฉืชืžืฉื• ื‘ื ื™ื˜ื•ืจ ืฉืคื›ื™ื ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืงื•ืจื•ื ื”.
07:50
And it's time that we leverage these investments
145
470675
2419
ื•ื”ื’ื™ืข ื”ื–ืžืŸ ืฉื ืžื ืฃ ื”ืฉืงืขื•ืช ืืœื” ื›ื“ื™ ืœื ื˜ืจ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ื ื•ืกืคื™ื.
07:53
to monitor for all sorts of other things as well.
146
473094
2502
07:56
Imagine knowing when influenza and RSV are going to peak every year
147
476305
4505
ืชืืจื• ืœืขืฆืžื›ื ืฉืชื“ืขื• ืžืชื™ ื”ืฉืคืขืช ื•ื“ืœืงืช ื”ื ื’ื™ืฃ ื”ื ืฉื™ืžืชื™
ืขืชื™ื“ื•ืช ืœื”ื™ื•ืช ื‘ืฉื™ืืŸ ืžื™ื“ื™ ืฉื ื”,
08:00
so that our hospitals can prepare.
148
480810
2044
ื›ื“ื™ ืฉื‘ืชื™ ื”ื—ื•ืœื™ื ืฉืœื ื• ื™ื•ื›ืœื• ืœื”ื™ืขืจืš.
08:03
Imagine mapping nutrition in our cities
149
483229
2669
ืชืืจื• ืœืขืฆืžื›ื ืžื™ืคื•ื™ ืชื–ื•ื ื” ื‘ืขืจื™ื ืฉืœื ื•
08:05
so that we can identify food deserts
150
485940
2169
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื–ื”ื•ืช ืžื“ื‘ืจื™ื•ืช ืžื–ื•ืŸ
08:08
and understand social determinants of health.
151
488109
2419
ื•ืœื”ื‘ื™ืŸ ื’ื•ืจืžื™ื ื—ื‘ืจืชื™ื™ื ื‘ืจื™ืื•ืชื™ื™ื.
08:11
Imagine identifying superbugs and antibiotic resistant genes
152
491154
4713
ืชืืจื• ืœืขืฆืžื›ื ื–ื™ื”ื•ื™ ื—ื™ื™ื“ืงื™-ืขืœ ื•ื’ื ื™ื ืขืžื™ื“ื™ื ืœืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”
08:15
as they emerge in our communities.
153
495908
2002
ื›ืฉื”ื ืžื•ืคื™ืขื™ื ื‘ืงื”ื™ืœื•ืช ืฉืœื ื•.
08:19
Imagine preventing the next pandemic before it happens.
154
499120
3503
ืชืืจื• ืœืขืฆืžืš ืืช ืžื ื™ืขืช ื”ืžื’ื™ืคื” ื”ื‘ืื” ืœืคื ื™ ื”ืชืจื—ืฉื•ืชื”.
08:23
In the way that cholera prompted London to build modern-day sewer systems,
155
503499
5005
ื›ืคื™ ืฉื”ื›ื•ืœืจื” ื”ื ื™ืขื” ืืช ืœื•ื ื“ื•ืŸ ืœื‘ื ื•ืช ืžืขืจื›ื•ืช ื‘ื™ื•ื‘ ืžื•ื“ืจื ื™ื•ืช,
08:28
and poor health in the tenements of New York City
156
508546
2503
ื•ื”ื‘ืจื™ืื•ืช ื”ืœืงื•ื™ื” ื‘ืฉื™ื›ื•ื ื™ื ื‘ื ื™ื•-ื™ื•ืจืง
ื”ื™ืชื” ืื—ืช ื”ื–ืจื–ื™ื ืœื‘ื ื™ื™ืช ืกื ื˜ืจืœ ืคืืจืง,
08:31
were one of the catalysts behind the building of Central Park,
157
511049
4045
08:35
this is how our cities can learn from COVID-19.
158
515136
3170
ื›ืš ื”ืขืจื™ื ืฉืœื ื• ื™ื›ื•ืœื•ืช ืœืœืžื•ื“ ืžื”ืงื•ืจื•ื ื”,
08:38
And this is precisely how we can foster a new, intelligent kind of urbanization.
159
518806
5589
ื•ื›ืš ื‘ื“ื™ื•ืง ืื ื• ื™ื›ื•ืœื™ื ืœื˜ืคื— ืกื•ื’ ื—ื“ืฉ ื•ื—ื›ื ืฉืœ ืขื™ื•ืจ.
08:45
For years now, scientists, policymakers,
160
525354
3212
ืžื–ื” ืฉื ื™ื
ืฉืžื“ืขื ื™ื, ืงื•ื‘ืขื™ ืžื“ื™ื ื™ื•ืช, ืื“ืจื™ื›ืœื™ื ื•ืžืชื›ื ื ื™-ืขืจื™ื
08:48
architects and urban planners
161
528566
2169
08:50
have been harnessing the power of technology and big data
162
530735
3420
ืจื•ืชืžื™ื ืืช ื›ื•ื—ื ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื•ื ืชื•ื ื™ ื”ืขืชืง
08:54
to future-proof our cities.
163
534197
2085
ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ืขืชื™ื“ืŸ ืฉืœ ืขืจื™ื ื•
08:57
Over the last decade,
164
537200
1543
ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ ืžื•ื ื• ื‘ืขืจื™ื ื‘ืขื•ืœื ื›ื•ืœื• ืงืฆื™ื ื™ ื˜ื›ื ื•ืœื•ื’ื™ื” ืจืืฉื™ื™ื.
08:58
chief technology officers have been appointed in cities
165
538743
3170
09:01
around the world.
166
541954
1502
09:04
Roles once reserved for the boardrooms
167
544415
2127
ืชืคืงื™ื“ื™ื ืฉื‘ืขื‘ืจ ื”ื™ื• ืฉืžื•ืจื™ื ืœื—ื“ืจื™ ื”ื™ืฉื™ื‘ื•ืช ื•ืœืžืกื“ืจื•ื ื•ืช ืฉืœ ืขืžืง ื”ืกื™ืœื™ืงื•ืŸ
09:06
and hallways of Silicon Valley
168
546584
1460
ืคืชื•ื—ื™ื ืขื›ืฉื™ื• ืกื•ืฃ-ืกื•ืฃ ื‘ืขื™ืจื™ื•ืช.
09:08
are now finally open in city hall.
169
548044
2794
09:12
So next time you swipe your credit card,
170
552006
3128
ืื– ื‘ืคืขื ื”ื‘ืื” ืฉืืชื ืžืขื‘ื™ืจื™ื ืืช ื›ืจื˜ื™ืก ื”ืืฉืจืื™,
09:15
take a ride in a taxi or tap your MetroCard,
171
555176
3462
ื ื•ืกืขื™ื ื‘ืžื•ื ื™ืช ืื• ืžืฉืชืžืฉื™ื ื‘ื›ืจื˜ื™ืก ื”ืชื—ื‘ื•ืจื” ื”ืฆื™ื‘ื•ืจื™ืช,
09:18
just consider how you're contributing
172
558679
1961
ื—ื™ืฉื‘ื• ืื™ืš ืืชื ืชื•ืจืžื™ื ืœืชืฉืชื™ืช ื”ื“ื™ื’ื™ื˜ืœื™ืช ื”ื”ื•ืœื›ืช ื•ื’ื“ืœื” ืฉืœ ืขื™ืจื›ื.
09:20
to your city's ever-growing digital infrastructure.
173
560681
2878
09:24
And next time you use the toilet,
174
564685
2795
ื•ื‘ืคืขื ื”ื‘ืื” ืฉืืชื ื”ื•ืœื›ื™ื ืœืฉื™ืจื•ืชื™ื,
09:27
just remember, you're doing your civic duty.
175
567480
3128
ื–ื™ื›ืจื• ืฉืืชื ืคืฉื•ื˜ ืžืžืœืื™ื ืืช ื—ื•ื‘ืชื›ื ื”ืื–ืจื—ื™ืช.
09:30
(Laughter)
176
570650
1543
(ืฆื—ื•ืง)
09:32
Thank you.
177
572235
1167
ืชื•ื“ื”.
09:33
(Applause)
178
573402
3921
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7